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Abstract 

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), 

major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence 

for shared genetic risk and sex differences in brain abnormalities across disorders suggest 

possible shared sex-dependent genetic risk. 

METHODS: We conducted the largest to date genome-wide genotype–by–sex (GxS) interaction 

of risk for these disorders, using 85,735 cases (33,403 SCZ, 19,924 BIP, 32,408 MDD) and 

109,946 controls from the Psychiatric Genomics Consortium (PGC) and iPSYCH. 

RESULTS: Across disorders, genome-wide significant SNP-by-sex interaction was detected for 

a locus encompassing NKAIN2 (rs117780815; p=3.2×10−8), that interacts with 

sodium/potassium-transporting ATPase enzymes implicating neuronal excitability. Three 

additional loci showed evidence (p<1×10−6) for cross-disorder GxS interaction (rs7302529, 

p=1.6×10−7; rs73033497, p=8.8×10−7; rs7914279, p=6.4×10−7) implicating various functions. 

Gene-based analyses identified GxS interaction across disorders (p=8.97×10−7) with 

transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282; 

p=1.5×10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset 

detected an interaction (rs13265509; p=1.1×10−7) in a locus containing IDO2, a kynurenine 

pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway 

enrichment analysis detected significant GxS of genes regulating vascular endothelial growth 

factor (VEGF) receptor signaling in MDD (pFDR<0.05). 

CONCLUSIONS: In the largest genome-wide GxS analysis of mood and psychotic disorders to 

date, there was substantial genetic overlap between the sexes. However, significant sex-

dependent effects were enriched for genes related to neuronal development, immune and 

vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway 

enrichment levels. 
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Introduction 

Sex differences are pervasive in psychiatric disorders, including major depressive 

disorder (MDD), schizophrenia (SCZ), and bipolar disorder (BIP). There is a significantly higher 

risk for MDD in women (1) and SCZ in men (2). BIP prevalence is approximately similar, but 

age at onset, course, and prognosis vary considerably by sex (3, 4), as they do in SCZ and MDD 

(5-7). Additionally, certain brain regions share structural and functional abnormalities and 

dysregulated physiology across disorders that are sex-dependent (8, 9). 

The majority of twin studies have not detected sex differences in heritability of these 

disorders (10), or differences in twin intra-pair correlations between same-sex and opposite-sex 

dizygotic pairs (11, 12). However, specific disease risk variants may not be the same in both 

sexes (i.e., “sex-specific” effects) or variants may have different effect sizes in each sex (i.e., 

“sex-dependent” effects). Sex-dependent modification of allelic effects on the autosomes and X 

chromosome may contribute to sex differences in disease prevalence, similar to other complex 

human traits (e.g., blood pressure, waist-hip ratio) (13, 14). Aside from sex-specific variants, 

incidence differences may result from a female or male protective effect, whereby one sex may 

require a higher burden of genetic liability to cross the threshold to disease manifestation. This 

suggests quantitative risk differences (i.e., “sex-dependence”), a notion supported by an early 

observation that female SCZ cases were more likely to come from multiplex families (15). 

Regarding SCZ, there is a long history of examining sex differences in familial/genetic 

transmission (16), given differences in incidence, brain abnormalities, and course (17, 18). 

Recently, large genetic cohorts of SCZ and autoimmune disorders identified greater effects of 

complement component 4 (C4) alleles in SCZ men than women (19, 20). Compared with SCZ, 

sex differences in incidence of MDD are greater, with a 2:1 female predominance, and there is 

some evidence for stronger sex differences in recurrent MDD (rMDD) compared with single-

episode MDD, although inconsistent (7, 21-23). With increased interest in examining the 
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genetics of sex differences in psychiatric disorders and related phenotypes (24-32), 

transcriptomics studies are beginning to provide insights into mechanisms underlying sex 

differences in risk. Notably, >10% of autosomal genes exhibit sexually dimorphic gene 

expression in the brain, predominantly genes related to synaptic transmission, dopamine receptor 

signaling, and immune response, suggesting potential mechanisms mediating sex differences in 

psychiatric disorders. 

In order to test for sex differences in genetic risk, it is essential to have adequate power to 

test for interaction effects (33). Given sample size limitations, genome-wide association studies 

(GWAS) of psychiatric disorders have typically not examined genotype-by-sex (GxS) 

interactions. Here, we capitalized on a unique opportunity to utilize cohorts from the PGC and 

iPSYCH consortia (n = 195,681) to assess interactions between sex and genetic risk of MDD, 

SCZ and BIP within and across disorders. 
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Methods and Materials 

Participants 

The Psychiatric Genomics Consortium (PGC) (34-36) included 43 SCZ (30,608 patients, 

38,441 controls), 28 BIP (18,958 patients, 29,996 controls), and 26 MDD cohorts (15,970 

patients, 24,984 controls; Supplementary Table 1). The iPSYCH cohort in Denmark (37) 

included 2,795 SCZ patients and 2,436 controls, 966 BIP and 551 controls, and 16,438 MDD and 

13,538 controls (Supplementary Table 2). Primary analyses used the PGC and iPSYCH 

datasets. Secondary PGC-only analyses (see Supplementary Materials) were performed to 

facilitate comparison to other PGC studies and ensure that different diagnostic criteria in PGC 

and iPSYCH (DSM-IV and ICD-10, respectively) were not impacting results. All cohorts were 

European ancestry, except three East Asian SCZ cohorts.  

Quality Controls and Analytics 

Quality control (QC) and imputation to the 1000 Genomes Phase 3 reference panel were 

performed using PGC’s Rapid Imputation for COnsortias PIpeLIne (RICOPILI) (38) and 

previously described filtering thresholds (34-36). An overview of subsequent QC and analytic 

steps is provided in Supplementary Figure 1. Identity-by-descent (IBD) filtering is described in 

Supplementary Methods. At MAF=0.05, this study had 83%-99% (within-disorder) and 88% 

(cross-disorder) power to detect interaction effects at an odds ratio of >= 1.2, and >= 1.1, 

respectively (Supplementary Table 3; Supplementary Figure 2). 

Sex-stratified GWAS summary statistics were obtained by logistic regression of men and 

women separately within each cohort using PLINK (39), followed by standard-error weighted 

meta-analysis across cohorts using METAL (40). Summary statistics were entered into Linkage 

Disequilibrium (LD) Score Regression (LDSC) (41, 42) to estimate autosomal sex-specific SNP-
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based heritability (ℎ���
� ) for each disorder (Figure 1) and bivariate genetic correlations (��) 

within and across disorders.  

