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Introduction

Depressive disorders are a major health concern, an important

cause of suicide and, because they affect more than 120 million

people worldwide, they are expected to be the second leading cause

of disability in 2020 (1). According to DSM-IV criteria, major

depressive disorder is characterised by a depressed mood, a loss of

interest or pleasure and low self-esteem. Other symptoms include:

disturbed sleep or appetite, persistent feelings of sadness and irrita-

bility, poor concentration, low energy levels and suicidal thoughts

(2). The severity and duration of these symptoms can vary strongly

among patients. Depression not only severely affects the quality of

life of an individual, but also has major repercussions on his ⁄ her

family and social and work environment.

Several epidemiological studies have established the incidence of

depression in women to outnumber men by a 2 : 1 ratio (2–4).

Part of this pronounced sex difference may be contributed for by

differences in help-seeking behaviour and symptom reporting

between men and women, with women being more likely to seek

treatment for psychological problems earlier (3), whereas men are

more prone to cope with sadness or depressive symptoms through,

for example, increased alcohol or drug abuse (3). Although this

effect may be considerable, it is unlikely to fully explain the sex

difference in the incidence of depression because this difference is

not only observed in clinical studies, but also in nonclinical popula-

tions (5, 6).

Remarkably, the sex difference in the incidence of depression

already emerges during early adolescence. Preadolescent boys and

girls have a similar risk to develop depression, whereas, during ado-

lescence, the incidence of depression strongly increases in girls and

stays the same in boys (2, 7, 8). Throughout adulthood, women

have a 50% higher chance of experiencing an episode of depression

than men (4). To date, the aetiology of this sex difference is poorly

understood and it remains to be elucidated why it emerges during

the adolescent period. In addition to providing a general overview

of the main neuroendocrinological changes during depression, we

will discuss putative neurobiological explanations for the emer-

gence, during (early) adolescence, of sex differences in the inci-

dence of depression. Although cultural, social and psychological

factors are very important in the aetiology of depression, the main

focus of this review is on the underlying biological factors.

Depression in adolescents

The prevalence of depression in adolescents is approximately 4–8%.

The consequences of adolescent depression vary from failure in

society and social isolation to substance abuse and suicidal behav-

iour (9). As many as one-third of adolescents who suffer from
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depression attempt suicide (10) and some studies even report

higher rates (9). Approximately 4–10% of depressed adolescents

actually die as a result of suicide, which makes depression a major

cause of death among adolescents (1, 10).

In general, the symptoms of adolescent depression are compara-

ble to those of adult depression, although irritability rather than

sadness appears to be more prominent in adolescents. However,

depression in adults often shows a high comorbidity with substance

abuse and sociopathy, whereas adolescent depression occurs more

often in combination with other psychopathologies such as anxiety,

conduct problems and learning disabilities (2, 10). In both adult and

adolescent depression, recurrence rates are high. Furthermore, ado-

lescents suffering from depression have a 40% chance of experi-

encing a recurrent episode later in life (10). When adolescent

depression is left untreated, it can persist into adulthood and sig-

nificantly increase the risk of developing other psychopathologies

(11). However, it is important to note that the use of pharmacolog-

ical antidepressants, such as selective serotonine reuptake inhibitors

in adolescents has become surrounded by controversy, especially

because the use of these drugs in adolescents has been associated

with suicidality (suicidal thoughts, ideation or actions) during the

first weeks of treatment (12).

Up until 20 years ago, evidence-based treatments for adolescents

were practically unknown; nevertheless, antidepressants drugs

developed for adults were administered to adolescents, even though

their use may possibly interfere with brain maturation. For example,

mice and rats that were treated with fluoxetine during the postna-

tal period (from postnatal days 4–21) showed increased anxiety-

and depression-related behaviour when tested drug-free in adult-

hood. However, similar effects did not occur as a result of fluoxe-

tine-treatment during adolescence (13). In a study conducted by

Norcross et al. [14], two different mouse strains were treated with

clinically relevant doses of fluoxetine during the mouse ‘adoles-

cence’ period (between 3 and 7 weeks of age). When tested drug-

free in adulthood, these mice did not express any behavioural

abnormalities and displayed normal fear-, anxiety- and stress-

related phenotypes (14). Regrettably, sex was not taken into

account in these studies. By contrast, Hodes et al. (15) revealed

that fluoxetine treatment in rats around puberty (between weeks 4

and 6 of age) did not affect cell proliferation in either males or

females. However, increased hippocampal cell proliferation was

observed in adult males as a result of fluoxetine treatment, whereas

such effects did not occur in female rats at any age or stage of

the oestrous cycle (16). It still remains to be determined, however,

whether such sex differences in treatment responses are also pres-

ent in humans.

