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Abstract

Aging is characterized by decreasing physiological integration, reduced function, loss of resilience, and increased risk of death. Paradoxically, 
although women live longer, they suffer greater morbidity particularly late in life. These sex differences in human lifespan and healthspan are 
consistently observed in all countries and during every era for which reliable data exist. While these differences are ubiquitous in humans, 
evidence of sex differences in longevity and health for other species is more equivocal. Among fruit flies, nematodes, and mice, sex differences 
in lifespan vary depending on strain and treatment. In this review, we focus on sex differences in age-related alterations in DNA damage and 
mutation rates, telomere attrition, epigenetics, and nuclear architecture. We find that robust sex differences exist, eg, the higher incidence of 
DNA damage in men compared to women, but sex differences are not often conserved between species. For most mechanisms reviewed here, 
there are insufficient data to make a clear determination regarding the impact of sex, largely because sex differences have not been analyzed. 
Overall, our findings reveal an urgent need for well-designed studies that explicitly examine sex differences in molecular drivers of aging.
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Worldwide women live longer than men—currently and in all eras 
where there are reasonable demographic data. Paradoxically, women 
have a higher prevalence of chronic, age-related degenerative dis-
eases than men. Sex differences in aging exist in many organisms. 
However, they are not universal, suggesting that how sex influences 
aging biology differs among taxa. Interspecific differences in the rela-
tionship between sex and aging and intraspecific sex differences in 
aging can provide crucial insights into the underlying mechanisms 
of aging.

Theories concerning the proximate causes of aging have prolif-
erated in the last 25–30 years. Recently, two landmark papers that 
attempt to organize the state of aging research have been published. 
Lopez-Otin et al. (1) defined nine “hallmarks of aging”, including 
genomic instability, telomere attrition, epigenetic alterations, loss of 
proteostasis, deregulated nutrient sensing, mitochondrial dysfunc-
tion, cellular senescence, stem cell exhaustion, and altered intercel-
lular communication. Similarly, Kennedy and colleagues (2) defined 
seven “pillars of aging”: macromolecular damage, epigenetics, pro-
teostasis, metabolism, stem cells and regeneration, adaptation to 
stress, and inflammation. While the “hallmarks” and “pillars” differ 
somewhat in their exact nature, they focus on similar themes, and 

both highlight the complex network of interactions between the dif-
ferent processes. To date, no extensive review exists that investigates 
sex differences in the genomic hallmarks/pillars of aging.

Several of the hallmarks/pillars of aging can be generally cat-
egorized as part of genome instability. Genomic instability in the 
form of DNA damage and mutations (nuclear and mitochondrial), 
telomere erosion, epimutations, alterations in chromosome struc-
ture and number, and changes in nuclear architecture all contribute 
to age-related declines in genomic function. It is generally accepted 
that as organisms age, genomic stability, and the efficacy of repair 
mechanisms decrease (3,4). In this review, we specifically address 
how aspects of genomic instability might contribute to sex differ-
ences in aging.

DNA Damage and Mutations—Nuclear DNA
Sex differences in age-associated increases in mutations, mutation 
frequency, and chromosomal mosaicism are well-documented in 
humans. Less is known about whether sex differences exist in other 
species. Generally speaking, mosaicism and aberrant clonal expan-
sion are more prevalent in elderly humans (5). Mosaic loss of the 
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Y chromosome in peripheral blood cells increases with age in men 
(6) and is correlated with increased risk of cancer mortality and 
Alzheimer’s disease (6,7). X chromosome mosaicism in women also 
increases with age (8), as does autosomal mosaicism in both sexes 
(9,10). Recent studies have shown that the prevalence of age-related 
mosaic abnormalities is greater in men than women (9,10); how-
ever, mechanisms underlying the sex differences observed in chromo-
somal mosaicism in humans are unknown.

As with chromosomal abnormalities, human somatic mutation 
rate increases with age (3). Podolskiy and colleagues report that in 
cancers common to both sexes, total somatic mutation load and 
age-adjusted mutation load are greater in men than in women, con-
sistent with sex differences in age-adjusted cancer incidence (11). 
Interestingly, this study found that somatic mutation accumulation 
began a decade earlier in men than in women (11), suggesting that 
the age at which defects in damage repair and/or altered mutation 
rates occur differs between men and women. Thus, available data 
suggest that both somatic mutation rate and mutation load are 
higher in men than in women.

Several mechanisms have been investigated as potential causes 
of sex-specific mutation accumulation patterns reported in aging 
humans. One possibility is that the efficacy of DNA repair mecha-
nisms differs between males and females. Gaum and colleagues 
found that age-associated changes in DNA-damage response and 
double-strand break repair in human peripheral blood mononuclear 
cells (PMBCs) showed no sex differences among the 40–77-year-olds 
studied (12). Similarly, a meta-analysis of DNA damage studies pub-
lished since 2004 detected a positive correlation between age and 
increasing DNA damage but no sex differences (13). Deficiencies in 
DNA repair underlie some of the progeroid syndromes, leading to 
symptoms that are similar to aging. The literature contains relatively 
little information, but there appears to be no consistent sex-bias in 
patients suffering from xerodema pigmentosum (14), Cockayne syn-
drome (14), or Hutchinson–Gilford progeria (15). Together, these 
findings suggest that the efficiency of DNA damage repair is not dif-
ferent between men and women.

