
Sex and Death: The Effects of Innate Immune Factors on
the Sexual Reproduction of Malaria Parasites
Ricardo S. Ramiro1*, João Alpedrinha2,3, Lucy Carter1, Andy Gardner3,4, Sarah E. Reece1,5

1 Institutes of Evolution, Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom, 2 Department of Zoology, University of Oxford,

Oxford, United Kingdom, 3 Instituto Gulbenkian de Ciência, Oeiras, Portugal, 4 Balliol College, University of Oxford, Oxford, United Kingdom, 5 Centre for Immunity,

Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom

Abstract

Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted
between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of
biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex
allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments
demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted.
Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the
assumptions underlying this prediction – that host immune responses have differential effects on the mating ability of
males and females – have not yet been tested. Here, we combine experimental work with theoretical models in order to
investigate whether the development and fertility of male and female parasites is affected by innate immune factors and
develop new theory to predict how parasites’ sex allocation strategies should evolve in response to the observed effects.
Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of
both male and female gametes. In contrast, tumour necrosis factor-a does not influence gametogenesis in either sex but
impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each
sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We
incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped
by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting
offspring development are more likely to be ‘evolution-proof’ than interventions directed at killing males or females. Given
the drive to develop medical interventions that interfere with parasite mating, our data and theoretical models have
important implications.
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Introduction

Malaria parasites are obliged to undertake a single round of

sexual reproduction in the mosquito vector before they can

transmit to new hosts, making this stage of their life-cycle a

potential target for medical interventions [1,2]. The success of

interventions aiming to disrupt mating success will depend upon a

variety of epidemiological parameters (e.g. transmission intensity/

seasonality), but will also be strongly determined by the parasites’

behavioural and evolutionary responses [1–3]. Current candidates

for transmission-blocking vaccines (TBV) involve targeting pro-

teins, expressed on the surface of sexual stages, that are essential

for the fertility of males (e.g. P48/45 and P230) [4–8]. However,

theory predicts that the efficacy of a vaccine that reduces the

fertility of one sex may be eroded if parasites respond by adjusting

their sex ratios in favour of the targeted sex. The study of sex

allocation has been one of the most successful areas of evolutionary

biology, with empirical data matching clear theoretical predictions

across a variety of taxa [9]. Before describing evolutionary theory

for sex allocation strategies we outline the relevant aspects of

Plasmodium mating biology.

Every asexual replication cycle, a small proportion of parasites

differentiate into male and female sexual stages – termed

gametocytes – which are developmentally arrested gamete

precursors [10,11]. Gametogenesis of both sexes begins as soon

as gametocytes are taken up in a mosquito blood meal, fertilization

occurs within 30 minutes, and zygotes develop into the stages

infective to vectors (ookinetes) after 18–20 hours [12,13]. To

differentiate into gametes, gametocytes must leave the relative

safety of their red blood cells (RBCs), becoming exposed to host-

and mosquito-derived factors that can block mating [12]. Males

are expected to be more vulnerable than females to transmission-

blocking factors due to their more complex gametogenesis and

mating activities [14,15]. Whereas female gametocytes only have

to leave their RBCs to become gametes, male gametogenesis also

includes three rounds of mitosis and flagellum construction to
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produce a (rarely achieved) maximum of eight ‘sperm-like’

gametes [16–20]. Mature male and female gametocytes are easily

distinguished by their phenotypes as their reproductive roles result

in different cellular contents [21,22]. Mature males are terminally

differentiated, only having pre-synthesized proteins and machinery

for gamete production (e.g. a-tubulin II, cell cycle proteins,

dynein) [11,22,23]. In contrast, mature female gametocytes are

prepared for continued development after fertilization, having

high levels of ribosomal proteins, mitochondria (which are absent

in mature males) and pools of translationally repressed messenger

RNAs (mRNAs; similar to P bodies in metazoan oocytes)

[11,22,24]. Therefore, male and female gametocytes are primed

for gametogenesis and zygote development, respectively [25].

Sex allocation is an important fitness-related trait in Plasmodium

and could play an important role in the response of malaria

parasites to medical interventions that aim to reduce mating

success [19,26–28]. Parasites could respond to transmission-

blocking interventions by adjusting their sex allocation strategies

via two evolutionary processes. First, if conditions within hosts are

unpredictable, invariant, or if variation in within-host conditions is

not a good proxy for variation in the mating conditions

experienced within vectors, parasites evolve fixed (i.e. canalised)

sex allocation strategies that reflect the average environment.

Second, if in-host conditions reliably predict in-vector conditions,

parasites will evolve to facultatively adjust their sex ratios

(proportion of male gametocytes) through phenotypic plasticity.

In this scenario, if asexual stage parasites detect an increase in a

factor (or correlate of) that reduces mating ability in a sex-specific

way, parasites will benefit from adjusting the production of male

and female gametocytes in response. Given that once parasites are

taken up by a vector, no further gametocyte production can occur

and gametogenesis and fertilization are completed within

30 minutes, the mating environment within the blood meal is

‘imported’ from the host. Therefore, the within-host conditions

will be good predictors for mating conditions and so facultative sex

ratio adjustment is both predicted and observed [14].

Currently, two complementary evolutionary theories predict

how and why parasites should adjust their investment into male

and female gametocytes to maximise fertilization success. These

theories – Fertility Insurance and Local Mate Competition –

predict that parasites adjust sex ratios in response to environmen-

tal (e.g. transmission-blocking immunity) and social factors

(inbreeding rate), respectively [14,15,29–34]. The ability of

parasites to facultatively adjust their sex ratios in response to

variation in the inbreeding rate has recently been verified [19,27].

Additionally, data also suggest that sex ratios are altered in

response to the development of immunity [19]. Host-derived

immune factors make mating challenging for parasites because

they can reduce and even block fertilization [35,36]. This

phenomenon, called ‘transmission-blocking immunity’ (TBI), has

been extensively observed and documented across a variety of

malaria parasite species [35–41]. The mechanisms of TBI are

varied and include damaging gametocytes, preventing successful

gametogenesis [36,37,41,42], decreasing the ability of gametes to

interact [35,43] and preventing post-fertilization development

[39,44]. Fertility Insurance predicts that when hosts mount an

immune response, the fertility of male gametocytes and/or

gametes is most affected, therefore parasites should produce more

males to compensate [14,15]. Two lines of empirical data support

this prediction. First, Paul et al. [26] showed that P. gallinaceum and

P. vinckei increase their sex ratio in response to erythropoiesis,

which is thought to act as a cue for the appearance of TBI factors.