The factors that contribute to the sex difference in treatment

responses and incidence rate probably also contribute to the sex

difference in depressive symptomatology. Although the personal

experience of depression may appear largely similar for adolescent

girls and boys, clear sex differences in depressive symptoms have

been reported (17), with girls experiencing more guilt and bodily

dissatisfaction, self-disappointment, feelings of failure and concen-

tration problems than boys, whereas anhedonia, morning

depressed mood and morning fatigue are more frequent in boys

(17). Adolescent girls also have a higher risk for recurrent periods

than boys (3).

Adolescence: a period of sexual differentiation

Biological sex differences exist at the level of gene expression, hor-

mone levels, anatomy and behaviour, with some of them already

being present during early development. Sexual differentiation is

determined as the process during which sex differences develop

and diverge into male or female specific phenotypes (8) and starts

with early sex determination. Adolescence is an important develop-

mental period, during which both sexes undergo major physical,

social and cognitive transformations (8, 18), and during which the

divergence between the sexes becomes more prominent. Sexual dif-

ferentiation is obvious with respect not only to well-known physical

characteristics and behaviour, but also to the risk of developing

psychopathology, and various psychiatric conditions including eat-

ing disorders, obsessive compulsive disorders, schizophrenia and

depression all show clear sex differences in incidence rate. Notably,

they have in common that their first manifestation often occurs

during adolescence (19).

The neuroendocrine system plays a crucial role in the initiation

and completion of these physical ⁄ biological alterations and psycho-

social changes. The maturation of the hypothalamic-pituitary-adre-

nal axis (HPA) during early adolescence induces adrenarche (i.e. an

increased production and secretion of adrenal steroids). This process

precedes the rise in gonadotrophin-releasing hormone and results

in increased release of the gonadotrophins luteinising hormone and

follicle-stimulating hormone from the pituitary. In turn, these go-

nadotrophins stimulate the production of sex steroids by the

gonads, causing a sharp increase in oestrogen levels in females and

testosterone levels in males (20). The increased level of circulating

steroids induces physical changes such as the rapid increase in

growth induced by growth hormone levels and the development of

secondary sex characteristics upon hypothalamic-pituitary-gonadal

axis activity.

Sexual differentiation of the brain

In addition to the above mentioned obvious bodily changes, puber-

tal maturation also includes sex-specific changes in the neuronal

systems that mediate cognition, emotion and motivation (21). Such

neurobehavioural changes have been associated with increased

risk-taking, sensation-seeking and reckless behaviour in adolescents

(18). Little is known about the neuroanatomical changes that

underlie these behavioural alterations, although the brain undergoes

distinct morphological alterations during adolescence, including a

linear increase in global white matter volume and an inverted U-

shape type of development of region-specific grey matter volumes,

in frontal, parietal and temporal brain areas (19, 22). These neuro-

developmental processes differ between adolescent boys and girls,

with girls reaching peak grey matter volumes 1–2 years earlier than

boys (21), parallel to the earlier onset of puberty in girls. Total brain

size peaks also earlier in girls (at age 11.5 years) than in boys (at

age 14.5 years) (21). On average, boys have a 9% larger brain size
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than girls. However, this sexual dimorphism in total cerebral volume

is not specific to puberty because it can already be observed in

neonatal boys and girls and is consistently found in in vivo imaging

studies in both children and adults (8, 22).

Sexual differences in the size of brain structures in adolescents

have further been found in a voxel-based morphometry study;

several brain regions were found to be larger in boys than in girls:

the amygdala, putamen, thalamus, insula, rostral anterior cingulate

and superior temporal gyrus, whereas the hippocampus, caudate

nucleus, caudal anterior cingulated, middle temporal gyrus and

inferior occipital gyrus are larger in girls (22). Studies in human

adolescents have further indicated that amygdala volume increases

significantly with age in men, whereas hippocampal volume

increases significantly with age in women (21). The role of sex

steroids in the development of these sex differences in volume

during adolescence has received little attention in humans (19,

23). By contrast, numerous studies using animal models have

shown that volumetric sex differences in the brain are established

in response to changes in steroid hormone levels during develop-

ment (24, 25). In rats, for example, neonatal exposure to testoster-

one and ⁄ or oestradiol affects the rate of apoptosis in certain

brain nuclei and results in a greater volume of the bed nucleus of

the stria terminalis (BNST) and a smaller volume of the anteroven-

tral periventricular nucleus in males compared to female(26, 27).

