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Introduction: This study aimed to establish sex- and age-specific
reference curves enabling the calculation of z-scores and to examine
correlations between bone markers and anthropometric data.

Methods: Morning blood samples were obtained from 572 healthy
children and adolescents (300 boys) aged 2 months to 18 yr. Height,
weight, and pubertal stage were recorded. Serum osteocalcin (OC),
bone-specific alkaline phosphatase (BALP), type-1 collagen degrada-
tion markers [carboxyterminal telopeptide region of type I collagen
(ICTP), carboxyterminal telopeptide �1 chain of type I collagen
(CTX)], and tartrate-resistant acid phosphatase (TRAP5b) were mea-
sured. Cross-sectional centile charts were created for the 3rd, 50th,
and 97th centiles.

Results: Apart from TRAP5b, all bone markers were nonnormally
distributed, requiring logarithmic (BALP, OC, ICTP) or square root
(CTX) transformation. Back-transformed centile curves for age and
sex are presented for practical use. All bone markers varied with age

and pubertal stage (P � 0.001). Significant correlations were found
between SD score (SDS) for bone formation markers BALP and OC (r �
0.13; P � 0.004), SDS for collagen degradation markers ICTP and CTX
(r � 0.14; P � 0.002), and SDS for the phosphatases (r � 0.34, P �
0.001). Height and weight SDS correlated weakly with some bone
marker SDS, particularly with lnBALP SDS (r � 0.20 and 0.24,
respectively; both P � 0.001).

Conclusion: This study provides reference curves for OC, BALP,
CTX, ICTP, and TRAP5b in healthy children. Taller and heavier
individuals for age had greater bone marker concentrations, likely
reflecting greater growth velocity. SDS for markers of bone formation,
collagen degradation, and phosphatases were each independently
correlated, suggesting they derive from the same biological processes.
The possibility of calculating SDS will facilitate monitoring of anti-
resorptive therapy or disease progression in children with metabolic
bone disease. (J Clin Endocrinol Metab 92: 443–449, 2007)

NORMAL PEDIATRIC REFERENCE ranges for serum
markers of bone formation and resorption are a pre-

requisite for the assessment of metabolic bone disorders and
for the monitoring of antiresorptive therapy or disease pro-
gression. In adults, bone turnover markers mainly represent
bone remodeling and are commonly used as independent
predictors of the risk of osteoporosis and fractures (1, 2), to
monitor antiresorptive therapy (3–5) and also have a prom-
ising role in metastatic bone disease (6). In children, these
markers are released into the circulation during the processes
of bone remodeling, modeling, and growth in length. Aside
from the remodeling process, osteoclast and osteoblast ac-
tions are not coupled during modeling or epiphyseal growth,
thus introducing additional variability and reducing speci-
ficity. Skeletal growth and puberty lead to considerable
changes in raw levels of bone formation and resorption
markers with age, demonstrated by their correlation with
growth velocity (7–11). Thus, any longitudinal measurement

in a patient necessitates comparison relative to the physio-
logically changing reference curves.

Traditionally, markers of bone turnover have been measured
in urine, which is useful and accurate in children old and
healthy enough to carry out the instructions for obtaining a
second void fasting urine (12, 13). In infants and children, the
practical difficulties associated with serial urine collection are
compounded by marked circadian and intraindividual varia-
tion in urinary markers (9, 14, 15) and by the necessity of
expressing their concentration relative to creatinine (10, 16),
itself subject to considerable biological variation and change
with age as muscle mass increases (10, 17). Hence, the mea-
surement of bone markers in serum is preferred (7, 9, 10, 18).
Commonly used serum markers of bone formation are osteo-
calcin (OC) and bone-specific alkaline phosphatase (BALP),
which are released at different stages of osteoblast proliferation
and differentiation (19). Among others, commonly used mark-
ers of bone resorption are the carboxyterminal telopeptide re-
gion of type I collagen (ICTP), the carboxyterminal telopeptide
�1 chain of type I collagen (CTX), and serum tartrate-resistant
acid phosphatase 5b (TRAP5b).