Second, Reece et al. [19] provided indirect support by suggesting

that sex ratio variation observed during infections of different P.

chabaudi genotypes is a mechanism to ensure fertility in face of

within-host competition, host anaemia and TBI factors. Fertility

Insurance currently provides the best explanation for the observed

within-infection variation in the sex ratios of malaria parasites.

However, the theory is based upon the untested assumption that

TBI factors reduce the fertility of males more than females. Here

we provide the first direct test of this key assumption by

investigating whether reactive nitrogen species and pro-inflamma-

tory cytokines, influence gametogenesis, gamete fertility and

ookinete production.

Levels of reactive nitrogen species (RNS) and pro-inflammatory

cytokines vary during malaria infections. These immune factors,

which are ubiquitous components of the innate immune system,

have been specifically implied in the sudden loss of infectivity to

vectors that occurs during paroxysms and infection crisis [37,41].

Specifically, tumour necrosis factor-a (TNF-a) is a potent pro-

inflammatory cytokine and several studies have revealed a role for

this cytokine in mediating the killing of Plasmodium gametocytes,

across a variety of host-parasite systems [36,41,45]. This could

occur through the stimulation of phagocytosis and nitric oxide

(NO) production by white blood cells [37,46,47], as these are

capable of phagocytosing opsonized gametes in the mosquito

midgut [48] and the inhibition of NO synthesis by white blood

cells reduces in 60% the inactivation of P. falciparum and P. vivax

gametocytes [37,49]. NO is produced by the enzyme inducible

nitric oxide synthase in response to infection, in both hosts and

vectors, and is extremely toxic at high doses. NO is a highly

reactive molecule, thus a significant extent of the damage it causes

is indirect, through the production of RNS (such as peroxynitrite,

nitrates, nitrites or S-nitrosothiols) that frequently function as the

ultimate effectors [50]. Hereafter, unless otherwise stated, we use

the term ‘RNS’ to refer to NO and its reaction products. During

Plasmodium infections, RNS appears to impair asexual replication,

gametogenesis and zygote development [37,42,44,51]. Levels of

RNS increase during P. yoelii infections and reduce ookinete

production when either gametocytes or gametes are exposed [42].

Author Summary

Malaria and related parasites cause some of the most
serious infectious diseases of humans, domestic animals
and wildlife. To be transmitted, these parasites produce
male and female sexual stages that differentiate into
gametes and mate when taken up in a mosquito blood
meal. Despite the need to develop a transmission-blocking
intervention, remarkably little is understood about the
evolution of parasite mating strategies. However, recent
research demonstrates that producing the right ratio of
male to female stages is central to mating success.
Evolutionary theory predicts that sex ratios are adjusted
in line with a variety of factors that affect mating success,
including host immunity. We test this theory by investi-
gating whether ubiquitous immune factors differentially
affect the production and fertility of males and females.
Our experiments demonstrate that immune factors have
complex, sex-specific effects, from reducing gamete
production to affecting offspring viability. We use these
results to generate theory predicting how such effects
shape the evolutionary trajectories of parasite sex ratio
strategies. Given the drive to develop medical interven-
tions that prevent transmission by blocking parasite
mating, our results have important implications. Specifi-
cally, we suggest that medical interventions targeting
offspring development are more likely to be ‘evolution-
proof’ than interventions with sex-specific effects.

Sex and Death in Malaria Parasites
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Furthermore, RNS have been shown to induce the programmed

cell death of P. berghei ookinetes [52] and to extensively reduce P.

berghei oocyst burdens in Anopheles mosquitoes [44]. This is, at least

in part, the result of a pro-inflammatory response, in which host

cytokines induce the mosquito to increase NO (and therefore

RNS) production [53].

Here, we use the rodent malaria parasite Plasmodium berghei to

conduct a series of experiments to investigate how RNS and TNF-

a influence mating success and ookinete production and develop

theoretical models that predict the evolution of sex allocation

strategies, given the effects observed in our experiments.

Therefore, we use these immune manipulations as ‘proof-of-

principle’ for other factors with similar effects on the sexual

reproduction and transmission of malaria parasites. Specifically,

we test whether: (1) RNS and TNF-a have dose dependent effects

on male gametogenesis (exflagellation) and ookinete production;

(2) exposure of male and female gametocytes to both RNS and

TNF-a influences their sexual development; (3) the greater effect

of RNS we observe on male gametogenesis results in sex-specific

fertility effects; and (4) the observed effects of RNS depend on the

developmental stage at which parasites are exposed. Our results

reveal that RNS reduces male but not female gametogenesis and

impairs the fertility of both sexes, whereas TNF-a only affects

zygote development. The relative importance of reduced game-

togenesis, impaired mating ability and reduced post-mating

development have not been explicitly considered by Fertility

Insurance theory. Therefore we develop a new mathematical

model to derive predictions for how the effects of immune factors

generated naturally or by a medical intervention are likely to

impact upon parasite sex ratio evolution (a schematic of the

biological effects included in the model is presented in Figure 1).

Results

All the experiments we describe below were performed in vitro,

using gametocytes harvested form Plasmodium berghei infected mice.

Parasites were either cultured in conditions that ‘mimicked the

vector’ (in which they immediately became activated and

underwent gametogenesis and mating; media at pH 8 and

21uC), or conditions that ‘mimicked the host’ (in which

gametocytes remained developmentally arrested; pH 7.25, 37uC)

[19]. Parasites cultured in host mimicking conditions became

activated and underwent gametogenesis if subsequently exposed to

vector mimicking conditions. We manipulated exposure to TNF-a
with recombinant mouse TNF-a and RNS exposure with L-ana

(L-Arginine p-nitroanilide dihydrochloride) and SIN-1 (3-morpho-

linosydnonimine hydrochloride). L-ana is an inhibitor of NO

synthesis and SIN-1 donates RNS in solution (see methods for

details) [54]. We exposed parasites to RNS and TNF-a treatments

in 1 ml cultures with 15 or 20 ml parasitized blood.