Also in humans, the role of sex steroid exposure during develop-

ment appears to be prominent. For instance, a female-sized BNST,

which is 44% smaller in women than in men, does not appear to

be established by exposure to sex steroids in adulthood but by sex

steroid exposure during development (28). Thus, these studies, in

addition to many others, have provided strong support for the or-

ganisational–activational hypothesis that was originally proposed

in 1959 by Phoenix et al. (29). This hypothesis states that sex ste-

roid exposure during prenatal and early postnatal development

sexually differentiates the neuronal circuits (organisation), that

become activated in adulthood by sex steroids, resulting in sex-

typical behaviours (30). Ever since the formulation of the organisa-

tional–activational hypothesis, the debate is still open regarding

the hormone-driven sexual differentiation of the brain during vari-

ous stages of development.

It is well-known that testosterone plays a crucial role in the sex-

ual differentiation of the brain during critical periods of late prena-

tal and early neonatal development. The removal of testosterone in

male rodents and nonhuman primates in neonatal development (via

castration or the administration of anti-androgens) induces female-

typical behaviour, whereas testosterone administration to female

animals within 24 h after birth generates male-typical behaviour

(31). Testosterone has thus a masculinising and defeminising effect

on the male brain, whereas the absence of testosterone induces

feminisation of the female brain. In addition, ovarian steroids are

assumed to play a role in feminisation (32). Removal of the ovaries

in neonatal or prepubertal rats changes food-guarding behaviours,

in typical ‘male-like’ behaviour, whereas adult ovariectomy has no

effect. Treatment with oestradiol during puberty could prevent

effects of prepubertal ovariectomy on the masculinisation of food

guarding behaviour (30), suggesting that ovarian hormones play an

important role in the feminisation of brain and behaviour during

development.

The original view was that sex steroids have organisational

effects during the perinatal period and activational effects in adult-

hood (29). However, new insights suggest that the organisational

effects of sex steroids are not limited to a single critical sensitive

period in perinatal development. They can also occur during adoles-

cence (8, 30) when sex steroid exposure can modify the brain in a

sex-specific manner (Fig. 1.) as shown in animal studies. In rats, for

example, at least three sexual dimorphic brain regions have been

identified: the anteroventral periventricular area (larger in females),

the sexually dimorphic nucleus of the preoptic area and the medial

amygdala (both larger in males) (33). A study by Ahmed et al. (34)

showed that gonadal steroids maintained and accentuated these

sexual dimorphic brain regions during adolescence. Male and female

rats that were gonadectomised before puberty and subsequently

injected with the cell-birth marker BrdU on three consecutive days

during early puberty, showed lower numbers of BrdU-labelled cells

20 days later in all three sexually dimorphic brain areas, thereby

eliminating the sex differences (34). Furthermore, Syrian hamsters

that were castrated after the perinatal period of sexual differentia-

tion, but before the onset of puberty, showed reduced male-typical

social behaviour in adulthood compared to males castrated after

puberty, although both groups received testosterone replacement in

adulthood (35).

These studies have shown that, in contrast to the general view

that sexual differentiation of the brain would take place before

birth (in humans), or extend into the first postnatal week (rodents),

the brain can also respond to gonadal hormones in a sex-specific

manner later in development, during periods when a certain level

of plasticity is still present (36). The question of whether sex steroid

exposure during adolescence has solely activational effects or both

organisational and activational effects as well, remains the subject

of debate. However, studies in both primates (37) and rodents (36)

indicate that completion of the sexual differentiation of the brain

may require pubertal maturation. This suggests that puberty might

be an additional organisational period in brain development.

Sex steroids are involved in several fundamental neuronal pro-

cesses related to remodelling of the brain during adolescence, such

as axonal sprouting and dendritic elaboration (important for the

formation of new connections) and apoptosis and synaptic pruning

(important for the removal of redundant neuronal tissue) (19, 34,

38). Cell migration can be induced in vitro by administration of

oestradiol, whereas administration of dihydrotestosterone fails to

affect cell motility (38). Animal studies have further revealed sex

differences in the effects of sex steroids on neuronal overproduc-

tion and synaptic pruning. Testosterone supports synaptic pruning

in the male amygdala (39), whereas oestrogen suppresses neuronal

overproduction in the rat prefrontal cortex (39, 40).

Taken together, these findings suggest a crucial role of sex ste-

roids also in the control of neuronal formation, neuronal and syn-

aptic selection, and hence in brain remodelling, during rodent

adolescence. So far, in only a few studies, similar effects of sex ste-

roids on brain structure have been found in boys and girls during

puberty. Peper et al. (22) have shown higher oestradiol levels in
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adolescent girls to be linked to a smaller global grey matter volume,

whereas higher levels of testosterone in boys corresponded with a

larger grey matter volume. Furthermore, increases in cerebral white

matter volume that occur during adolescence are associated with

elevated levels of luteinising hormone (22). However, the precise

relationship between sex steroid levels and sex differences in brain

structure in human adolescents remains poorly understood.