Establishing pediatric reference ranges for bone markers
and assessing their relation to sex, age, and anthropometric
data requires a large population of healthy children. Previous
normative studies partly suffered from low subject numbers.
In addition, the routine use of these data has also been hin-
dered by the lack of applying appropriate curve-fitting pro-
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cedures. Curve-fitting is essential because of the frequently
skewed distribution of bone marker data, the age-related
changes that occur within individual age groups and the
different variation between age groups. These changes com-
plicate the interpretation of longitudinal results and the mon-
itoring of children in intervention studies.

The aims of this study were: 1) to establish sex- and age-
specific reference equations for OC, BALP, ICTP, CTX, and
TRAP5b in healthy children and adolescents, enabling cal-
culation of sd-scores; 2) to present back-transformed nor-
mative curves for easy practical use; and 3) to test the cor-
relation among markers of bone formation and resorption
and their relation to anthropometric data.

Subjects and Methods

Between 2001 and 2005, healthy Caucasian children and adolescents
(aged 2 months to 18 yr) seen as inpatients or outpatients for routine or
preoperative investigations or for minor conditions or infections requiring
blood sampling were recruited for this study. Results of neonates have been
published previously (20). Children with any disease likely to affect bone
metabolism, including disorders of vitamin D, parathyroid, growth or
thyroid hormone, renal impairment, a history of recent fracture or burns,
malnutrition, or dehydration, diabetes mellitus, or any chronic disease were
not included in the study. In addition, children requiring treatment with
corticosteroids or anticonvulsants, with immobility, muscular or severe
neurological diseases, with identifiable genetic syndromes, major congen-
ital malformations, or cancer were not included. The study protocol was
approved by the local ethics committee and informed consent was obtained
from children or their parents.

Blood samples were obtained in all children fulfilling the inclusion
criteria between 0800 and 1000 h to avoid any bias from diurnal variation
(14, 15, 21). Serum markers of bone formation (intact OC and BALP as
exclusive markers of osteoblasts) and bone resorption (ICTP, CTX, and
TRAP5b) were measured. Each sample of whole blood (1 ml) was cen-
trifuged to obtain serum, which was aliquoted and immediately frozen
at �80 C within 1 h of sampling, and then stored until the assays were
run. All samples were analyzed in duplicate concurrently.

Anthropometry

Anthropometric data obtained from the record were height and
weight, which were measured using a wall-mounted stadiometer and a
calibrated weight scale, respectively, wearing underwear only. Body
mass index (BMI) was calculated by using the formula: BMI � weight
(kg)/height (m)2. Age- and sex-specific sd scores (SDS) for height,
weight, and BMI were calculated according to German reference data
(22). Pubertal stages were assessed according to Tanner (23).

Biochemical markers of bone formation

Intact OC assay. OC is a noncollagenous protein produced by osteoblasts
during the matrix mineralization phase. Found exclusively in mineral-
izing tissues, OC provides a close reflection of bone formation. OC was
measured by a two-site immunoradiometric assay (Active Human Os-
teocalcin IRMA; Diagnostic Systems Laboratories, Sinsheim, Germany).
Intraassay and interassay coefficients of variation (CVs) were 1.4–3.4%
and 3.3–5.3%, respectively.

BALP assay. BALP is a synthetic product of osteoblasts involved in the
process of osteoid mineralization. Bone and liver isoenzymes of alkaline
phosphatase are products of a single gene and differ only as a result of
posttranslational glycosylation. Current immunoassays for BALP pos-
sess a low cross-reactivity with the circulating liver isoenzyme. Serum
BALP levels were measured by a solid-phase, two-site immunoradio-
metric assay (Tandem-R-Ostase; Hybritech Inc., San Diego, CA) based
on two monoclonal antibodies. The intraassay and interassay CVs were
3.7–6.7% and 7.0–8.1%, respectively.

Biochemical markers of bone resorption

ICTP assay. ICTP was measured by RIA (Type I Telopeptide ICTP RIA
kit; Orion Diagnostica, Espoo, Finland). The assay detects the C-terminal
telopeptides of two �1(I) chains in a type I collagen molecule cross-linked
with the helical domain of another collagen chain (24). The ICTP mol-
ecule is released during collagen degradation by matrix metallopepti-
dases. The intraassay CV was 2.8–6.2% and the interassay CV was
4.1–7.9%. Samples were diluted 1:2 with 154 mmol/liter sodium chloride
to achieve concentrations within the calibration curve.