PLINK (39) was used to perform a genome-wide GxS interaction analysis in each cohort, 

followed by standard-error weighted meta-analysis of GxS interactions using METAL (40). GxS 

interaction analyses were performed using linear regression with main effects for SNPs and sex, 

and SNP-by-sex interaction terms, using additive models for SNPs (controlling for 10 ancestry 

principal components [PC]). Secondary regression models included additional controls using 10 

SNP-by-PC and 10 sex-by-PC interaction terms (43). Adding too many covariates can 

destabilize the effect estimates, leading to increased dropout of SNPs due to estimation 

problems, especially in smaller cohorts, thus, the first model is our primary model. Secondary 

analytic model p-values are included in brackets. 

GxS interactions with X-linked SNPs were tested using two models. Model A assumed 

complete and uniform X-inactivation in women and similar effect size between the sexes by 

assigning 0, 1, or 2 copies of an allele to women and 0 or 2 copies to men. As these assumptions 

often do not hold, Model B assigned 0 or 1 copy to men.  

A three-degrees-of-freedom test omnibus test (44) was performed by summing χ2 values 

for individual disorder GxS interaction meta-analyses in order to identify SNPs with opposing 

GxS effects across disorders (see Supplementary Methods).  

LD-independent SNPs (r2 < 0.1) with suggestive or genome-wide significant GxS 

interactions (p<1×10−6) were used as index SNPs for fine-mapping to obtain likely causal SNPs 

using FINEMAP (45) and CAVIAR (46) (see Supplementary Methods). Regions for fine-

mapping were defined as all SNPs in LD (r2 > 0.6) with the index SNP. 

SCZ and cross-disorder analyses of autosomes and X chromosome were conducted with 

and without inclusion of East Asian cohorts to evaluate population effects. Findings were not 
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significantly different and therefore all subsequent analyses utilized only European ancestry 

cohorts (see Supplementary Methods). 

Gene-based analyses were conducted using MAGMA (47) (significant p-value=2.6×10−6; 

see Supplementary Methods). Gene set enrichment tests (47) determined whether (near-

)significant SNPs (p<1×10−4) clustered into particular biological pathways characterizing 

functional similarity of genes implicated by GxS interactions. Hypothesis-free analyses were 

performed for 10,353 gene sets from the Molecular Signatures Database (MSigDB). Data-driven 

enrichment analyses were performed for nine gene sets/ pathways implicated in prior studies (48, 

49). 

Gene expression and expression quantitative trait locus (eQTL) data from several 

publicly available resources were evaluated to validate and interpret SNPs with GxS interaction 

p-values < 1×10−6 (see Supplementary Methods).  

Finally, GxS interaction results were compared to previously reported sex-dependent or 

sex-specific effects on psychiatric risk (p<5×10−8) (see Supplementary Methods and Tables). 
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Results 

 

Sex-stratified GWAS  

Sex-stratified GWAS analyses were performed to identify sex differences in heritability 

and genetic overlap between disorders, providing a reference point for interaction analyses. 

Manhattan plots (Supplementary Figure 3) and scatter plots (Supplementary Figure 4) 

showed considerable sex differences in the associations identified. Autosomal sex-specific SNP-

based heritability (ℎ���
� ) for each disorder and bivariate genetic correlations (��) within and 

across disorders were then estimated. Within each disorder, the ℎ���
�  for men and women 

(Figure 1a) was significantly greater than 0 (mean 0.19; all p < 0.001) (Supplementary Table 

4), indicating adequate power to detect broader polygenic signals. Estimates of ℎ���
�  increased 

minimally across a range of MAF cutoffs (MAF>1%, 2%, 5%), indicating rarer variants 

contributed little (Supplementary Table 4). Heritability estimates were substantially different 

between the sexes for SCZ (pFDR = 0.019; ℎ�
�  > ℎ	

�) and MDD (pFDR = 0.005; ℎ	
� > ℎ�

� ), but not 

BIP (pFDR = 0.381) (Supplementary Table 4). Although correlations between male and female 

GWAS p-values were low (Supplementary Figure 4), SNP-based genetic correlations (rg) 

between men and women within disorders ranged between 0.86 and 1 and were significantly 

different from 1 for SCZ (pFDR = 0.039) and BIP (pFDR = 0.039), but not MDD (pFDR = 0.397) 

(Figure 1b; Supplementary Table 5a). Additionally, we observed no significant differences in 

cross-disorder genetic correlations by sex, except rg between BIP and MDD (rgF = 0.42; rgM = 

0.04; pFDR = 0.044) (Figure 1b; Supplementary Table 5b). However, within-sex, SCZ and BIP 

women were more highly correlated than SCZ with MDD women, and MDD women correlated 

similarly to both SCZ and BIP. In contrast, SCZ with BIP and MDD men correlated similarly, 

but MDD and BIP men were uncorrelated. Findings suggest there may be different within-sex 
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genetic differences that need further understanding and demonstrate the complexity of 

investigating sex differences in genetics. 

 

Genome-wide SNP-by-Sex Interactions  

In order to adequately test for sex effects, it is necessary to conduct SNP-by-sex 

interaction analyses. Quantile-quantile plots indicated no systematic inflation of test statistics 

(Supplementary Figure 5). Genomic control lambda (λGC) revealed no significant evidence of 

population stratification in the meta-analysis of the cross-disorder European ancestry 

(λGC=0.9828), cross-disorder European + East Asian (λGC=0.9838), SCZ European ancestry 

(λGC=0.9991), SCZ European + East Asian (λGC=1.002), BIP (λGC=0.9879), or MDD 

(λGC=0.9833) cohorts. 

Analyses within disorders did not detect genome-wide significant interactions for SCZ, 

BIP, or MDD, however suggestive evidence (p<1×10−6) was obtained for several loci (Table 1, 

Supplementary Table 8). Overall, there was little overlap between the strongest interactions for 

each disorder (Supplementary Figure 6). The most significant results were obtained for SCZ 

for a locus in the 5’ UTR of the MOCOS gene (rs11665282: p=1.48×10−7 [secondary model 

pext=2.53×10−5]; Supplementary Figures 6-8) and an intergenic locus near the non-coding RNA 

gene LINC02181 (rs12445424: p=3.52×10−7 [pext =2.28×10−4]; Supplementary Figures 6-8). 