Figure 1. Effects of immunity on gametogenesis and fertility of malaria parasites. The effects of transmission-blocking immune factors on
the sexual development of malaria parasites investigated in our model. Female and male gametocytes circulating in the host (white background)
undergo gametogenesis when taken up by a mosquito vector (blue background). Each male gametocyte differentiates into x gametes (x#8) and
each female gametocyte produces one gamete. Male gametes locate and fertilise female gametes, and the resulting zygotes develop into ookinetes.
Immune factors circulating in the host can act on males and females throughout their sexual development, from gametocytes to zygotes. The
developmental stages of females are shown above the stages of males and each individual gametocyte/gamete is shown in the same relative
position throughout development. The effects of immune factors (lighting) on sexual stages can either be cryptic (i.e. render gametocytes/gametes
dysfunctional; green), or fatal (i.e. gametocytes/gametes die; black). Healthy, unaffected, parasites are represented in yellow, dysfunctional parasites
in green, and dead parasites in black. Immune factors kill female gametocytes with probability dF and male gametocytes or gametes with
probabilities dM or dM, respectively. Dead sexual stages do not participate further in the mating pool. Immune factors render female gametocytes and
gametes dysfunctional with probabilities VF and vF respectively, and male gametocytes and gametes with probabilities VM and vM, respectively.
Dysfunctional gametocytes/gametes participate in the mating pool and can be fertilized as for healthy gametes, however zygotes are unviable and
die before reaching the ookinete stage. Immune factors can also directly lead to zygote death with probability VZ. All possible fertilization scenarios
are represented: mating between two healthy gametes, mating between one healthy and one dysfunctional gamete and mating between two
dysfunctional gametes.
doi:10.1371/journal.ppat.1001309.g001

Sex and Death in Malaria Parasites
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Experiment 1: Dose-dependent effects of RNS and TNF-a
We first tested whether RNS and TNF-a influence sexual

reproduction by exposing parasites to different concentrations of

these factors and assaying exflagellation and ookinete production.

We incubated parasites in vector mimicking media across seven

concentrations of SIN-1 (ranging from 0 to 1 mg/ml) [55] and five

concentrations of recombinant mouse TNF-a (from 0 to 1 mg/ml;

see Methods). Increasing concentrations of SIN-1 caused a

significant linear decrease in the densities of exflagellating males

(F(1,35) = 16.28, P,0.0001; transformed y = 0.16-0.10x) and ooki-

netes (F(1,35) = 25.86, P,0.0001; transformed y = 0.17-0.18x).

Similarly, TNF-a also caused a significant linear decrease in the

densities of exflagellating males (F(1,15) = 6.83, P = 0.012; y = 0.23-

0.09x) and ookinetes (F(1,15) = 17.53, P,0.0001 ; transformed

y = 0.54-0.37x).

Experiment 2: Effects of RNS and TNF-a on
gametogenesis and ookinete production

Having found significant negative effects of RNS and TNF-a on

exflagellation and ookinete production we investigated whether

these factors interacted with each other to further reduce parasite

mating success and if these effects depended on the developmental

stage at which parasites were exposed (i.e. in host or vector

conditions). For this set of experiments we used a fully cross-

factored design, consisting of two RNS and two TNF-a levels (see

Methods).

First, we investigated the effects of RNS and TNF-a on

gametocytes by incubating parasites for 60 minutes in host

mimicking media. We then replaced treatment media with vector

mimicking media (without RNS or TNF-a manipulations) to

stimulate gametogenesis and quantified the development of male

and female gametocytes into gametes using the following

classifications: (a) mature gametocytes still inside their RBC, (b)

gametocytes that had emerged from the RBC and (c) exflagellating

male gametes (see Methods for criteria). We present the proportion

of a given developmental stage relative to the total number of

observed gametocytes/gametes of the same sex (Figure 2). The

proportion of emerged female gametocytes was not significantly

influenced by either RNS (x2
1 = 2.72, P = 0.099) or TNF-a

(x2
1 = 0.12, P = 0.731; or their interaction x2

1 = 3.38, P = 0.066).

In contrast, the proportion of male gametocytes that emerged

from RBCs was significantly reduced by RNS (F(1, 59) = 81.29;

P,0.0001; mean ‘RNS2’ 0.5560.02; ‘RNS+’ 0.3260.02) but not

by TNF-a (x2
1 = 0.16, P = 0.689; or their interaction x2

1,0.01,

P = 0.982). Similarly, the ability of males to exflagellate was

significantly reduced by RNS (F(1, 59) = 33.40; P,0.0001; mean

‘RNS2’ 0.1560.01; ‘RNS+’ 0.0960.01) but not by TNF-a
(x2

1 = 0.85, P = 0.36; or their interaction x2
1 = 0.02, P = 0.885).

Second, we investigated the effects of RNS and TNF-a on

exflagellation and ookinete production by incubating parasites in

culture media mimicking the vector environment (Figure 3). In line

with the results from our previous experiments, the proportion of

exflagellating males was significantly reduced by RNS (F(1, 45) =

11.24, P = 0.002; mean ‘RNS2’ 0.3260.06; ‘RNS+’ 0.1260.03).

This effect was enhanced by TNF-a (interaction: F(1, 45) = 6.67,

P = 0.014) but in the absence of RNS, TNF-a had no significant

effect (F(1, 45) = 1.90, P = 0.175). Conversely, the effect of RNS and

TNF-a on ookinete production depended on each others presence

(interaction F(1, 24) = 14.91, P = 0.001). Specifically, ookinete

production was reduced by TNF-a but only in the absence of

RNS (mean ‘TNF-a2’ 0.4160.06; ‘TNF-a+’ 0.1760.07), whereas

RNS reduced ookinete production but only when TNF-a was

absent (mean ‘RNS2’ 0.4160.06; ‘RNS+’ 0.0960.05).

Figure 2. Ability of gametocytes to undergo gametogenesis
after exposure to RNS and TNF-a. Mean (6 S.E.) proportion (n = 20)
of emerged female gametes (A), emerged male gametocytes (B), and
exflagellating male gametes (C), relative to the total number of male or
female gametocytes/gametes observed, when gametocytes are ex-
posed to immune factors during incubation in ‘host conditions’ and
then activated in un-manipulated ‘vector conditions’ media.
doi:10.1371/journal.ppat.1001309.g002

Sex and Death in Malaria Parasites
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Experiment 3: Sex-specific effects of RNS on fertility
Experiment 2 revealed that only RNS had a significant effect on

gametogenesis, in which male but not female development was

impaired. Therefore, we tested whether these effects translated

into sex-specific differences in fertility (i.e. whether matings with

RNS exposed gametocytes/gametes resulted in fewer ookinetes),

when parasites were exposed as gametocytes (in host-mimicking

media) or during gametogenesis (in vector-mimicking media). We

separately exposed each sex to RNS using two genetically

transformed (knock-out; KO) P. berghei lines: Pbs48/45ko and

Pbs47ko [4,6,22], which produce unviable male and female

gametes, respectively. This allowed us to assay the fertility

consequences of exposing one sex to RNS by providing exposed

parasites with a surplus of unexposed mates from the opposite sex

and assaying ookinete production (Figure 4).