CTX assay. Serum CTX was measured by ELISA (CrossLaps One Step
ELISA; Osteometer Biotech, Herlev, Denmark). This assay uses a poly-
clonal antiserum raised against an immobilized synthetic peptide with
an amino acid sequence (EKAHDGGR) specific for part of the C-terminal
telopeptide of the �1(I) collagen chain, where the aspartic acid residue
(D) is �-isomerized (�CTX). The peptide sequence for CTX is shorter
than that of ICTP. Intra- and interassay CVs were 5.0–5.4% and 5.4–
8.1%, respectively.

TRAP5b assay. As an enzyme of osteoclasts, TRAP5b is involved in bone
matrix degradation. The enzyme is released into the circulation during
the resorption process itself or after detachment of the osteoclast from
the bone surface and later degraded to fragments. In this study, TRAP5b
activity was measured in surplus serum of 147 children (83 males and
64 females) using the Bone TRAP Assay (Medac, Hamburg, Germany).
Intraassay and interassay CVs were 4.7–13.9% and 5.8–13.9%,
respectively.

Data analysis

Statistical analysis was performed using the Statistical Package for
Social Sciences (version 12.0; SPSS Inc., Chicago, IL). Bone marker con-
centrations were tested for their normal distribution. Logarithmic or
square root transformations were applied as needed to achieve a dis-
tribution as close as possible to normal. To create cross-sectional centile
curves, we applied a model that uses the absolute residuals of the
dependent variable because the sd varies with growth-related data (25).
As an example, the procedure for the lnBALP/age centile curve involved
the following: First, the mean curve (50th centile) was modeled by
regression analysis. Thereafter, absolute residuals of lnBALP were re-
gressed against age and the statistically best-fitting equation was ob-
tained. The specific sd was obtained by multiplying this equation by
�(�/2). Finally, the 3rd and 97th centiles were derived using this sd
estimate (50th centile � 1.88 sd) (25). For easy practical use, we per-
formed back transformation of the logarithmic/square root centile
charts. To test the variation with sex and age, 2-yr age groups were
derived from the original data set. Two-way ANOVA was performed
with age groups and sex as categorical variables using post-hoc Bon-
ferroni tests and t test for sex comparisons. Additional ANOVAs were
run with Tanner stages and sex, with the rapidly growing infants (�3
yr) as a separate stage. Spearman’s correlation was used to test corre-
lations among SDS of bone markers and between SDS of bone markers
and anthropometric data. The correlation among SDS was preferred
over raw data to rule out age effects on the analysis. Data are presented
as mean (sd) and changes at P � 0.05 were considered significant.

Results

A total of 572 children (300 boys) fulfilled the inclusion
criteria for the study. Characteristics of the study population
are presented in Table 1. In girls, mean SDS for height,
weight, and BMI were 0.006 (1.016), �0.172 (1.026), and
�0.293 (1.196), respectively. Corresponding values for boys
were 0.056 (0.980), �0.101 (0.988) and �0.232 (1.116), respec-
tively. The SDS were symmetrically distributed when plotted
against age in both sexes.

Creation of centile charts

Mean and sd equations for all bone markers are given in
Table 2. Apart from TRAP5b, all other bone markers showed
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a skewed distribution with age and required logarithmic
(OC, BALP, and ICTP) or square root (CTX) transformations.
Sex- and age-specific reference curves showing the 3rd, 50th,
and 97th centiles were created for lnOC, lnBALP, lnICTP,
�CTX, and TRAP5b. The best fit for the 3rd, 50th, and 97th
centiles was obtained by cubic equations for all bone mark-
ers. Equations for lnOC, lnBALP, lnICTP, and �CTX were
then back-transformed to create smooth sex- and age-specific
centile charts for use in clinical practice (Fig. 1, A and B).