Insight into the biological characteristics that appear during

adolescence and that distinguish the male from the female brain will

provide a better understanding of the sex-specific expression of psy-

chopathologies and its aetiology. To better understand the emergence

of sex differences in depression, we should consider risk factors

involved in the aetiology of this disorder, including stress exposure

and alterations in sex steroid levels, which are discussed below.

Biological basis of depression

Depression is a multifactorial psychiatric disorder and its risk is

determined by a complex interplay of social, environmental and bio-

logical factors, including genetics, stressful experiences and hor-

monal actions on the brain. Although extensive research has

generated a variety of theories on the biological basis of depres-

sion, the precise biological mechanisms underlying depression

remain unknown. Part of the difficulty (as with so many psychiatric

disorders that result from gene-environmental interactions) is the

lack of an obvious neuronal or biochemical substrate and ⁄ or good

animal models for the clinical condition. In 1965, Schildkraut (41)

proposed the monoamine hypothesis, a biochemical theory that

states that depression is caused by a functional deficit in mono-

amine transmitter regulation, which causes a disturbed noradrenalin

and serotonin transmission that would induce depressive symptoms.

Indeed, evidence exists to show that similar transmitter deficits are

also involved in adolescent depression (42). A study by Hughes

et al. (43) revealed that children and adolescents (between the ages

of 7–17 years) suffering from depression had the lowest blood lev-

els of 5-serotonin compared to age-matched controls and age-

matched patients with other behavioural disorders. In addition, the

effectiveness of several drugs affecting brain monoaminergic trans-

mission in alleviating symptoms of depression in adolescents is in

line with this theory (10).

However, this general theory fails to explain why the clinical

response to antidepressant drugs takes several weeks to develop in
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most patients, whereas the plasma levels of these drugs are ele-

vated within hours following administration. Currently, therapeutic

effectiveness of antidepressant drugs are no longer considered to

solely result from rapid biochemical effects on neurotransmission

but are assumed to involve slower structural adaptation in the

brain, and part of the therapeutic effects could, for example, be

mediated by drug-induced changes in dendritogenesis and ⁄ or neu-

rogenesis (44–46). Novel theories on the biological basis of depres-

sion suggest that disturbances in neuronal or structural plasticity

form a crucial component of depression, as well as of the mecha-

nisms underlying antidepressant drug action (44, 45). The structural

plasticity hypothesis states that structural networks involved in

mood regulation are disturbed in depression (44).

Hippocampal plasticity

The hippocampus, together with the amygdala and prefrontal cor-

tex, is an important brain structure in the aetiology of depression.

This brain region is crucially involved in spatial and emotional

learning and memory. It is also important in the regulation of the

HPA axis, which plays a key role in controlling the neuroendocriene

feedback of stress hormones. (47). In almost one-half of all

depressed patients, the HPA axis is hyperactive (48) as is clear from

elevated plasma cortisol levels, increased corticotrophin-releasing

hormone (CRH) and vasopressin expression in the hypothalamus

and increased rates of dexamethason nonsuppressors among

depressed patients (48, 49). Notably, hippocampal anatomy is sexu-

ally dimorphic and represents a sensitive target for sex steroids

because it is richly endowed with oestrogen and other steroid

receptors (9, 22, 44). Despite this sensitivity and the strong HPA

activation in a majority of patients, not many severe pathological

changes are found in the hippocampus in depression (49–51),

except for some alterations in structural plasticity (52, 53). Never-

theless, hippocampal volume reductions (10–15%) are commonly

found in depressive patients (54–58). It has been proposed that this

reduction of hippocampal volume may result from alterations in

neuronal plasticity induced by early life stress (45, 47, 59), possibly

in a sex-dependent manner (60–62). As possible explanations for

the hippocampal volume reduction, stress-induced changes in hip-

pocampal neurogenesis (63), cytogenesis, apoptosis or changes in

glial cell numbers have been suggested to be implicated, whereas

also changes in water metabolism or transport can be involved

(45).

Chen et al. (59) recently reported reductions in hippocampal vol-

ume in healthy adolescent girls (between age 9 and 15 years) who

are at high familial risk for depression compared to low-risk girls.

Because none of the participants experienced an episode of depres-

sion, the study indicates that reductions in hippocampal volume

may precede the onset of depression and may thus more likely rep-

resent a risk factor to develop depression rather than a conse-

quence of the disorder, which also may be sex-dependent.

Depression may develop not until stress is experienced. In rodents,

exposure to early life stress was found to affect hippocampal struc-

ture in adulthood, resulting in lower hippocampal neurone and glia

numbers (64, 65) and reductions in mossy fibre density (66) and

cell proliferation (67, 68). Interestingly, although some of these

changes were transient, a sex difference was prominent in many

studies (60, 69).