The top GxS interaction locus for BIP was located on chromosome 9 near the TUSC1 gene 

(rs12341335: p=2.29×10−7 [pext =7.91×10−7]; Supplementary Figures 6-8). Suggestive evidence 

for GxS effects in MDD risk was detected for chromosome 1 locus in and around SPAG17 

(rs9428240: p=1.64×10−7 [pext = 3.31×10−7]), which remained in rMDD (p=1.40×10−7 [pext 

=1.05×10−7])), and chromosome 17 locus spanning multiple genes including ZNF385C 

(rs147515485: p=4.61×10−7 [pext = 4.76×10−6]; Supplementary Figures 6-8). Post-hoc analysis 
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of rMDD did not reveal additional loci at p < 1×10−6. Secondary analyses of the PGC SCZ 

cohort identified a noteworthy locus in an intergenic region between the IDO2 and C8orf4 genes 

(rs13265509: p=1.09×10−7 [pext =1.23×10−6]; Supplementary Table 15a). Meta-analysis of GxS 

interactions across cohorts from all 3 disorders (in contrast to omnibus tests) revealed suggestive 

evidence for three additional intergenic loci (p<1×10−6) (Table 1, Supplementary Table 6f-i). 

Omnibus tests of autosomal SNP GxS effects across disorders revealed a significant locus 

in NKAIN2 (rs117780815; p=3.2×10−8 [pext =4.67×10−7]; Figure 2) driven by BIP and SCZ 

(Table 2, Supplementary Table 7). The effect was in opposite directions, with the minor allele 

increasing risk in BIP women and decreasing risk in BIP men, and vice versa in SCZ women and 

men (see Table 1, Supplementary Table 6a-e, disorder-specific sex-stratified effects). The 

second strongest omnibus signal was for the AMIGO1/GPR61 gene locus (rs12141273; 

p=4.16×10−7 [pext =1.95×10−6]), common to BIP and MDD, though in opposite directions. Of 

note, omnibus tests of the PGC dataset detected a second strong signal in the IDO2/C8orf4 gene 

locus (rs13270586; p=1.55×10−7 [pext = 4.62×10−7]), common to BIP and SCZ in opposite 

directions (Supplementary Table 16). Overall, all results from the secondary analytic model 

supported the primary model. 

SNP-by-sex interactions of X chromosome SNPs using model A or B detected only 

modest effects within/across disorders (lowest p = 6.89×10−6; Supplementary Table 8a,b), 

similar regardless of model (Supplementary Figure 8). Omnibus tests of X chromosome SNPs 

detected no significant interactions (lowest p = 1.67×10−5; Supplementary Table 9). 

 

Fine-mapping of SNP-by-sex interactions 

Loci displaying evidence for GxS interactions (index SNP p<1×10−6) (Tables 1-2, 

Supplementary Tables 6-9) underwent fine-mapping to identify those SNPs most likely to be 

causal. Sixteen loci had a mean of 75 (± 68) SNPs. In ~50% of the loci, the index SNP was 
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among the three most credible SNPs, and >70% of clumps had a “simple” model (<=3 causal 

variants). We summarize the posterior probabilities of all SNPs in fine-mapping loci (Table 3, 

Supplementary Table 10) and highlight SNPs with likely causal effects in our disorders. 

Together, CAVIAR and FINEMAP indicated that genome-wide significant SNP rs117780815, 

with posterior probability >0.90 (FINEMAP), was the most likely causal variant in the NKAIN2 

locus (see Table 3). 

 

Gene- and pathway-based analyses  

To capture all potential risk-conferring variations and derive aggregate, gene-level p-

values, we conducted gene-based tests. Gene-based tests within/across disorders detected near-

significant GxS interaction of the SLTM gene within SCZ (p=4.22×10−6 [pext =7.28×10−6]; 

Supplementary Figure 10a) and genome-wide significant cross-disorder interaction (omnibus 

p=8.97×10−7 [pext = 6.64×10−7]; Supplementary Figure 10g-h). No other results approached 

significance (Supplementary Table 11; Supplementary Figure 10b-f).  

In order to identify the functional significance of sex-dependent loci, pathway-based 

analyses were conducted. Gene set enrichment tests showed that within MDD, GxS SNPs were 

significantly enriched in genes regulating vascular endothelial growth factor (VEGF) receptor 

signaling (pFDR = 3.90×10−4 [pFDRext = 2.70×10−2]; Supplementary Table 12c). SNPs showing 

GxS interactions within SCZ or BIP were not significantly enriched for any MSigDB pathway 

(Supplementary Table 12a,b). Across disorders, the 

’wang_barretts_esophagus_and_esophagus_cancer_dn’ pathway showed enrichment (pFDR = 

0.035 [pFDRext = 0.065]; Supplementary Table 12f).  

 

Brain expression analysis 

To further validate identified sex-dependent variants functionally, brain expression data 
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were examined for genes located adjacent to or encompassing SNPs with evidence for GxS 

interactions (p<1×10−6). Most of these genes were expressed in multiple brain regions 

(Supplementary Figure 11-13), particularly prefrontal, anterior cingulate, pituitary, and 

hypothalamus (Supplementary Figure 14) from prenatal development (C8orf4 [= TCIM], 

CRSP2, GNA12, MOCOS, SPAG17), through puberty (IDO2) (Supplementary Figure 12), and 

through adulthood. 12-13). Genes were expressed in various brain cell types (Supplementary 

Figure 15), with high relative expression of NKAIN2 and GNA12 in oligodendrocytes, and 

CSRP2, C8orf4 and MOCOS in endothelial cells. (Supplementary Results report other genes.) 

 
eQTL overlap with GxS loci 

Examination of eQTL data for SNPs with evidence for GxS interactions (p<1×10−6; 

Supplementary Tables 6-7) found the highly significant SCZ MOCOS SNP (rs11665282) was a 

cis-eQTL in several brain regions (Supplementary Table 6a) associated with transcriptional 

elongation and chromatin remodeling in the ELP2 gene in cerebellum and DLPFC. The most 

significant cross-disorder SNP (rs7302529) was an eQTL for CSRP2 (Supplementary Table 

6f), although the top omnibus cross-disorder SNP (rs117780815) in NKAIN2 was not an eQTL. 