We observed that RNS exposure significantly reduced fertility of

both males and females regardless of whether parasites were

exposed as gametocytes or during gametogenesis (F(1,131) = 15.87,

P = 0.0001; mean ‘RNS2’ 0.3060.02; ‘RNS+’ 0.2060.02). In

contrast to our predictions, RNS did not have sex-specific effects

(treatment:sex interaction: x2
1 = 0.023, P = 0.88), nor was this

effect influenced by exposing parasites to RNS in host- or vector-

mimicking environments (treatment:environment interaction:

x2
1 = 0.366, P = 0.55). However, across all treatments, parasites

exposed in host conditions produced significantly more ookinetes

than those exposed in vector conditions (F(1,131) = 10.19,

P = 0.0018; mean ‘Host’ 0.2960.02; ‘Vector’ 0.2160.02).

Theoretical model
We incorporate our experimental results into Fertility Insurance

theory by developing a mathematical model to explore the impact

of transmission-blocking factors on the evolution of parasite sex

allocation strategies. Specifically, we examine whether sex ratio

adjustment could compensate for transmission-blocking factors

with the following effects on males or females: preventing male or

female gametocytes from undergoing gametogenesis (as each

female gametocyte only produces one gamete, killing of these

stages is mathematically equivalent); blocking the mating ability of

male gametes; and causing damage to gametocytes or gametes

such that mating can occur but zygotes are not viable. We term

the latter phenomenon, of cryptic damage to gametocytes or

gametes that results in a dead zygote, as dysfunction. Note that,

although we do not observe all of the effects on all stages and all

sexes, we incorporate them all in the model (illustrated in Figure 1),

Figure 3. Exflagellation rates and ookinete production after
exposure to RNS and TNF-a during gametogenesis. Mean (6
S.E.) proportion of exflagellating male gametes (A; n = 16) or ookinetes
(B; n = 9) produced when parasites are exposed to RNS and TNF-a
during gametogenesis (in-vector conditions media). Proportions are
relative to the total number of exflagellating male gametes or ookinetes
produced from each infection, across treatments.
doi:10.1371/journal.ppat.1001309.g003

Figure 4. Ookinete production after exposure of males or
females to RNS, before or during gametogenesis. Mean (6 S.E.)
proportion (n = 19) of ookinetes produced, when females (A) or males
(B) are exposed to RNS as gametocytes (in-host conditions media) or
during gametogenesis (in-vector conditions media). Proportions are
relative to the total number of ookinetes produced by the focal sex
from each pair of infections.
doi:10.1371/journal.ppat.1001309.g004

Sex and Death in Malaria Parasites
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as they are theoretical possibilities. Also, our model makes no

assumptions about whether parasites evolve fixed (i.e. canalised) or

facultative (i.e. plastic) sex allocation strategies.

First, we show that all zygote mortality effects (i.e. treatments

leading to 0,p,1) have no impact on the evolutionarily stable (ES)

sex ratio [56,57]. We write W = f(z) p, i.e. fitness is the product of

zygote production and zygote viability, where zygote production

depends upon sex ratio but zygote viability does not. The direction

of selection is given by the derivative of fitness with respect to sex

ratio [58], and this ‘marginal fitness’ is dW/dz = (df/dz)p. The ES

sex ratio z* satisfies dW/dz|z = z* = 0, i.e. selection does not favour

an increase or decrease in sex ratio when the population is at the ES

sex ratio, and this is equivalent to the condition df/dz|z = z* = 0 for

all p.0. Since f is not a function of p, it follows that z* is not a

function of p (and hence is not a function of VZ, VM, VF, vM or vF;

see Methods and Figure 1 for symbol definitions). Therefore,

treatments that simply impact upon the viability of zygotes (e.g.

cause gametocyte/gamete dysfunction) are not expected to have an

evolutionary impact upon parasite sex ratios.

Second, to investigate the impact of model parameters arising

from gametocyte or gamete killing on the ES sex ratio, we write an

explicit expression for expected fitness:

W~
Xq

a~0

Xa

C~0

XxC
c~0

Xq{a

w~0

q

a

 !
za(1{z)q{a

a

C

 !
dM

a{C(1{dM )C

xC

c

 !
dM

xC{c(1{dM )c
q{a

w

 !
dF

q{a{w(1{dF )w

minfc,wgp

ð1Þ

The condition dW/dz|z = z* = 0 can be solved numerically for z* for

any numerical parameter set (q, dM, dF, dM). An exploration of the

ES sex ratio z* across this parameter space is presented in Figures 5

and S1, S2, S3. Specifically, we recover the prediction that the

gametocyte ES sex ratio will be biased towards the more limiting sex

when factors prevent male or female gametocytes from undergoing

gametogenesis or block the mating ability of male gametes.

Discussion

Evolutionary theory developed to explain the sex allocation

strategies of metazoan taxa has enjoyed huge success. Recently, there

has been growing interest in whether this theory could be applied to

protozoans, particularly malaria parasites [14]. The sex ratios of

malaria parasites are normally female biased, but extensive variation

occurs during the course of infections [27]. Evolutionary theory offers

an explanation for this variation and predicts that in-host conditions

will influence parasite sex allocation strategies if host-derived immune

factors disproportionately reduce the fertility of males relative to

females [14,15,29–34]. Here, we tested this assumption by

quantifying the effects of two well-known innate TBI factors (RNS

and TNF-a) on sexual development and fertility of malaria parasites

[15,31]. We show that: (1) RNS and TNF-a reduce the densities of

exflagellating males and ookinetes in a dose-dependent manner; (2)

TNF-a can reduce ookinete densities, but only in the absence of RNS

(Figure 3); (3) RNS impairs male but not female gametogenesis

(Figure 2 and 3), and reduces the fertility of both males and females

independently of whether parasites are exposed as gametocytes or

during gametogenesis (Figure 4). We then explored the consequences

of our results for parasite sex ratio evolution, by incorporating them

into Fertility Insurance theory (Figures 1 and 5) [15,31]. Specifically,

our model demonstrates that the ES sex ratio will be biased towards

the sex that has a lower number of surviving gametes reaching the

mating pool and that the extent of this bias increases as the number of

gametocytes in the mating group (q) increases. We also show that

factors causing gametes to become dysfunctional (resulting in inviable

zygotes) do not affect the ES sex ratio. Below, we discuss the results of

our experiments, explain the evolutionary predictions of our model

and its implications for the development of transmission-blocking

interventions.