In humans, reductions in hippocampal volume particularly occur

in women who were exposed to early childhood trauma (62). This

underlines the potential importance of early life stress exposure, at

least in women, for vulnerability to develop depression. Prenatal

stress was further shown to reduce dentate granular cell number

only in female offspring (70), whereas various other sex-related

behavioural and structural differences have been reported (71), such

as in various stress and HPA axis parameters (72–75). These find-

ings indicate that early life stress (possibly via changes in hippo-

campus structure and function) forms a risk factor for the

development of stress-related disorders in adult individuals (76–78)

and particularly in women.

Putative explanations for the emergence of sex

differences in adolescent depression

Although the aetiology of depression remains to be elucidated, cur-

rent knowledge provides at least some biological explanations for

the emergence of sex differences in depression during adolescence.

Psychosocial theories

Although the main focus of this review is on biological factors, one

should not underestimate the importance of cultural, social and

psychological factors in the aetiology of depression. Psychosocial

explanations for the higher rates of depression in women include

sex differences in stress coping, mother–child relationships and

gender-specific expectations (3, 79). Another psychosocial explana-

tion is based on the idea that women have, for social and cultural

reasons, more problems in accepting the physical changes that

occur during puberty than men (3, 79). It has also been suggested

that adolescent girls have a predisposition to develop depression

because of differences in social cognitive function such as rejection

sensitivity (8).

These psychosocial variables may contribute to the higher

depression rates in women, although validating these theories is

difficult because a proper interpretation of the influence of psycho-

social factors requires evidence that such a factor indeed accounts

for a substantial portion of the observed sex differences in depres-

sion. It would be challenging to investigate how sex differences in

social behaviour relate to sex differences in brain development, and

very little is known about this. A better understanding of the neu-

rodevelopmental processes underlying these behavioural sex differ-

ences may provide a key to understand the pronounced differences

in the incidence of depression, and other psychopathologies during

adolescence.

Stress exposure

Severe stressors such as harmful childhood experiences, including

sexual abuse and sexual harassment, form predisposing factors for

the development of depression and have been associated with
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reductions in hippocampal volumes (59). Sexual abuse has been

associated with the emergence of sex differences in the susceptibil-

ity to depression because it is more frequent in girls and female

adolescents than in boys and the overall rates of sexual abuse

increase significantly for girls between the age of 10 and 14 years.

Another important factor in stress effects is the differential mat-

uration of the HPA axis during adolescence. Various factors play a

role in stress sensitivity but whether stress exposure has adaptive

or maladaptive consequences is likely to depend on gender, the

amount of stress and the developmental stage during which the

stress is experienced (80). For example, neonatal rats show a lower

HPA response to stress during postnatal day 3–14, a period referred

to as the stress-hyporesponsive period (81). Adolescent develop-

ment has also been associated with marked changes in stress sensi-

tivity (80). Limbic and forebrain regions involved in CRH-mediated

HPA axis regulation and stress responsiveness, such as the prefron-

tal cortex, amygdala and hippocampus, continue to mature during

adolescence (7). Basal levels of adrenocorticotrophic hormone

(ACTH) and corticosterone are comparable between early adolescent

(28 days of age) and adult rats (77 days of age) and increase in a

similar way upon an acute stressor (a single 30-min session of

restraint stress); however, stress hormone levels remain elevated

45–60 min longer in juvenile compared to adult rats, in both

females and (82) males (83). Interestingly, treatment of juvenile

male rats with testosterone, aiming to induce adult-like physiologi-

cal testosterone levels, does not change the stress response

towards an adult-like response, which indicates that further matu-

ration of the HPA axis during puberty is essential to establish a

more tightly-regulated stress response in adulthood (83).

The stress response upon repeated stress exposure (30 min of

restraint per day for a period of 7 days) also differs between rats

in early adolescence (28 days of age) and adulthood (77 days of

age), with juvenile male rats showing a higher peak in corticoste-

rone levels immediately after restraint but a faster return to base-

line stress hormone levels (47). Interestingly, female rats do not

show this marked hormonal response upon repeated stress (84).

Recent studies on the behavioural consequence of stress experi-

enced during adolescence indicate that it induces anxiety- and

depressive-like behaviour (80). For example, exposure to mild stres-

sors during adolescence leads to increased depressive-like behaviour

in the forced swim task, whereas exposure to the same stressor in

adulthood has no behavioural effects (80). In addition, Tsoory and

Richter-Levin (85) have shown that rats exposed to chronic variable

stress during juvenility (27–29 days of age) or adolescence (34 days

of age) show increased anxiety-like behaviour in adulthood. Fur-

thermore, they demonstrate that helplessness-like behaviours are

different between juvenile-stressed and adolescent-stressed rats,

which might indicate that the exact age at the time of stress-expo-

sure might be important in shaping the HPA axis (85).