Finally, genome-wide SNP rs12141273, intergenic between AMIGO1 and GPR61, is a cis-eQTL 

for AMIGO1 in non-brain tissues and associated with expression of glutathione-S-transferase 

genes GSTM1 and GSTM5 and microtubule regulator gene PSRC1, in DLPFC (Supplementary 

Table 7). 

 

Overall, consistency of our significant GxS effects with previous GWAS of sex 

differences in MDD, BIP, and SCZ is described in Supplementary Results, Table 14.  
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Discussion 

Sex differences in incidence, symptomatology, brain abnormalities and physiology in 

SCZ, BIP, and MDD are pervasive (1-7). Previous work demonstrated the impact of gonadal 

hormones on some of these phenotypic differences. Here, we hypothesized sex differences may, 

in part, be due to genetic variation, either sex-specific or sex-dependent, and that risk variants 

may be shared among the disorders.  

Heritability estimates were significantly different between the sexes for SCZ and MDD, 

but not BIP, partly reflecting significant sex differences in incidence for SCZ and MDD, but not 

BIP. Male-female SNP-based genetic correlations ranged between 0.86 (BIP) and 1 (MDD), 

significantly <1 for SCZ and BIP but not MDD, with by-sex cross-disorder correlation 

differences suggesting further complexity. Thus, although the majority of common variant 

genetic effects were shared between the sexes, there were sex-specific and sex-dependent effects 

on risks, with modest effect sizes (27).  

Significant sex effects, primarily sex-stratified associations, were reported previously in 

GWAS studies (25-32, 34), implicating neurodevelopmental mechanisms and immune pathways 

(26-28, 30). However, sex-stratified analyses are only equivalent to GxS interaction tests when 

there are no interactions between covariates and sex, and the trait variances are equivalent in the 

two sexes. As this is unlikely, GxS interaction tests are ultimately necessary to identify 

significant sex differences, and sex-stratified analyses may fail to detect or spuriously report 

differences.  

GxS interaction findings in our study implicate neuronal excitability and inhibitory 

regulation of brain development and functioning and immune and vascular pathways. Omnibus 

tests across disorders detected genome-wide significant evidence for GxS emanating from the 

NKAIN2 gene, expressed in brain implicating potassium sodium ATPases regulating neuron 

membrane potential, transmembrane fluxes of Ca2+ and excitatory neurotransmitters, and CNS 
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differentiation (50). NKAIN2 has previously been associated with cognitive ability (51) and SCZ 

risk (52, 53). The second most significant omnibus GxS result was a SNP adjacent to AMIGO1, 

which regulates activity of the Kv2.1 voltage-dependent potassium channel (54), again important 

for regulating neuronal excitability in brain (55). Other support for GxS interaction was obtained 

from gene-based analyses across disorders that detected a genome-wide significant GxS 

interaction with the SLTM gene, a general inhibitor of transcription, highly expressed in 

cerebellum and putamen, among others. Taken together, these findings suggest a sex-dependent 

genetic contribution to the balance between excitatory and inhibitory regulation of neuronal 

development and functioning, a hypothesis worthy of further functional “omics” investigations.  

In fact, the strongest locus identified in GxS analyses for SCZ (PGC-only; rs13270586) 

was near C8orf4 (aka TCIM), which functions as a positive regulator of the Wnt/ß-catenin 

signaling pathway,implicated previously in SCZ, BIP, and MDD (56-59), with a central role in 

fundamental neuronal processes—including synaptogenesis, axon guidance, and dendrite 

development (60)—. Interestingly, recent transcriptomic work identified female-biased genes 

enriched for expression in Cajal-Retzius cells that play a major role in neural migration, whereas 

male-biased genes were enriched for neural progenitor cells (61). This is consistent with our 

earlier work in mice with impaired GABA-B receptor signaling and demonstrating sex 

differences in developmental migration of neurons containing estrogen receptor (ER)-α into the 

hypothalamus paraventricular nucleus that impacted depressive-like behaviors, particularly in 

females (62). 

Several genes that implicated neuronal excitability and immune functions had opposite 

effects on disorder risk by sex. The NKAIN2 SNP GxS effect was opposite in SCZ and BIP, with 

the minor allele increasing risk in SCZ women and decreasing risk in SCZ men, and opposite 

effects on risk in BIP women and men. Similarly, the AMIGO1/GPR61 GxS effect was opposite 
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in BIP and MDD, with the minor allele having stronger effects in BIP women and weaker effect 

in MDD women versus men. 

Immune pathway dysregulation, shared across disorders, also demonstrated some 

evidence of opposite genetic effects by sex. The strongest GxS interaction for SCZ was in a 

locus between IDO2 and C8orf4 (rs13270586; p=1.55×10−7), with opposite risk effects by sex. 

IDO2 is involved in catabolism of tryptophan in the kynurenine pathway. An end metabolite of 

the kynurenine pathway, kynurenic acid (KYNA), is elevated in the cerebrospinal fluid (63, 64) 

and postmortem brains (65, 66) in SCZ and BIP, while reduced plasma levels were associated 

with depressive symptoms (63). Given recent evidence implicating the kynurenine pathway as a 

link between brain immune activation and disorder risk (67, 68) and sex differences in immune 

mechanisms (69), it is plausible that IDO2 has different effects on SCZ risk in men and women 

through differential KYNA expression between the sexes. This is consistent with recent findings 

implicating the complement system (C4) as a source of sexual dimorphisms in vulnerability to 

SCZ and autoimmune disorders (20). Further, among the strongest results for MDD was a locus 

spanning ZNF385C, associated with transcriptional regulation (70) and immune-related 

phenotypes via transcriptional enhancers (71, 72). 

Our sex-biased genes implicating immune mechanisms at the population level 

complement recent transcriptomic work in healthy brain development (73), population work in 

SCZ (19), and MDD (74). Sex-by-diagnosis interactions were seen in the rearrangement of brain 

transcriptional patterns in MDD (74), an effect also seen in stressed mice (75). In MDD, cell 

type–specific analyses revealed MDD men exhibited transcriptional increases and MDD women 

transcriptional decreases in oligodendrocyte- and microglia-related genes (74). 