RNS, TNF-a and the sexual development of malaria
parasites

In our experiments, RNS reduced male but not female

gametogenesis while impairing the fertility of both sexes. How

can these results be explained? In parasitic infections, high levels of

RNS may cause: oxidative damage of DNA (leading to mutations

and strand brakes); inhibition of DNA repair and synthesis;

inhibition of protein synthesis; inhibition of mitochondrial activity;

down- or up-regulation of cytokine (e.g. TNF-a) levels [50,59]. As

described in the introduction, male and female gametocytes are

prepared for gametogenesis and zygote development respectively

[25]. If RNS can impair DNA synthesis and/or microtubule

assembly, males would not be able to produce gametes. In

contrast, female gametogenesis does not involve these activities

and females ‘simply’ need to leave their RBCs, for which they use

the contents of pre-synthesized secretory organelles called

osmiophilic bodies [60]. Therefore, whilst female gametogenesis

and mating per se is unlikely to be influenced by RNS, the

development of fertilized females into zygotes and ookinetes is

likely to be affected. For example, damage to stored mRNA and

inhibition of protein synthesis or mitochondrial activity (e.g.

cytochrome oxidases) would impair meiosis (at ,3 h after

fertilization) and zygote development, but not impair fertilization

[18,50,59]. These effects could explain the observed results,

because instead of reducing the ability of females to differentiate

into gametes, the effects of RNS would be expressed after

fertilization (which we term dysfunction) and lead to female-

dependent zygote death, resulting in fewer ookinetes. Here we did

not identify the causal RNS and their relative contributions.

However, this will be important if transmission-blocking interven-

tions cause or mimic the activities of RNS.

Our experiments show that TNF-a consistently reduces

ookinete production and whilst we observed a reduction in

exflagellation in some experiments, this effect was inconsistent.

Why does TNF-a reduce ookinete production? As TNF-a
functions are mainly modulatory and need time to develop, it is

possible that gametogenesis and mating occur before the effects of

TNF-a manifest. Ookinete development takes about 18–20 hours

from fertilization and during this time TNF-a could exert its

effects, which could also involve the activation of apoptotic-like

death [61,62]. Recent experiments provide support for our

interpretations, as the deletion of genes coding for proteins

essential for the storage and stabilization of translationally

repressed mRNAs, in female gametocytes/gametes, do not reduce

fertilization success, but substantially reduce the differentiation of

zygotes into ookinetes [24,63]. Interestingly, deletion of different

genes can affect zygotes throughout development, suggesting that

damage to stored mRNA could abort zygote development at

multiple stages (e.g. before or after meiosis) [24].

Evolution of parasite sex allocation strategies: Theoretical
predictions

The results of our experiments show that TBI factors can affect

the sexual development and fertility of male and female parasites
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and that the stage at which this occurs is sex-specific. As illustrated

in Figure 1, we incorporated the observed and potential effects of

transmission-blocking factors on males and females, at all stages of

development, into Fertility Insurance theory and generated new

predictions for the evolution of parasite sex allocation strategies.

Our model predicts that the ES gametocyte sex ratio will be

insensitive to variation in gametocyte or gamete dysfunction and

zygote mortality. This means that treatments that impact upon the

viability of zygotes are not expected to have an evolutionary

impact upon parasite sex ratios. In contrast, we predict that the

best (ES) sex ratio strategy will vary depending on an interaction

between gametocyte group size (q), number of gametes formed per

male gametocyte (0#x#8) and gamete and/or gametocyte

mortality. Although, our model makes no assumptions about

whether parasites achieve an ES sex ratio through the evolution of

facultative or fixed sex allocation strategies, facultative sex

allocation is predicted for reasons already outlined in the

introduction.

In the context of clonal infections, the ES sex ratio maximises

the expected number of viable zygotes, i.e. maximises the expected

number of gametes of the minority sex present in the mating pool

(this excludes dead gametocytes/gametes, but includes dysfunc-

tional gametocytes/gametes). For an infinite gametocyte group

size (i.e. qR‘), that behaves deterministically, the ES sex ratio is

one that leads to the same number of male and female gametes

being present in the mating pool. This is the sex ratio z* that

satisfies cz* = 1-z*, i.e. z* = 1/(c+1), where c is the number of male

gametes, able to mate, produced per male gametocyte [15,32].

Thus, the ES sex ratio is female biased if c.1, and male biased if

c,1 (Figures 5 and S1, S2, S3). However, for finite mating groups

(q,‘) – that behave stochastically – the expectation of mating

success must be calculated over the whole distribution of possible

outcomes. This will tend to reduce the extent to which the sex

ratio is biased towards the sex favoured in the deterministic case

[15,31]. For example, in the extreme of a gametocyte group size of

two (q = 2; the lowest mating group size for which mating success is

possible), the ES sex ratio is always z* = 0.5 (regardless of other

parameter values), to maximise the probability of both sexes being

present (Figures 5 and S1, S2, S3). Additionally, we reveal that, in

a small portion of parameter space – corresponding to very small

Figure 5. Evolutionarily stable sex allocation strategies when sex- and stage-specific mortality rates vary. Effect of male and female
gametocyte mortality and male gamete mortality on the ES gametocyte sex ratio (z*), for a clonal population, when the number of gametes
produced per male gametocyte (x) is 2 (this fecundity has been estimated for this system by other studies; see ref. [19]). Figures S1, S2, S3 show
similar patterns to Figure 5A for x = 1; 4; 8, respectively. (A) For each plot within the panel, z* varies with male gamete mortality rate (dM). The
coloured lines represent different gametocyte group sizes (q): 2 (grey), 5 (blue), 10 (red), 20 (green) and ‘ (yellow). Each plot depicts different
parameter combinations of male gametocyte (dM = 0.1; 0.5; 0.9) and female mortality rate (dF = 0.1; 0.5; 0.9), with dM increasing left to right and dF

increasing bottom to top. (B) Cartoon summarizing the effects observed in Figures 5A and S1, S2, S3. The set of possible values for z* is strongly
influenced by q. The number of gametes of each sex reaching the mating pool (which depends on the mortality parameters and on x) influences z*
within the constraints determined by q. Within each plot, the effects of dM and q on z* can be clearly observed: the magnitude of sex ratio change
increases with q and z* increases to compensate for higher dM. The effects of dM and dF can be observed by comparing the points where the lines
cross the y axes (i.e. dM = 0) across the plots: z* increases along rows with increasing dM and decreases up the columns with increasing dF. The effect of
x on z* can be observed by comparing plots that are in the same position in different figures: sex ratio becomes more female biased as x increases.
doi:10.1371/journal.ppat.1001309.g005

Sex and Death in Malaria Parasites

PLoS Pathogens | www.plospathogens.org 7 March 2011 | Volume 7 | Issue 3 | e1001309



gametocyte group sizes, low female mortality, and high male

gametocyte mortality and fecundity (x) – fertility insurance can

even lead to a sex ratio bias in the opposite direction (i.e.

producing a female biased sex ratio, despite the risk of the absence

of males in the mating pool; Figures S2 and S3). This non-intuitive

result is due to the way stochastic variation in the number of

gametocytes of each sex alters the variance as well as the expected

number of gametes of each sex that reach the mating pool.