In a recent study, Barha et al. (86) showed that chronic restraint

stress in adolescent rats (30 days of age) alters basal corticosterone

levels and hippocampal plasticity in adulthood in a sex-dependent

manner. Chronic stress exposure during adolescence (consisting of

1 h of restraint stress every other day at unpredictable times for a

period of 3 weeks), increased corticosterone levels 60 min after

stress exposure in both sexes. However, only female (and not male)

rats exposed to chronic adolescent stress have higher corticosterone

levels in adulthood compared to nonstressed controls. Furthermore,

in these adult female rats, cell proliferation and survival in the den-

tate gyrus of the hippocampus was decreased, whereas, in adult

males exposed to adolescent stress, cell survival was slightly higher

compared to controls (86). Taken together, these studies indicate

that adolescence, similar to perinatal development, is a critical sen-

sitive period for the effects of stress on brain modelling. Stress

exposure during such sensitive periods of ongoing HPA axis matu-

ration might programme the brain in a sex-dependent manner and

therefore increase susceptibility to stress-related disorders under

specific conditions later in life. However, stress during development

does not always have maladaptive consequences. For example, early

maternal deprivation is known to change HPA axis activity and

neurogenesis in a sex-dependent manner in early adolescence.

When studied at adult age, maternally deprived male, but not

female, rats show poor spatial memory and reduced hippocampal

long-term potentiation whereas emotional memory in a fear condi-

tioning task and long-term potentiation under stressful conditions

were strongly improved (60). Thus, stress during development

appears to prepare the organism to perform optimally under similar

stressful conditions in adulthood.

Sex steroids interacting with the stress system

Research in animal models has indicated clear sex differences in

HPA responsiveness in adult animals, including higher levels of cor-

ticosterone and CRH in female rats. These sex differences are asso-

ciated with sex steroid feedback regulation on the HPA axis (87).

Ovarian steroids further up-regulate HPA activity in female adults.

During pro-oestrus, the phase of the oestrous cycle in which oes-

tradiol levels are the highest, basal CRH, ACTH and corticosterone

levels are elevated and ACTH and corticosterone increase more in

response to stress than during other phases of the cycle. By con-

trast, ovariectomy reduces ACTH and corticosterone levels in adult

rats, whereas oestrogen-replacement restores stress hormone levels

(87).

In males, but not in females, oestradiol increases corticosteroid-

binding globulin, probably protecting males to the excitatory effects

of oestradiol on the HPA axis by decreasing the amount of free

corticosterone (87). It has been shown that stress in adult female

rats has dramatic effects on spine densities in the CA1 area of the

hippocampus, especially during pro-oestrus when spine density is

high. Although exposure to an acute stressor increases dendritic

spine density (with approximately 30%) and improves learning in

adult male rats, exposure to the same stressor leads to a reduction

in the amount of dendritic spines and impairs learning in female

rats (88). Androgenised female rats, which were s.c. injected with

testosterone within 24 h of birth, respond to the stressor similar as

males: they show a 20% increase in spine density and learn better

(89). The opposite effects of stress in androgenised females versus

cycling females indicate that neonatal exposure to testosterone is

important in programming stress responses in adulthood. Normally,

pro-oestrous females have higher spine densities in the CA1 than
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males (88), and the finding that the increase in spine density during

pro-oestrus is prevented by exposure to a stressor suggests that

females are more sensitive to stress when oestrogen levels are

high.

Although human adolescence represents a stressful period for

both sexes, stress exposure per se might have a much greater

impact on girls than on boys, especially because it has been shown

that androgens inhibit hypothalamic CRH production. Furthermore,

androgen replacement in the medial preoptic area in gonadecto-

mised rats decreased corticosterone release upon a stress response

(87). In summary, exposure to stress has different effects in adult-

hood than during the adolescent period, when maturation of the

HPA axis is still ongoing. Regulation of HPA function by sex ste-

roids might result in a hypersensitivity to stress in females, whereas

males would benefit more from the protective effects of androgens.

Sex steroids interacting with neurotransmitter systems

Next to other sex steroids, oestrogen influences mood and behav-

iour (4, 5, 42, 79, 90). Two different oestrogen receptor subtypes

(ERa and ERb) are expressed in the nervous system. In both sexes,

ERa expression dominates brain regions that are important in the

regulation of reproductive behaviour, whereas ERb expression levels

are higher in brain regions that are involved in the regulation of

mood, such as the hippocampus (4) and the BNST, a sexually

dimorphic limbic brain region which is crucially involved in long-

term, contextual fear responses and highly responsive to sex ste-

roids (91). Studies in rodents have revealed that the ERb receptor

subtype is important in the modulation of depression-like behaviour

in both sexes. For example, in ERb knockout mice, depression-like

behaviour is significantly increased. Furthermore, in gonadectomised

wild-type mice, ERb agonists were efficient in decreasing depres-

sion-like behaviour (4).