Bone marker variation with age, sex, and Tanner stage

Significant variation with age was observed for all bone
markers (P � 0.001). Sex was significant only for lnBALP (P �
0.001) and TRAP5b (P � 0.002), with higher concentrations
observed in boys. In addition, there was a significant inter-
action between age and sex for lnICTP (P � 0.001). Serum
levels of lnBALP were lower in children older than 15 yr
compared with children younger than 15 yr (P � 0.001) and
significantly greater in boys than girls over 13 yr (P � 0.001).
LnICTP levels were lower in children older than 17 yr com-
pared with all age groups younger than 15 yr (P � 0.05). Girls
had greater lnICTP values than boys at age 11–13 yr (P �
0.014), while boys had greater values at age 13–15 yr (P �
0.001). In addition, infants less than 1 yr of age had signif-
icantly higher lnICTP values compared with children aged
1–13 yr and older than 15 yr (P � 0.04). Serum �CTX levels
were lower in children older than 17 yr compared with age
2–15 yr (P � 0.003). A tendency for greater �CTX values in
children from 11–15 yr was observed. Serum TRAP5b levels
were lower in children older than 15 yr compared with chil-

dren younger than 3 yr (P � 0.02). Boys aged 13–17 yr had
greater TRAP5b values compared with girls of the same age
groups (P � 0.05). As expected, bone marker concentrations
also varied with Tanner stages (P � 0.001). Results by Tanner
stage resembled those by age groups with concentrations
declining for all markers but OC in Tanner stages 4 and 5.

Correlations among SDS of bone markers (Table 3)

Significant correlations were found between SDS for bone
formation markers BALP and OC (r � 0.13; P � 0.004), as well
as SDS for collagen degradation markers ICTP and CTX (r �
0.14; P � 0.002). The greatest correlation coefficient was ob-
served between SDS for the two phosphatases (r � 0.34; P �
0.001). TRAP5b SDS also correlated with ICTP SDS (r � 0.22;
P � 0.008).

Correlations between bone marker SDS and anthropometric
SDS (Table 4)

Weak positive correlations between height SDS and ln-
BALP SDS (r � 0.20; P � 0.001) as well as �CTX SDS (r �
0.11; P � 0.018) were observed. In addition, weight SDS
correlated positively with lnBALP SDS (r � 0.24, P � 0.001)
and TRAP5b SDS (r � 0.20; P � 0.019). BMI SDS correlated
weakly with lnBALP, lnICTP and TRAP5b SDS (r values
ranging from 0.10–0.20; P � 0.03) and negatively with �CTX
SDS (r � �0.13; P � 0.004).

Discussion

In this study we derived reference curves for five bone
markers in a large cohort of healthy children aged 2 months

TABLE 1. Sex-specific height, weight, and BMI of all subjects, stratified by age group

Age (yr)
Boys Girls

n Height (cm) Weight (kg) BMI (kg/m²) n Height (cm) Weight (kg) BMI (kg/m²)

�1 11 70.91 � 5.09 7.52 � 1.19 14.88 � 1.07 16 70.67 � 5.61 7.76 � 1.44 15.58 � 1.41
1–2.99 51 87.50 � 6.39 12.53 � 2.21 16.31 � 1.53 37 87.28 � 5.91 11.60 � 1.94 15.10 � 1.67
3–4.99 46 105.22 � 4.95 16.86 � 2.25 15.20 � 1.50 41 102.73 � 5.67 16.10 � 2.50 15.22 � 1.78
5–6.99 40 118.02 � 5.09 20.96 � 2.85 14.86 � 1.26 33 118.22 � 5.79 20.88 � 3.94 14.84 � 1.90
7–8.99 32 131.08 � 7.09 28.38 � 5.64 16.43 � 2.51 23 128.70 � 5.98 26.81 � 5.02 16.15 � 2.70
9–10.99 19 139.74 � 5.16 32.49 � 6.97 16.56 � 3.01 25 140.58 � 7.27 34.61 � 7.21 17.38 � 2.65
11–12.99 23 150.07 � 6.86 40.75 � 9.60 17.97 � 3.35 24 152.71 � 9.15 42.36 � 8.51 17.92 � 2.68
13–14.99 33 164.69 � 11.35 53.60 � 12.01 19.54 � 2.69 32 160.21 � 7.82 52.26 � 10.12 20.42 � 3.63
15–16.99 31 174.69 � 8.05 63.57 � 11.60 20.74 � 2.80 29 165.07 � 5.33 56.46 � 8.92 20.72 � 3.06
�17 14 177.04 � 6.25 69.13 � 9.70 22.09 � 3.32 12 162.58 � 5.88 55.12 � 7.86 21.00 � 3.92

Values are expressed as means � SD.