Consistent with this, animal studies demonstrated sex differences in microglia density 

and morphology in key brain regions beginning in prenatal development (e.g., hypothalamic 

preoptic area (POA), hippocampus, amygdala). In males in utero, there is heightened activation 
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of POA microglia that may result in a priming effect leading to sex-dependent vulnerability for 

disorders such as SCZ (76). In contrast, while males appear to have a prolonged period of 

enhanced immune sensitivity in utero in preclinical studies, the period of immune sensitivity for 

females is shifted toward the end of prenatal development continuing into early postnatal life in 

rodents (76), a critical period analogous to human sexual brain differentiation (2nd and 3rd 

trimesters). This suggests that timing is critical in identifying sex-by-gene effects, which may 

have opposing effects at different developmental periods, a fact that must be considered in 

transcription studies of brain regions across the lifespan. In fact, sex differences in expression of 

IDO2 was identified as also critical during puberty, with post-puberty being the emergence of 

sex differences in MDD and SCZ. 

Other mechanisms that might account for opposing sex interaction effects, include 

balancing selection due to antagonistic pleiotropic effects (77), that could play a role in 

maintaining common susceptibility alleles in the population. Opposing effects suggest the 

potential presence of a ‘genetic switch’ for progression to either one of the diseases, in addition 

to shared genetic risk factors. Results in autism (78) and SCZ (79) support the idea that these 

disorders may be opposite extremes of a single gradient of mental disorders or due to diametric 

gene-dosage deviations caused by disrupted genomic imprinting (78) or copy number variants. 

Opposing effects were most likely to be significant, since they generally have the largest effect 

sizes and thus greatest statistical power to detect. The majority of common SNPs likely have 

disease risk interaction effect sizes of OR <1.1. Nevertheless, findings suggest that overall sex-

specific and sex-dependent genetic correlations may obscure a more complex set of genetic 

relationships at the level of specific loci, brain regions, and pathways (80), and that timing of 

mechanisms implicated in sex effects is critical. 

Our findings also identified genes associated with vascular development, interesting in 

light of the comorbidity of CVD with MDD (higher in women) (81) and SCZ. Results 
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demonstrated genes involved in regulation of VEGF signaling were enriched among GxS loci for 

MDD. Sex differences were reported in VEGF levels (82), and brain expression of VEGF has 

been associated with cognitive aging and Alzheimer’s disease (83, 84). Further, the strongest 

GxS interaction was detected for SCZ in a locus in the MOCOS gene most highly expressed in 

endothelial cells lining blood vessels. Interestingly, our previous work on sex differences in 

neuronal migration due to impaired GABA-B signaling (62) was also significantly associated 

with sex differences in hypothalamic neurovascular development, being more severe in females 

and associated with depression-related behaviors (85). In fact, a recent meta-analysis of 22 

available gene expression microarrays across multiple organs and tissues cited areas of the brain 

(i.e., anterior cingulate cortex, implicated in MDD, SCZ and BIP) with the most substantial sex 

differences in gene expression, followed by the heart (86). 

Finally, sex-by-gene effects had implications for cognitive functions, not surprising given 

brain regions implicated by some of the significant loci in this study. For example, ZNF385C in 

MDD may play a role in cognition, since its paralogs ZNF385B and ZNF385D, have been 

associated with intelligence (87), general cognition, mathematical ability and educational 

attainment (88). It is possible that genes associated with cognitive abnormalities may be shared 

across disorders, given that the two strongest GxS interaction loci for BIP located near TUSC1 

and FHL2 have been associated with educational attainment, other cognitive phenotypes, and 

depression (88, 89).  

Although it seems intuitive that genes located on sex chromosomes would be involved in 

sex differences in disease risk, our analyses did not detect evidence for significant GxS 

interactions involving X chromosome SNPs. Lack of significance could be due to insensitive X 

chromosome modeling by sex, thus necessitating more refined models allowing for variability in 

X inactivation patterns and incorporation of the Y chromosome to clarify the role of sex 

chromosomes in disease risk. Recent data suggest tissue-specific patterns of X inactivation (90). 
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Nevertheless, our results of GxS interactions for autosomal genes are consistent with 

transcriptomics data demonstrating sexually dimorphic expression in the brain of a substantial 

proportion of autosomal genes related to fundamental neural functions (61, 74, 91, 92) and data 

enriched for tissue-related diseases (92). These findings underscore the utility of studies like 

ours, with statistical power to test for interaction effects, that highlight genes worthy of deeper 

mechanistic investigations using transcriptomics and proteomics research and animal models. 

A limitation of this study is the relatively low sex-stratified SNP heritability, in particular 

for MDD men (mean ℎ���
�  = 0.2). Nevertheless, all heritability estimates were greater than zero 

with very good precision (i.e., small standard errors), indicating the ability of this study to detect 

common variant effects. Genetic correlations between the sexes were high and only differed 

significantly for SCZ and BIP. In the latest PGC SCZ GWAS (93), the cross-sex rg did not 

significantly differ from zero, which may, in part, be due to an increased SCZ sample size and 

different meta-analysis composition. While genetic correlations between the sexes within-

disorder were high, most striking were the differences in genetic correlations by disorder by sex. 

High genetic correlations were observed between MDD (both sexes) and BIP women (0.42, 

0.48), but much weaker with MDD (both sexes) and BIP men (0.13, 0.04). Although some have 

argued this may reflect study recruitment bias or misclassification (94), this is less likely for our 

study, given varying sample sizes across disorders (due to differing prevalences), and no genetic 

correlations by sex among SCZ compared with high correlations among MDD and BIP. 

Misclassification of cases is always a possibility, although clinical diagnoses were based on 

extensive DSM-IV or ICD-10 interviews, limiting the likelihood of this. Further, if there were 

bias, it would require similar and substantial bias across multiple international institutions. 

The lack of detailed clinical data prevented examination of important questions related to 

symptom type, severity, age at onset, and cognitive deficits. These limitations emphasize the 
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need for larger, deeply-phenotyped datasets to fully characterize sex differences in genetic and 

clinical characteristics of these disorders, as highlighted recently in (27). Further, alternative 

explanations for sex differences in incidence, presentation, and course, include genotype-by-

environment interactions, e.g., implicating gonadal hormone regulation of genes, that we know 

from clinical and animal studies are sex-dependent. Finally, additional replication samples would 

significantly strengthen these findings. 

Conclusions. In the largest genome-wide GxS analysis of mood and psychotic disorders 

to date, we found substantial genetic overlap between men and women for SCZ, BIP, and MDD. 

However, we also found several loci with significant GxS interaction effects across and within 

disorder – NKAIN2 at the variant level, SLTM at the gene level, and VEGF at pathway level. 

Functional genomics suggests that all genes were expressed in at least one brain region at some 

period across the lifespan, with most genes expressed in multiple brain regions associated with 

mood/anxiety and cognition.  