Depressive symptoms have been associated with low levels of

oestrogen and drops in oestrogen concentrations, whereas high lev-

els of oestrogen correlate with a positive mood (20). In the litera-

ture, reduced levels of oestrogen in women form a risk factor for

depression (42). However, in adolescent girls, it is more likely that

the sudden appearance of high oestrogen levels coinciding with an

up-regulation of HPA activity (87) relate to negative mood in ado-

lescent girls. Accordingly, negative mood in adolescents was shown

to correlate significantly with a rapid increase in oestradiol levels

(92). It is suggested that once brain and body become mature, they

adapt to the new levels of circulating sex steroids. By then,

decreases in oestrogen levels become relevant in affecting mood,

for example in post-partum depression (20).

Furthermore, the initiation of cyclic fluctuations in sex steroid

levels at adolescence has been reported to involve the emergence

of depression in adolescent girls (42). In girls, the onset of menar-

che introduces monthly fluctuations in levels of gonadal hormones

and gonadotrophins. Especially in periods of marked hormonal fluc-

tuations, women have an increased risk to experience an episode of

depression (4). Fluctuating levels of sex steroids at adolescence thus

induces a major transformation in the hormonal levels in the the

brain, to which the rest of the systems have to adjust (42).

To reveal a role for sex steroids in the psychopathology of

depression, we must understand how sex steroids influence mood

and behaviour. Sex steroids modulate mood by affecting neuro-

transmitter systems (42, 90) and the mechanisms by which oestro-

gen, progesterone and testosterone act on serotonergic-,

noradrenergic-, dopaminergic and GABA-ergic neurones are increas-

ingly understood. By activation of intracellular receptors, sex ste-

roids modulate transcription of genes that encode for various

proteins including synthetic and metabolic enzymes for neurotrans-

mitters, neurotransmitter transporters and receptor proteins for

neurotransmitters, neuropeptides and growth factors (90). Although

sex steroids and neurotransmitter systems are linked in various

ways, their interaction is complex and remains difficult to study,

particularly regarding the behavioural effects of sex steroid-depen-

dent neurotransmitter modulation.

In animal and (to a much lesser extent) in human studies, oes-

trogen effects on serotonin neurotransmission have been investi-

gated and oestrogen is known to interact both with 5-HT1 and 5-

HT2a receptors. Ovariectomy decreased the expression of these

receptors, as well as receptor binding. Strikingly, these effects can

be reversed by oestrogen replacement (5). Administration of oestra-

diol in female rodents increases the expression of tryptophan

hydroxylase-2, an enzyme important in the synthesis of serotonin

(4). Furthermore, in ERb knockout mice, serotonin levels are

decreased in brain areas believed to be important in mood regula-

tion (4). In addition, monoamine oxidase concentrations, which are

important for the enzymatic degradation of neurotransmitters in

the synaptic cleft, can be decreased by oestrogen. Progesterone has

the opposite effect on monoamine oxidase concentration levels (3).

Although the effects of sex steroids on neuronal transmission are

likely to differ between humans and rodents, animal studies con-

firm that sex steroids regulate serotonin receptor expression and

can affect mood (90).
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Fig. 2. Sex differences in adolescent vulnerability to depression. ACTH,
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Conclusions

Various psychological, environmental, social and biological factors

are involved in the aetiology of depression and interact in a com-

plex pattern. Sex steroids play a crucial role in modulating brain

morphology and functioning. During adolescence, the brain has to

adjust to increased sex steroid levels and (especially in girls) to cyc-

lic fluctuations in these levels. The changes in sex steroid levels

induce alterations in neurotransmitter systems, such as the seroto-

nergic system, and alterations in sex steroid levels and neurotrans-

mitters systems can potently, and lastingly, affect mood and

behaviour. As such, changes in sex steroid levels occurring during

adolescence may increase the vulnerability to depression.