Although the conditions under which this occurs are restrictive,

they may be met in natural infections, as many individuals carry

gametocytes at extremely low densities [64]. In the context of our

experiments and assuming parasites can facultatively adjust sex

ratios, our model predicts that if q is high enough to allow for sex

ratio adjustment, then RNS should induce parasites to increase the

production of male gametocytes.

Our data suggest that RNS reduced female fertility by rendering

gametocyte/gametes dysfunctional, so that their fertilisation results

in the production of unviable zygotes. The reduction in ookinete

production by TNF-a could also be due to male or female

dysfunction or, more likely, through increasing zygote mortality.

Therefore, we examined the influence of gametocyte and gamete

dysfunction and zygote mortality on the evolution of parasite sex

allocation strategies. We found that the ES gametocyte sex ratio is

independent of these factors (i.e. the occurrence of gametocyte/

gamete dysfunction and zygote mortality does not change the

relative fitness of different sex ratio strategies). Put simply, this

suggests that zygote mortality or gametocyte/gamete dysfunction

will not impose selection on parasite sex allocation strategies as

parasites cannot compensate for the loss of reproductive success

through sex ratio adjustment. More broadly, other immune factors,

such as antibodies or complement, could also impair the sexual

reproduction of malaria parasites and the effects of such factors

should be easily interpreted in light of our theoretical models.

To bring our mathematical modelling in line with our

experiments we have focused on the importance of mortality

and dysfunction throughout the sexual development of malaria

parasites. However two additional factors have an important

impact in sex allocation strategies of malaria parasites: (1) the

inbreeding rate and (2) the rate at which asexually replicating

parasites commit to gametocyte production (conversion rate). The

effect of inbreeding on the ES sex ratio is well understood, with

theory (Local Mate Competition) enjoying strong empirical

support [14,19,29,32–34]. For clonal mating groups, the ES sex

ratio strategy is the one that maximises the overall mating success

of the infection as the parasites behave as a single, unified decision

maker [14,27]. In contrast, in mixed infections, conflicts between

clones occur, such that the ES sex ratio is the one that maximises

each individual clone’s inclusive fitness and not the overall mating

success of the infection [14,27]. But for the work we present here,

extending our model to allow for a finite number of independent

clones per host would not change the qualitative results we

present. Fertility Insurance theory predicts that if a low conversion

rate results in a small number of gametocytes being taken up by

the vector (i.e. small q), parasites should produce a less female

biased sex ratio than expected by the inbreeding rate alone. This is

due to the stochastic risk of too few males being present in the

blood meal to fertilize the females when sex ratios are female

biased [15]. One intuitive solution for this would be to produce

more gametocytes. However, given that gametocyte production

comes at a cost to asexual replication, parasites face a trade-off

between investment in in-host survival and reproduction (i.e.

transmission). Increasing gametocyte conversion is a solution that

will not always be available and might be impossible when

parasites are ‘stressed’ (e.g. by in-host competition and low doses of

anti-malarial drugs) [65,66]. Therefore, if transmission-blocking

interventions also affect asexual stages and reduce in-host survival,

parasites are likely to reduce conversion rates and produce fewer

gametocytes.

Implications for transmission blocking interventions
Our model reveals that an intervention with a sex-specific effect

on mating ability will elicit an evolutionary response. However, sex

ratio adjustment cannot fully rescue zygote production, given that

an increase in the number of male gametocytes comes at the cost

of decreasing the number of female gametocytes. Nevertheless, in

a scenario of widespread transmission-blocking vaccination or

treatment with gametocidal drugs with a sex-specific effect, natural

selection will ‘‘compare’’ the fitness of parasites that do, and do

not, adjust their sex allocation strategies, leading to an increase in

the frequencies of the former. Therefore, quantifying the impact of

sex ratio adjustment on rescuing fertility and thus, fitness is now

required. In contrast, our model also reveals that a transmission-

blocking factor resulting in zygote mortality or gametocyte/

gamete dysfunction will be ‘evolution proof’ with respect to

parasite sex allocation strategies. Therefore, we suggest that

current efforts to prevent fertilization by targeting proteins with

sex-specific phenotypes, such as P230, P48/45 (involved in gamete

attachment) or Pfg377 (female emergence from the RBC), will be

less effective than vaccines targeting zygote development (e.g. P28)

[5,60,67]. An alternative transmission-blocking approach could

cause dysfunctional female gametes by targeting the expression of

female-specific translationally repressed mRNAs [24]. Further-

more, a transmission-blocking intervention combining targets for

gamete dysfunction and zygote death would minimize possible

redundancy effects, which have been observed in several knock-

outs of malaria parasites (e.g. P48/45) [6].

Conclusions
Given the drive to develop transmission-blocking interventions

that disrupt sexual reproduction in malaria parasites, there is an

urgent need to evaluate how their short- and long-term success will

be influenced by parasite mating strategies. Here, we combined

experiments with mathematical modelling to predict how transmis-

sion-blocking factors influence parasite sex allocation strategies. Our

model predicts that transmission-blocking interventions causing

gametocyte/gamete dysfunction and/or zygote mortality will be

‘evolution-proof’ from the perspective of imposing selection on

parasite sex ratio strategies, i.e. parasites may still evolve other

strategies or traits to cope with a transmission-blocking intervention,

but these will have to be independent of sex allocation. Put simply,

understanding the behavioural strategies that parasites have evolved

to cope with naturally occurring transmission-blocking immune

factors, will inform predictions for how they will respond to a

transmission-blocking factor. More broadly, understanding how,

when and why parasites respond to changes in their in-host

environment will facilitate the development of interventions that

induce parasites to make decisions that are suboptimal for their

transmission success, but that are clinically or epidemiologically

beneficial. For efficient progress, synergy between research directed

at evolutionary and mechanistic explanations for parasite traits and

strategies is required.