Our results demonstrate that the risk for SCZ, MDD and BIP is impacted by interactions 

of genotype with sex, beyond the impact of gonadal steroid hormones. Though specific 

mechanisms remain unknown, our study underscores the importance of designing large-scale 

genetic studies that have the statistical power to test for interactions with sex. Dissecting the 

impact of sex, genes, and pathophysiology will identify potential targets for sex-dependent or 

sex-specific therapeutic interventions. 
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Resources 

Summary statistics are available for download from https://www.med.unc.edu/pgc/ upon 

publication. 
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Figure Legends 
 
Figure 1. LD Score Regression estimates of sex-specific SNP-based (a) heritability, h2 (±SE), 
and (b) genetic correlations, rg (SE).This graph shows h2 and rg estimates for MAF > 0.01. 

a) Heritability estimates were substantially different between the sexes for SCZ (pFDR = 
0.019) and MDD (pFDR = 0.005), but not BIP (pFDR = 0.381). 

b) SNP-based genetic correlations (rg) between males and females within each disorder 
ranged between 0.86 and 1 and were significantly different from 1 for SCZ (pFDR = 
0.039) and BIP (pFDR = 0.039), but not MDD (pFDR = 0.397). No significant differences in 
the cross-disorder genetic correlations between males and females, with the exception of 
rg between BIP and MDD (rgF = 0.42; rgM = 0.04; pFDR = 0.044). 

Abbreviations: BIP = bipolar disorder; MDD = major depressive disorder; SCZ = schizophrenia; 
F = females; M = males; LD = linkage disequilibrium; SE = standard error. 
 
Figure 2. Cross-disorder Manhattan plot of SNP-by-sex interaction p-values (a) and LocusZoom 
plot for the NKAIN2 gene locus exhibiting a significant SNP-by-sex interaction effect on cross-
disorder risk (b). This graph shows the genome-wide significant result from the cross-disorder 
omnibus test in ASSET (primary model). Negative log10-transformed p-values for each variant 
(each dot) (y-axis) are plotted by chromosomal position (x-axis). The red and blue lines represent 
the thresholds for genome-wide significant association (p = 5×10−8) and suggestive association 
(p = 1×10−6), respectively. The strongest GxS interaction was found for SNP rs117780815 on 
chromosome 6 (p=3.2×10−8) driven by BIP and SCZ. The effect was in opposite directions, with 
the minor allele increasing risk in BIP women and decreasing risk in BIP men, and vice versa in 
SCZ women and men (Table 2, Supplementary Table 7). Abbreviations: chr = chromosome; 
cM = centimorgans; Mb = megabases; r2 = linkage disequilibrium level; NKAIN2 = 
Sodium/Potassium Transporting ATPase Interacting 2 
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Table Legends 
 
Table 1. Single-disorder and Cross-disorder Autosomal SNP-by-sex interaction results. 
Cross-disorder and within-disorder meta-analyses were carried out using METAL, incorporating 
cohort-level summary statistics from PLINK. Listed are SNPs with interaction p-values < 1×10-6 
in SCZ, BIP, (r)MDD, and cross-disorder. Loci were clumped using ‘plink --bfile 1kgp_ref_file -
-clump metal_output --clump-p1 1e-4 --clump-p2 1e-4 --clump-r2 0.6 --clump-kb 3000’. 
Extended results (p < 1×10−4), including eQTL data for the variants highlighted in this table, and 
including secondary extended model statistics, are available in Supplementary Table 6. 
Abbreviations: SNP, Variant rs ID; pGxS; p-value for GxS interaction in combined PGC + 
iPSYCH datasets (p-value for secondary extended model, pext, in parentheses); CHR, 
Chromosome; BP, Base Pair Position; A1/A2, Allele 1/Allele 2; Freq1, Frequency of Allele 1; 
MAF, Minor Allele Frequency; BetaGxS, Beta (Standard Error) for GxS interaction; BetaF (SE), 
Beta (Standard Error) for female-stratified association; pF, p-value for female-stratified 
association; BetaM, Beta (Standard Error) for male-stratified association; pM, p-value for male-
stratified association; ZFM, Z-score heterogeneity females-males; pFM, p-value heterogeneity 
females-males 
 
Table 2. Cross-Disorder Omnibus tests. 
Omnibus tests were carried out using ASSET, incorporating the within-disorder meta-analysis 
summary statistics from METAL. Listed are SNPs with cross-disorder interaction p-values < 
1×10-6. Loci were clumped using ‘plink --bfile 1kgp_ref_file --clump asset_output --clump-p1 
1e-4 --clump-p2 1e-4 --clump-r2 0.6 --clump-kb 3000’. Extended results (p < 1×10−4), including 
eQTL data for the variants highlighted in this table, and including secondary extended model 
statistics, are available in Supplementary Table 7. 
Abbreviations: SNP, Variant ID; A1/A2, Allele 1 (reference allele)/Allele 2; CHR, 
Chromosome; BP, Base Pair Position; p, Omnibus p-value in combined PGC+iPSYCH datasets 
(p-value for secondary extended model, pext, in parentheses); Pheno.1, Phenotype(s) associated in 
direction 1; Pheno.2, Phenotype(s) associated in direction 2; p.1, Phenotype(s) 1 p-value; p.2, 
Phenotype(s) 2 p-value; OR.1 (CI), Phenotype(s) 1 Odds Ratio (Confidence Interval); OR.2 (CI), 
Phenotype(s) 2 Odds Ratio (Confidence Interval); Meta p, Basic Meta-Analysis p-value; Meta 
OR (CI), Basic Meta-Analysis Odds Ratio (Confidence Interval) 
 
Table 3. Credible SNP results for genome-wide significant locus NKAIN2. 
CAVIAR and FINEMAP results for the genome-wide significant locus observed in the omnibus 
test of SCZ, BIP, and MDD (European ancestry). There were four SNPs, including genome-wide 
significant NKAIN2 SNP rs117780815, with posterior probability higher than 0.90. These SNPs 
are the most likely variants to have a causal effect on mood and psychotic disorders from that 
locus. 
Abbreviations: Index SNP, genome-wide significant SNP; SNP, all SNPs in locus; A1/A2, Allele 
1 (reference allele)/Allele 2; CHR, Chromosome; BP, Base Pair Position; MAF, Minor Allele 
Frequency; PP(ext), posterior probability (extended secondary model); SE, Standard Error 
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Table 1. Single-disorder and Cross-disorder Autosomal SNP-by-sex interaction results. 