TABLE 2. Sex-specific equations for lnOC, lnBALP, lnICTP, �CTX, and TRAP5b

Percentile Boys Girls

lnOC 50th 2.4249�0.1335*age-0.01*age²�0.0003*age3 2.4885�0.1161*age-0.0066*age²�0.000047*age3

SD 0.4343�0.0004*age�0.0011*age²-0.00007*age3 0.4675�0.0026*age�0.0005*age²-0.00005*age3

lnBALP 50th 4.2152–0.2601*age�0.0398*age²-0.0016*age3 4.1199–0.1816*age�0.0315*age²-0.0015*age3

SD 0.2199�0.0443*age-0.0054*age²�0.0002*age3 0.2322�0.0297*age-0.0028*age²�0.0001*age3

lnICTP 50th 3.2521–0.3189*age�0.042*age²-0.0015*age3 3.3723–0.3376*age�0.0463*age²-0.0018*age3

SD 0.3570–0.0621*age�0.0085*age²-0.0003*age3 0.3997–0.0788*age�0.0096*age²-0.0003*age3

√CTX 50th 39.4029–1.9068*age�0.4234*age²-0.0185*age3 37.5947�0.041*age�0.1904*age²-0.0127*age3

SD 6.9663–0.5886*age�0.0983*age²-0.0031*age3 6.7376–0.4718*age�0.1001*age²-0.0043*age3

TRAP5b 50th 8.1052–1.0423*age�0.1338*age²-0.0051*age3 6.8461–0.4430*age�0.0471*age²-0.0021*age3

SD 1.7923–0.1366*age�0.0027*age²�0.0003*age3 1.8159–0.0589*age�0.0023*age²-0.0001*age3

Equations for the 50th centile (predicted mean) and SD are given; 3rd and 97th centiles are created by predicted mean �1.88*SD equation
* �(�/2). To calculate an individual’s SDS, the patient’s age has to be entered in the sex-specific mean and SD equations. Then the SDS �
(measured concentration � mean)/[SD*�(�/2)].
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FIG. 1. A, Backtransformed reference curves for bone formation markers OC and BALP in boys (filled circles) and girls (open circles). Curves
represent the 50th centile (straight lines) and 3rd/97th centile (dotted lines). B, Backtransformed reference curves for bone resorption markers
ICTP, CTX, and TRAP5b in boys (filled circles) and girls (open circles). Curves represent the 50th centile (straight lines) and 3rd/97th centile
(dotted lines).
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to 18 yr, enabling the calculation of sex- and age-specific SDS.
Apart from OC, all markers decreased in late puberty with
BALP, ICTP, and TRAP5b concentrations of boys decreasing
later than girls, suggesting a strong relation of these markers
to the later male pubertal growth spurt. SDS for markers of
bone formation, collagen degradation, and phosphatases
were each independently correlated, suggesting they derive
from and reflect the same biological processes. Taller and
heavier individuals for age had greater bone marker con-
centrations, particularly BALP, likely reflecting greater
growth velocity and bone formation.

Childhood growth involves an orderly process of soft
tissue synthesis, epiphyseal bone growth, and extensive
bone modeling in addition to remodeling. In the assess-
ment of changes in these processes, the clinician is bound
to the two-dimensional measurement of bone mass using
dual energy x-ray absorptiometry or the three-dimen-
sional measurement of bone geometry, mass, and density
using quantitative computed tomography. The use of bio-
chemical bone markers complements these physical mea-
sures by providing a dynamic picture of whole-body bone
turnover that can be repeated at much shorter intervals.
This dynamic assessment allows early detection of effects
of disease or treatment long before changes in bone mass
or progression in bone disease can be accurately ascer-

tained. Normative curves are thus a prerequisite tool for
evaluating children with metabolic bone diseases.