Methods

Hosts and parasites
We maintained MF1 mice, aged 8–10 weeks (Harlan-Olac, UK;

or in house supplier, University of Edinburgh), on ad libitum food

(RM3(P), DBM Scotland Ltd, UK) and water (supplemented with
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0.05% PABA to enhance parasite growth), with a 12 hour light

cycle, at 21uC. We initiated infections by intra-peritoneal

inoculation of 107 parasitized RBCs in 100 ml carrier consisting of

50% Ringers (27 mM KCl, 27 mM CaCl2, 0.15 M NaCl), 47.5%

heat-inactivated foetal bovine serum and 2.5% heparin (5 units

ml21). For experiments 1 and 2, we inoculated female mice,

previously (day 23 or 24) treated with 60 mg/kg of phenylhydra-

zine (PHZ), with P. berghei line 820 [68]. For experiment 3 we

inoculated male mice (PHZ treatment: 125 mg/Kg, day 22) with

one of two P. berghei KO lines: Pbs48/45ko or Pbs47ko [4,6,22]. We

treated mice with PHZ because the resulting release of young RBCs

increases gametocyte production in P. berghei, which maximises the

number of gametocytes that can be harvested for in vitro mating

experiments [69]. For each experiment, parasites were collected

from mice on day 3 or 4 post-infection, and each infection

contributed parasites to all treatments to control for any potentially

confounding influences of differences between infections.

Animal ethics statement
All the protocols involving mice passed an ethical review process

and were approved by the U.K. Home Office (Project License 60/

3481). Work was carried according to the Animals (Scientific

Procedures) Act, 1986.

Culture conditions
In order to manipulate the levels of RNS and TNF-a we used

the following chemicals: recombinant mouse TNF-a (Sigma, UK),

L-ana (Sigma, UK) and SIN-1 (Sigma, UK). We dissolved all

chemicals in phospate buffered saline and exposed parasites to

treatments in 1 ml cultures with 15 or 20 ml parasitized blood. L-

ana is a specific inhibitor of the activity of the enzyme inducible

nitric oxide synthase which becomes active in response to

infection. SIN-1 donates NO and/or superoxide, in solution, at

different rates depending on the specific conditions in which SIN-1

is incubated [54,70,71]. However, given that superoxide and NO

react with each other at an extremely fast rate to produce

peroxynitrite (ONOO2), SIN-1 is likely to act as a donor of either

NO or peroxynitrite, depending on the rates at which SIN-1

generates NO and superoxide [54]. The oxygen concentration of

the solution is one of the major determinants of whether SIN-1

behaves as a NO or peroxynitrite donor, donating mostly NO in

anaerobic conditions and peroxynitrite in aerobic conditions [54].

In our cultures, oxygen concentrations were in-between fully

anaerobic and aerobic conditions, as parasites were incubated in

closed 1.5 ml tubes. Biological agents, such as human plasma or

heme proteins, which are similar to components of our cultures

(e.g. mouse plasma, haemoglobin) increase the capacity of SIN-1

to donate NO [54]. Furthermore, as peroxynitrite can react to

produce several RNS (e.g. nitrite, nitrate, S nitrosothiols or

nitrosyl-metal complexes) and as we did not measure the specific

contributions of each of these factors, we use the term RNS to

refer to the factors present in cultures exposed to SIN-1 [50,61,72].

We did not measure RNS and TNF-a levels in our cultures for

three reasons. First, our focus is on testing the effects of RNS and

TNF-a on the sexual development of parasites. As our

experiments were designed so that each host contributed blood

and parasites to all treatment groups in a given experiment, this

controls for any variation between infections and ensures that our

results are due to the RNS and TNF-a manipulations each culture

was subjected to. Second, TNF-a levels were directly manipulated

with recombinant mouse TNF-a. Third, we are not aware of any

method that would allow us to measure total levels of the different

RNS in small volume cultures.

Experiment 1
We set up cultures with vector mimicking media for the

following SIN-1 concentrations: 0, 0.00001, 0.0001, 0.001, 0.01,

0.1 and 1 mg/ml [55], with 6 mice contributing parasites to each

treatment. We tested the following concentrations of recombinant

mouse TNF-a: 0, 0.005, 0.01, 0.5 and 1 mg/ml with 4 mice

contributing parasites to each treatment. We recorded the

densities of exflagellating males after 15–20 minutes and ookinetes

after 18–20 hours using a haemocytometer.

Experiment 2
We used the following RNS and TNF-a levels: 1 mg/ml SIN-1

(RNS+), 1 mg/ml of L-ana (RNS2), and presence (TNF-a+) or

absence (TNF-a2) of 1 mg/ml recombinant mouse TNF-a.

Parasites from each of 20 mice were exposed to all four

combinations of treatments. We used the following criteria to

classify developmental stages of gametogenesis after 15 minutes

incubation in vector mimicking media: (1) Mature gametocytes:

still inside their RBC; females have blue-purple cytoplasm, small,

well defined purple nucleus surrounded by a small nucleolus;

males have pink-yellow cytoplasm and large disperse pale-pink

nucleus. (2) Emerged females: female gamete condensed into a

more circular shape, without a vacuole, cytoplasm staining a more

intense blue and a less obvious nucleolus than in a female

gametocyte. (3) Emerged male: male gamete with a large circular

nucleus in the centre of the cell surrounded by a ring of cytoplasm.

(4) Exflagellating male: emerged male gamete progressed to

forming up to 8 flagella that protrude from the cell and stain red-

purple [73–75]. We also recorded the densities of exflagellating

males and ookinetes as described for experiment 1.

Experiment 3
We infected 38 mice with Pbs47ko (n = 19) or Pbs48/45ko

(n = 19). We set up mating cultures following Reece et al. [19], by

pairing infections according to proximity of their sex ratios,

calculated from the densities of Pbs48/45ko female gametocytes in

giemsa stained smears (using criteria described for Experiment 2)