SNP CHR BP A1/ 
A2 

Freq1 
MAF Compartment Gene 

(Distance in kb) 
N Cases 

(%Female) 
N Controls 
(%Female) 

BetaGxS 
(SE) pGxS (pext) 

BetaF 
(SE) pF BetaM 

(SE) pM ZFM pFM 

Schizophrenia (European only) 

rs11665282 18 33767479 A/G 
0.69 
0.31 

UTR5 MOCOS 
21,581 

(35.18%) 
24,250 

(48.62%) 
-0.156 
(0.030) 

1.48E-7 
(2.53E-5) 

-0.081 
(0.023) 

3.98E-4 
0.072 

(0.019) 
2.16E-4 -5.09 3.50E-7 

rs12445424 16 87063374 A/G 
0.26 
0.26 

intergenic 
LINC02188 (291.9); 
LINC02181 (280.2) 

29,467 
(36.04%) 

34,519 
(48.33%) 

0.140 
(0.028) 

3.52E-7 
(2.28E-4) 

0.097 
(0.021) 

5.80E-6 
-0.050 
(0.018) 

4.67E-3 5.30 1.19E-7 

Schizophrenia (European + East Asian) 

rs11665282 18 33767479 A/G 
0.69 
0.31 

UTR5 MOCOS 
22,060 

(35.39%) 
24,674 

(48.26%) 
-0.149 
(0.03) 

3.74E-7 
(4.46E-5) 

-0.077 
(0.023) 

6.74E-4 
0.070 

(0.019) 
2.53E-4 -4.96 6.89E-7 

Bipolar Disorder 

rs12341335 9 25649145 T/C 
0.90 
0.10 

intergenic TUSC1 (27.2) 
7,730 

(57.72%) 
13,635 

(51.28%) 
0.373 

(0.072) 
2.29E-7 

(7.91E-7) 
0.176 

(0.048) 
2.59E-4 

-0.201 
(0.054) 

2.11E-4 5.20 2.03E-7 

rs17651437 2 106055684 T/C 
0.52 
0.48 

upstream FHL2 
16,365 

(60.18%) 
28,140 

(50.75%) 
0.155 

(0.031) 
3.72E-7 

(1.04E-5) 
0.079 

(0.020) 
9.97E-5 

-0.069 
(0.023) 

3.08E-3 4.79 1.63E-6 

Major Depressive Disorder 

rs9428240 1 118831676 T/C 
0.59 
0.41 

intergenic SPAG17 (103.8) 
14,232 

(68.63%) 
21,846 

(50.63%) 
-0.181 
(0.035) 

1.64E-7  
(3.31E-7) 

-0.087 
(0.022) 

6.41E-5 
0.094 

(0.028) 
8.41E-4 -5.08 3.70E-7 

rs147515485 17 40182099 T/C 
0.02 
0.02 

intronic ZNF385C 
31,149 

(61.17%) 
35,385 

(50.89%) 
-0.472 
(0.094) 

4.61E-7 
(4.76E-6) 

-0.190 
(0.060) 

1.55E-3 
0.303 

(0.074) 
4.39E-5 -5.17 2.39E-7 

Recurrent Major Depressive Disorder 

rs61138090 1 118832069 D/I2 
0.59 
0.41 

intergenic SPAG17 (104.2) 
7,685 

(70.59%) 
15,976 

(51.71%) 
-0.240 
(0.046) 

1.40E-7 
(-) 

-0.109 
(0.028) 

1.03E-4 
0.142 

(0.038) 
2.08E-4 -5.28 1.30E-7 

Cross-Disorder SCZ-BIP-MDD (European only) 

rs7302529 12 77321581 T/C 
0.26 
0.26 

intergenic 
CSRP2 (48.8); 
E2F7 (93.4) 

34,638 
(51.36%) 

34.696 
(50.15%) 

0.145 
(0.028) 

1.60E-7 
(5.35E-7) 

0.087 
(0.019) 

5.09E-6 
-0.051 
(0.020) 

1.15E-2 4.98 6.51E-7 

rs73033497 7 2910659 A/T 
0.86 
0.14 

intergenic 
GNA12 (26.7); 
CARD11 (35.0) 

14,916 
(49.21%) 

17,547 
(47.81%) 

0.246 
(0.050) 

8.82E-7 
(2.24E-6) 

0.116 
(0.036) 

1.09E-3 
-0.128 
(0.035) 

2.69E-4 4.89 1.03E-6 

Cross-Disorder SCZ-BIP-MDD (European + East Asian) 

rs7914279 10 122161890 T/G 
0.89 
0.11 

intergenic 
MIR4682 (44.3); 
PLPP4 (54.6) 

78,640 
(49.95%) 

71.790 
(49.70%) 

0.146 
(0.029) 

6.39E-7 
(4.78E-6) 

0.064 
(0.020) 

1.86E-3 
-0.077 
(0.021) 

2.27E-4 4.82 1.43E-6 

rs73033497 7 2910659 A/T 
0.86 
0.14 

intergenic 
GNA12 (26.7); 
CARD11 (35.0) 

14,916 
(49.21%) 

17,547 
(47.81%) 

0.246 
(0.050) 

8.82E-7 
(2.24E-6) 

0.116 
(0.036) 

1.09E-3 
-0.128 
(0.035) 

2.69E-4 4.89 1.03E-6 

rs7302529 12 77321581 T/C 
0.25 
0.25 

intergenic 
CSRP2 (48.8); 
E2F7 (93.4) 

35,114 
(50.69%) 

36,707 
(50.72%) 

0.133 
(0.027) 

9.37E-7 
(2.69E-6) 

0.082 
(0.019) 

1.35E-5 
-0.044 
(0.020) 

2.37E-2 4.64 3.51E-6 

Cross-Disorder SCZ-BIP-rMDD (European only) 

rs73033497 7 2910659 A/T 
0.86 
0.14 

intergenic 
GNA12 (26.7); 
CARD11 (35.0) 

13,497 
(47.22%) 

14,619 
(48.26%) 

0.267 
(0.054) 

6.22E-7 
(2.22E-6) 

0.142 
(0.039) 

2.55E-4 
-0.129 
(0.037) 

4.89E-4 5.05 4.37E-7 

rs7302529 12 77321581 T/C 
0.26 
0.26 

intergenic 
CSRP2 (48.8); 
E2F7 (93.4) 