The known high intraindividual variation in bone marker
concentrations and their release during different anabolic and
catabolic processes preclude their use for one-off diagnostic
purposes (7, 8). A considerable number of markers of bone and
collagen turnover have been designed but no single test fulfils
all the criteria for an ideal marker. In addition, no marker in
children is specific for any of the three different biological pro-
cesses of remodeling, modeling and epiphyseal growth (9).
Bone marker concentrations can be similar in a child with high
bone remodeling and low growth rate and in a normally grow-
ing child. Therefore, knowledge of growth velocity and puber-
tal development is necessary in the correct interpretation of
markers. We would recommend using a set of different for-
mation and resorption markers as the preferred approach in the
longitudinal assessment of bone diseases and in the monitoring
of antiresorptive or growth modulating therapies.

The early change in bone marker concentrations following
GH treatment in children with GH deficiency or idiopathic
short stature gives a useful prediction of growth velocity
response to treatment after 1 yr (7). Compared with OC,
ICTP, and CTX, the change in BALP values after 3 months of
GH therapy gave the best prediction of growth velocity re-
sponse (8, 26). In general, however, the prediction of one
individual marker may be too imprecise to serve as a basis
for clinical decisions (27). Using the SDS change of a set of
bone markers like ours, including IGF-1 (28, 29), for these
purposes, may better help differentiate a true response to GH
treatment from nonresponders, a group which itself needs to
be defined first in terms of growth velocity (30). Such an
approach could allow early GH dose adjustments or even GH
withdrawal in nonresponders. Future studies will need to
address whether such an approach could help reduce un-
necessary treatment and its social and economic burdens.

Bisphosphonates are used in children as therapy for primary
bone diseases such as osteogenesis imperfecta (31–33) and in-
creasingly for secondary osteoporosis (34–36) caused by a va-
riety of chronic diseases, cancer, or treatments, often associated
with an increased fracture risk (37–43). In the treatment of these
disorders, bisphosphonates act by inhibiting osteoclasts and
thus bone resorption. In growing children, resorption occurs as
part of the remodeling cycle, at the endocortical surface during
modeling, during metaphyseal inwaisting, and at the metaph-
ysis/growth plate junction during removal of primary spon-
giosa (33, 44–46). Bone resorption markers decrease rapidly
following bisphosphonate therapy and are commonly used for
monitoring. Bone formation markers may decrease as long as
they derive from the suppressed remodeling process. As raw
levels of bone formation and resorption markers decline during
infancy and late adolescence, it is impossible to differentiate
treatment-induced changes from physiological, age-related
changes. Therefore, the use of bone marker SDS calculated from
our reference curves may improve the monitoring of bone me-
tabolism in infants and children with osteogenesis imperfecta
or other conditions undergoing short- or long-term antiresorp-
tive therapy.

Weak positive correlations among markers of bone for-
mation and bone resorption were found in our study. Not
surprisingly, SDS for bone formation markers (BALP and

TABLE 4. Correlations between SDS of bone markers and
anthropometric measures

Height
SDS

Weight
SDS

BMI
SDS

lnOC SDS
r 0.06 �0.03 �0.08
P 0.179 0.442 0.065
lnBALP SDS
r 0.20 0.24 0.17
P �0.001 �0.001 �0.001
lnICTP SDS
r 0.07 0.11 0.10
P 0.105 0.008 0.026
�CTX SDS
r 0.11 �0.05 �0.13
P 0.018 0.234 0.004
TRAP5b SDS
r 0.11 0.18 0.20
P 0.198 0.028 0.019