Especially the effect of sex steroids on the maturing HPA axis

makes girls more sensitive to the effects of stress, whereas andro-

gens appear to play a protective role in boys. Together with a

genetic predisposition and ⁄ or psychosocial factors, this may trigger

an easier onset of depression in girls. Thus, the greater prevalence

of depression in adolescent girls likely results from a combination

of profound hormonal changes, fluctuations in hormone levels and

psychosocial factors (Fig. 2). Furthermore, we have described the

possibility that sex differences in brain structure and function (e.g.

sex differences in neurotransmitter systems or in brain areas

important for the stress response) contribute to the sex difference

in the emergence of depression. Whether similar underlying mecha-

nisms are involved in the emergence of sex differences in human

psychopathology remains to be studied, and longitudinal human

studies in both sexes are required to elucidate a relation between

biological changes during adolescence and the emergence of psy-

chopathology. Careful repetitive monitoring of the developmental

stage, cognitive and behavioural variables and hormone levels in a

large group of young participants might help to resolve this ques-

tion. Although new imaging techniques allow the study of altera-

tions in brain volume and grey and white matter concentrations,

they might not be sensitive enough to detect sex steroid-depen-

dent alterations in neuronal development because sex steroids are

considered to affect the brain in very subtle ways (e.g. on the cel-

lular level) that are beyond the resolution and detection level of

such approaches.

Animal research can be a valuable tool to clarify the role of sex

steroids in brain development and in the modulation of neuro-

transmission and HPA axis regulation. By contrast, establishing the

influence of these processes on mood is more difficult to study in

an animal model, and it thus remains challenging to translate

these findings to the human situation. One of the practical diffi-

culties in doing so is the fact that many animal models of depres-

sion have been developed in male rodents and therefore they may

not be appropriate to model depression in females. By contrast to

the pronounced sex difference in human depression in female

rodents, depression-like behaviour is less evident than in male

rodents. For example, in the learned helplessness paradigm, a com-

monly used method to investigate depression-like behaviour in

rodents, female rats display less helplessness behaviour than male

rats and gonadoectomy in either males or females does not reverse

this sex-specific behaviour (93, 94). By contrast, chronic mild stress

paradigms have been described to induce more depressive-like

behaviour in female compared to male rodents (95). Thus, the

strengths and limitations of each animal model of depression need

to be considered to allow the effective use of such a model for

studying sex differences in depression.

A better understanding of the interplay of adolescent brain

development and the modulating effects of sex steroids is needed

to explain how sex differences in the incidence of depression

emerge during adolescence. This will be of great relevance for indi-

vidual patients and society and may also help the development of

new treatment strategies for these devastating disorders.
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USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION 

Required Software 

Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs. 
Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html 

Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it 
does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar 
looks like this: 

 

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a 
preference setting in order to edit. 

In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and 
change the setting “PDF/A mode:” to “Never”.  

 

Note Tool — For making notes at specific points in the text  

Marks a point on the paper where a note or question needs to be addressed. 

 

Replacement text tool — For deleting one word/section of text and replacing it  

Strikes red line through text and opens up a replacement text box.   

 

Cross out text tool — For deleting text when there is nothing to replace selection  

Strikes through text in a red line. 

 

 

How to use it: 

1. Right click into area of either inserted 
text or relevance to note 

2. Select Add Note and a yellow speech 
bubble symbol and text box will appear 

3. Type comment into the text box 

4. Click the X in the top right hand corner  
of the note box to close. 

 

How to use it: 

1. Select cursor from toolbar 

2. Highlight word or sentence 

3. Right click 

4. Select Replace Text (Comment) option 

5. Type replacement text in blue box 

6. Click outside of the blue box to close 

 

How to use it: 

1. Select cursor from toolbar 

2. Highlight word or sentence 

3. Right click 

4. Select Cross Out Text  

 

http://www.adobe.com/products/acrobat/readstep2.html�
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Approved tool — For approving a proof and that no corrections at all are required. 

 

 

Highlight tool — For highlighting selection that should be changed to bold or italic. 

Highlights text in yellow and opens up a text box. 

 

Attach File Tool — For inserting large amounts of text or replacement figures as a files.  

Inserts symbol and speech bubble where a file has been inserted. 

 

 

Pencil tool — For circling parts of figures or making freeform marks 

Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use 
the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.     

 

 

 

 

 

 

 

 

 

 

How to use it: 

1. Click on the Stamp Tool in the toolbar 

2. Select the Approved rubber stamp from 
the ‘standard business’ selection 

3. Click on the text where you want to rubber 
stamp to appear (usually first page) 

 

How to use it: 

1. Select Highlighter Tool from the 
commenting toolbar 

2. Highlight the desired text 

3. Add a note detailing the required change 

 

How to use it: 

1. Select Tools > Drawing Markups > Pencil Tool 

2. Draw with the cursor 

3. Multiple pieces of pencil annotation can be grouped together 

4. Once finished, move the cursor over the shape until an arrowhead appears 
and right click 

5. Select Open Pop-Up Note and type in a details of required change 

6. Click the X in the top right hand corner of the note box to close. 

How to use it: 

1. Click on paperclip icon in the commenting toolbar 

2. Click where you want to insert the attachment 

3. Select the saved file from your PC/network 

4. Select appearance of icon (paperclip, graph, attachment or 
tag) and close 
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