and Pbs47ko exflagellating males (as for Experiment 1). To avoid

pseudo-replication, each infection was only used in 1 pair. For

each pair of mice, we made 8 sets of 1 ml cultures, either with

(RNS+) or without (RNS2) 161025 mg/ml SIN-1, mimicking

host (60 min. incubation) or vector conditions (15 min. incuba-

tion), to which we added 15 ml of parasites from one of the

infections in each pair. These single sex cultures provided

‘exposed’ parasites for fertility testing, and corresponded to the

following factorial design: 2 conditions (host/vector)62 SIN-1

exposures (RNS+/2)62 sexes (male/female). After incubation we

replaced media in all cultures with 1 ml vector mimicking media

(without any SIN-1 manipulation). While ‘exposed’ parasites were

incubating, we collected 60 ml of blood from each infection’s pair

and added these ‘unexposed’ parasites to 4 ml cultures in vector

mimicking media (without SIN-1). Each 1 ml culture of the

‘exposed’ parasites was then added to a 4 ml culture containing its

‘unexposed’ pair and incubated to produce ookinetes (as for

Experiment 1). This allowed us to ensure that the mating success

of the ‘exposed’ sex would not be limited by the availability of

‘unexposed’ gametocytes from the opposite sex. All the cultures

were timed so that ‘exposed’ parasites were added to the cultures

containing their ‘unexposed’ mates at the same developmental

stage. For example, a final 5 ml culture could contain 15 ml of

blood from a RNS exposed Pbs48/45ko infection (in which

females are the ‘exposed’ sex) and 60 ml of blood from a Pbs47ko

infection (in which ,4 times more males are provided as

‘unexposed’ mates). We also set up cultures in vector mimicking
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media to verify that ‘unexposed’ parasites from each line are

unable to produce ookinetes on their own. We recorded the

densities of ookinetes as described for experiment 1.

Statistical analysis
We used linear mixed effects models (R version 2.7.0; The R

Foundation for Statistical Computing; www.R-project.org) be-

cause, by treating each infection (or pair of infections in

Experiment 3) as a ‘random’ effect, we can account for problems

associated with pseudoreplication arising from repeated measure-

ments of each infection. In order to meet the assumptions made by

parametric tests we arcsine square root transformed response

variables where necessary. We minimised models following

stepwise deletion of the least significant term and using log-

likelihood ratio (x2) tests to evaluate the change in model deviance

until only significant terms remained, and we present F-ratios for

fixed effects remaining in minimal models. We then re-ran

minimal models using restricted maximum likelihood to estimate

the effect sizes reported in the text. Unless otherwise indicated,

data and estimated effect sizes are presented as proportions of the

focal parasite stage produced in a given treatment, relative to that

produced across all treatments for each infection.

Theoretical model
We assume an infinite host population, divided into infected and

uninfected individuals, with infected hosts containing a single

infection producing haploid gametocytes that circulate in the

blood. We assume that q gametocytes are transferred from host to

vector during blood feeding, and that these gametocytes form a

single mating group. The expected proportion of males in the

mating group is z, i.e. the sex allocation strategy of the parasite

strain that contributed the gametocytes. Hence, the actual number

of males is a random variable a,Bi(q,z) (i.e. binomially distributed

with q trials and probability of success z). Consequently, the

number of female gametocytes is q-a. Male and female

gametocytes are killed with probability dM and dF respectively,

leaving C,Bi(a,1-dM) surviving males and w,Bi(q-a,1-dF) surviving

females. We assume every surviving male produces x gametes, and

every surviving female produces a single gamete. We consider that

male gametes are killed with probability dM, and hence

c,Bi(xC,1-dM) male gametes enter the mating pool. We assume

that all w female gametes enter the mating pool (death of female

gametes is formally equivalent to that of female gametocytes, and

hence is implicitly included in the parameter dF). Therefore, the

number of zygotes is equal to the number of gametes of the

limiting sex, i.e. f = min(c,w). Finally, we assume that only a

proportion p of zygotes are viable, due to either: (a) factors that kill

each zygote with probability VZ; (b) factors acting on gametocytes

resulting in the production of dysfunctional gametes at rate VM for

males and VF for females; or (c) factors acting on gametes and

causing them to become dysfunctional at rate vM for males and vF

for females, i.e. p = (1-VZ)(1-VM)(1-VF)(1-vM)(1-vF). In this

context, we use the term ‘dysfunctional’ to refer to a gamete that

achieves fertilisation but carries sufficient damage to render the

resulting zygote inviable (i.e. unable to develop as an ookinete).

Inviable zygotes will result when one or both of the parental

gametes are dysfunctional. Hence, the number of viable zygotes

produced by the mating group is W = f p, and this is our measure

of fitness [15,31,32].

Supporting Information

Figure S1 Evolutionarily stable sex allocation strategies when

sex- and stage-specific mortality rates vary (x= 1). Effect of male

and female gametocyte mortality and male gamete mortality on

the ES gametocyte sex ratio (z*), for a clonal population, when the

number of gametes per male gametocyte (x) is 1. On each plot, z*

varies with male gamete mortality rate (dM). The coloured lines

represent different gametocyte group sizes (q): 2 (grey), 5 (blue), 10

(red), 20 (green) and ‘ (yellow). Every plot depicts different

parameter combinations of male gametocyte (dM = 0.1; 0.5; 0.9)

and female mortality rate (dF = 0.1; 0.5; 0.9), with dM increasing

left to right and dF increasing bottom to top.

Found at: doi:10.1371/journal.ppat.1001309.s001 (0.16 MB PDF)

Figure S2 Evolutionarily stable sex allocation strategies when

sex- and stage-specific mortality rates vary (x= 4). Effect of male

and female gametocyte mortality and male gamete mortality on

the ES gametocyte sex ratio (z*), for a clonal population, when the

number of gametes per male gametocyte (x) is 4. On each plot, z*

varies with male gamete mortality rate (dM). The coloured lines

represent different gametocyte group sizes (q): 2 (grey), 5 (blue), 10

(red), 20 (green) and ‘ (yellow). Every plot depicts different

parameter combinations of male gametocyte (dM = 0.1; 0.5; 0.9)

and female mortality rate (dF = 0.1; 0.5; 0.9), with dM increasing

left to right and dF increasing bottom to top.

Found at: doi:10.1371/journal.ppat.1001309.s002 (0.21 MB PDF)

Figure S3 Evolutionarily stable sex allocation strategies when

sex- and stage-specific mortality rates vary (x= 8). Effect of male

and female gametocyte mortality and male gamete mortality on

the ES gametocyte sex ratio (z*), for a clonal population, when the

number of gametes per male gametocyte (x) is 8. On each plot, z*

varies with male gamete mortality rate (dM). The coloured lines

represent different gametocyte group sizes (q): 2 (grey), 5 (blue), 10

(red), 20 (green) and ‘(yellow). Every plot depicts different

parameter combinations of male gametocyte (dM = 0.1; 0.5; 0.9)

and female mortality rate (dF = 0.1; 0.5; 0.9), with dM increasing

left to right and dF increasing bottom to top.

Found at: doi:10.1371/journal.ppat.1001309.s003 (0.20 MB PDF)
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