TABLE 3. Correlations among SDS of lnOC, lnBALP, lnICTP,
�CTX, and TRAP5b

lnBALP
SDS

lnICTP
SDS

�CTX
SDS

TRAP5b
SDS

lnOC SDS
r 0.13 0.08 �0.01 �0.06
P 0.004 0.063 0.837 0.500
lnBALP SDS
r 0.32 0.08 0.34
P �0.001 0.070 �0.001
lnICTP SDS
r 0.14 0.22
P 0.002 0.008
�CTX SDS
r 0.05
P 0.557
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OC) were significantly correlated as were SDS for collagen
degradation markers (ICTP and CTX). Interestingly, the
greatest correlation coefficient was found between SDS for
the two phosphatases, likely reflecting their activity in the
continuous remodeling process. However, in general only
weak correlations were detected, as markers reflect different
biological processes at many different regions and bone sur-
faces during skeletal growth, which itself is nonlinear (47).
Markers are also released during different stages of the bone
formation, resorption or growth processes, may have differ-
ent elimination pathways and serum half-lives, affecting
their relation at distinct time points during growth. Similarly,
some of the positive correlations between anthropometric
SDS and bone markers SDS could be by chance. However, the
positive correlations between SDS for lnBALP, height, and
weight suggest greater bone formation in children tall or
heavy for age. Taller children usually have greater growth
velocity and greater weight bearing, inducing larger bone
formation in response to superior mechanical strains. The
fact that the resorption markers TRAP5b and lnICTP SDS
also correlated with weight SDS would not be contradicting
as, e.g., because increased periosteal modeling would also
lead to removal of bone from the endocortical surface (48, 49).

In line with previous reports, we found generally greater
serum concentrations of bone markers in infancy and in
mid-puberty (11, 50–55). These findings indicate that both
bone formation and resorption are accelerated during peri-
ods of growth spurt. Not surprisingly, later peaks were ob-
served for lnBALP, lnICTP, and TRAP5b in boys, reflecting
their later pubertal development and thus bone mass accrual.
In both boys and girls, concentrations of most bone markers
declined during late puberty with lowest values in the tran-
sition to adulthood. Because growth and puberty usually are
completed by late adolescence, markers of bone formation
and resorption converge into adult values. One has to ex-
trapolate our data for ages older than 17 yr because subject
numbers were low in this age group.

Reference data for serum bone markers in children have been
previously published (11, 13, 50–60), but mostly for single bone
markers and in relatively small numbers. This is the first study
implementing curve fitting procedures for five recognized
markers of bone formation and resorption in the same large
healthy pediatric population. Standardized blood sampling
and analytical procedures were used to avoid any bias due to
diurnal variation. Reference values for TRAP5b have been pub-
lished for Chinese (50) but not for Caucasian children. One
limitation of the study is the lack of data for young adults, as
concentrations of most markers had not plateaued at age 18.
Therefore, an extension of reference values to young adulthood
would be required. Further, the gross majority of children in
this study were not fasting, which may have introduced addi-
tional variability. However, overnight fasting, as recommended
for adults (2, 61), is often impracticable for infants, younger
children or the chronically ill. In addition, the clinical impact of
feeding vs. fasting in adults was reportedly small, apart from
serum CTX (2, 61, 62), and detailed information is missing for
most bone marker assays, in particular for children. However,
as monitoring is the main purpose of using bone markers, the
individual one-off measurement is much less important than
the course over time. Using our reference curves, clinicians can

choose which regimen (fasting or not) is best for the individual
patient but then should stick to the chosen regimen for all
subsequent measurements. This approach will facilitate mon-
itoring for patients and doctors. Finally, mean CTX concentra-
tions in our study were greater compared with Scottish refer-
ence data in a substantially smaller population (51) despite
using a similar study design and analytical methods and ob-
serving a similar age-related slope of CTX curves in both sexes.
As both study populations were nonfasting, other factors like
altitude, climate, lifestyle, or average vitamin D status between
populations may serve as an explanation for this discrepancy.

Conclusions

The presented sex- and age-specific reference curves and
the possibility of calculating SDS will facilitate monitoring of
antiresorptive therapy or disease progression in children
with metabolic bone disease. Potentially, our curves may also
help in assessing the response to other treatments of a variety
of diseases causing secondary osteoporosis, the prediction of
growth response to GH therapy and the progression of can-
cer-induced bone disease in children. The use of markers for
one-off diagnostic purposes is precluded, because severe
diseases may affect both epiphyseal growth and bone me-
tabolism. We recommend using a set of formation and re-
sorption markers rather than single markers in the longitu-
dinal assessment of bone metabolism, because sensitivities
and predictive values of single markers are usually poor.
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