31,541 
(49.75%) 

31,377 
(50.42%) 

0.144 
(0.029) 

7.43E-7 
(2.32E-6) 

0.094 
(0.020) 

4.48E-6 
-0.048 
(0.021) 

2.13E-2 4.86 1.18E-6 

Cross-Disorder SCZ-BIP-rMDD (European + East Asian) 

rs8040598 15 71857368 A/G 
0.86 
0.14 

intronic THSD4 
41,001 

(45.92%) 
43,732 

(50.94%) 
0.183 

(0.036) 
3.90E-7 

(8.25E-7) 
0.084 

(0.026) 
1.18E-3 

-0.093 
(0.025) 

2.18E-4 4.89 9.90E-7 

rs73033497 7 2910659 A/T 
0.86 
0.14 

intergenic 
GNA12 (26.7); 
CARD11 (35.0) 

13,497 
(47.22%) 

14,619 
(48.26%) 

0.267 
(0.054) 

6.22E-7 
(2.22E-6) 

0.142 
(0.039) 

2.55E-4 
-0.129 
(0.037) 

4.89E-4 5.05 4.37E-7 
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Table 2. Cross-Disorder Omnibus tests of SNP-by-sex interactions 

SNP CHR BP 
A1/ 
A2 MAF 

Compart-
ment 

Gene (Distance 
in kb) p (pext) Pheno.1 Pheno.2 p.1 p.2 

OR.1 
(CI) 

OR.2 
(CI) Meta p 

Meta OR 
(CI) 

SCZ-BIP-MDD (European only) 

rs117780815 6 124326227 T/A 0.036 intronic NKAIN2 3.19E-8 
(4.67E-7) 

BIP SCZ 1.34E-7 1.12E-2 2.0  
(1.52, 2.51) 

0.79  
(0.65, 0.95) 

8.10E-2 1.12  
(1.11, 1.13) 

rs12141273 1 110079143 A/G 0.067 intergenic AMIGO1 (26.8); 
GPR61 (3.3) 

4.16E-7 
(1.95E-6) 

BIP MDD 1.60E-4 1.40E-4 1.3  
(1.14, 1.50) 

0.81  
(0.73, 0.90) 

2.03E-1 0.96  
(0.95, 0.96) 

rs431414 15 59147800 T/C 0.181 UTR3 MINDY2 4.60E-7 
(4.36E-7) 

SCZ BIP 1.62E-7 1.53E-1 1.2  
(1.14, 1.34 ) 

0.91  
(0.80, 1.04) 

1.67E-2 1.07  
(1.07, 1.07) 

SCZ-BIP-MDD (European + East Asian) 

rs117780815 6 124326227 T/A 0.036 intronic NKAIN2 2.84E-8 
(5.90E-7) 

BIP SCZ 1.34E-7 9.89E-3 2.0  
(1.52, 2.51) 

0.79  
(0.65, 0.94) 

9.46E-2 1.11  
(1.10, 1.12) 

rs12141273 1 110079143 A/G 0.067 intergenic AMIGO1 (26.8); 
GPR61 (3.3) 

4.16E-7 
(1.95E-6) 

BIP MDD 1.60E-4 1.40E-4 1.3  
(1.14, 1.50) 

0.81  
(0.73, 0.90) 

2.03E-1 0.96  
(0.95, 0.96) 

rs35477914 15 59197669 T/A 0.193 intronic SLTM 8.54E-7 
(1.73E-6) 

BIP; 
MDD 

SCZ 1.30E-2 3.60E-6 1.1  
(1.01, 1.14) 

0.86  
(0.80, 0.92) 

4.84E-1 0.99  
(0.98, 0.99) 

SCZ-BIP-rMDD (European only) 

rs117780815 6 124326227 T/A 0.036 intronic NKAIN2 3.17E-8 
(1.69E-7) 

BIP SCZ 1.33E-7 1.12E-2 2.0  
(1.52, 2.51) 

0.79  
(0.65, 0.95) 

1.58E-1 1.10  
(1.09, 1.11) 

rs431414 15 59147800 T/C 0.182 UTR3 MINDY2 4.58E-7 
(4.34E-7) 

SCZ BIP 1.62E-7 1.53E-1 1.2  
(1.14, 1.34 ) 

0.91  
(0.80, 1.04) 

7.27E-3 1.08  
(1.08, 1.09) 

SCZ-BIP-rMDD (European + East Asian) 

rs117780815 6 124326227 T/A 0.036 intronic NKAIN2 2.82E-8 
(2.14E-7) 

BIP SCZ 1.33E-7 9.88E-3 2.0  
(1.52, 2.51) 

0.79  
(0.65, 0.94) 

1.81E-1 1.10  
(1.09, 1.11) 
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Table 3. Credible SNP results for genome-wide significant NKAIN2 locus. 

  FINEMAP CAVIAR          

Index SNP SNP 
PP causal 

(PPext) 
PP causal 

(PPext) 
Compart-
ment Gene CHR BP A1/A2 MAF Beta SE Z 

rs117780815 rs117780815 
1 

(1) 
0.83 

(0.88) intronic NKAIN2 6 124326227 T/A 0.04 0.670 0.127 5.27 

rs117780815 rs4574657 
1 

(1) 
5.9E-03 

(7.2E-03) intronic NKAIN2 6 124319710 A/G 0.04 0.283 0.089 3.17 

rs117780815 rs4895382 
1 

(1) 
8.0E-02 

(7.8E-03) intronic NKAIN2 6 124312658 G/A 0.02 0.736 0.171 4.29 

rs117780815 rs73557075 
1 

(1) 
1.4E-02 

(5.6E-03) intronic NKAIN2 6 124313730 A/G 0.04 0.195 0.114 1.71 

rs117780815 rs7748718 
6.7E-02 (3.5E-

02) 
8.8E-03 

(1.6E-02) intronic NKAIN2 6 124317132 C/A 0.05 0.358 0.108 3.33 

rs117780815 rs7754419 
2.9E-02 (5.4E-

01) 
6.1E-02 

(1.6E-01) intronic NKAIN2 6 124318348 G/A 0.04 0.541 0.118 4.58 

rs117780815 rs7761506 
3.7E-02 (4.8E-

05) 
6.8E-03 

(7.2E-03) intronic NKAIN2 6 124314413 G/A 0.02 0.493 0.159 3.09 
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