Animal studies also show patterns of age-related increases in 
DNA damage (16–19). Consistent with this observation, DNA 
repair genes are expressed at higher levels in long-lived compared 
to shorter lived animals (20); however, the influence of sex on age-
related changes in DNA damage and repair is less clear. For example, 
spontaneous DNA damage in PMBCs showed a significant effect of 
age but no influence of sex in Swiss Albino mice (18). In contrast, 
the somatic mutation rate at the Aprt locus in mouse kidney epi-
thelial cells was significantly higher in female than male B6D2F1 
mice (C57Bl/6 × DBA/2) (17). On the other hand, overexpression of 
BubR1, a mitotic spindle assembly checkpoint gene, decreased age-
related aneuploidy and increased lifespan in both sexes, but the effect 
was more profound in males than females (21). Similarly, mouse 
models of progeroid syndromes provide mixed evidence of sex dif-
ferences. For instance, in a mouse model of Werner’s syndrome, 
females exhibit a more severe cardiac and metabolic phenotype than 
do males (22). Thus, in mice, some studies find sex differences and 
some do not, and results may depend on the tissue, the mouse strain 
and the source of genome instability measured.

Similar to rodent studies, sex differences in DNA damage and 
mutation accumulation in Drosophila melanogaster are complex 
and offer opportunities to gain mechanistic insights into the biol-
ogy of aging. An investigation of the origin of intestinal stem cell 
(ISC) neoplasias in aging in Drosophila illustrates the utility of sex 
differences (16). Siudeja and colleagues placed a transgene reporter 

on the X chromosome to assess the importance of recombination-
based mechanisms involved in loss of heterozygosity (LOH) and ISC 
neoplasias. Because recombination-based mechanisms rely on a pair 
of homologous chromosomes, recombination-based LOH on the X 
could only occur in females. LOH was greater in old than in young 
animals of both sexes. Crucially, females showed a much higher rate 
of LOH than males at both ages (young 12.7 vs 0% and old 68.5 
vs 2%), suggesting that mitotic homologous recombination-based 
mechanisms play an important role in LOH and genetic mosaicism 
in aging female flies (16). Spontaneous male-specific ISC neoplasias 
associated with inactivation of the X-linked tumor suppressor gene 
Notch in wild-type flies increased with age. The frequency of neo-
plasia differed among strains (5–25%) and was correlated with the 
strain’s ISC proliferation rate (16). Thus, this study demonstrates the 
importance of genetic background and sex differences for under-
standing mechanisms associated with increased genomic instability 
during aging.

Other Drosophila studies hint at similar levels of complexity for 
other measures of age-associated genome instability. In Drosophila, 
loss of the RecQ helicase gene, which causes Bloom syndrome in 
humans, increased somatic mutation rate throughout the lifespan, 
with higher mutation rates observed in females than in males. 
Interestingly, despite females’ higher mutation rate, mean female 
lifespan does not differ significantly from male lifespan in these 
mutants (23). Thermal and chemical stressors are known to increase 
mutation rates. Garcia and colleagues showed that somatic mutation 
rate in Drosophila is positively correlated with temperature in both 
sexes, but females had a higher mutation rate than males in all con-
ditions examined (24). In contrast, another study found that, while 
mutation rate increased with age in female and male Drosophila, 
it differed by treatment: control females had higher mutation rates 
than males, but mutation rates were greater in males than females 
after paraquat exposure (25). These results illustrate the intricate 
interactions of sex, genotype, and environment that impact lifespan.

Manipulation of DNA repair mechanisms results in similarly 
complex outcomes. Loss of TDP1 (tyrosyl-DNA phosphodiesterase 
1), an enzyme involved in DNA repair, shortened lifespan in female 
but not male flies (26). More recently a study assessing the effects of 
increased expression of a variety of DNA repair genes in Drosophila 
found that lifespan was increased, decreased, or unchanged, depend-
ing on the gene in question, the sex of the animal, and where/when 
overexpression was initiated (27). Together, these studies illustrate 
that, in Drosophila like in humans and mice, sex influences the 
extent and type of genome instability that occurs during aging and 
has complex effects on healthspan and lifespan.

DNA Damage and Mutations—Mitochondrial DNA
In addition to nuclear DNA, mitochondrial DNA (mtDNA) also is 
affected by aging. Alterations in mitochondrial function and mito-
chondrial-nuclear signaling occur during aging and have been linked 
to sex biases in aging and age-related diseases (28). Due to their 
role in energy production, mitochondria are at high risk of oxida-
tive damage. Not surprisingly, accumulation of oxidative lesions is 
an important source of age-related mtDNA damage (29). In aged 
Wistar rats’ brains, DNA oxidation, as measured by the ratio of 
8-oxo-dG to total DNA, is higher in male tissue, while mitochon-
drial function is better preserved and antioxidant levels are higher in 
female tissue (30). Overall, oxidative damage increases and antioxi-
dant activity decreases in aging mouse brains, but not always. For 
example, while glutathione peroxidase levels declined with age in 
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CBA mice, they were higher in 18-month-old females compared to 
age-matched males and catalase activity actually increased with age 
in females, but declined in males (31).

Although there are multiple transgenic mouse models that have 
been used to investigate the relationship between aging and mtDNA 
damage, these studies contain scant data on the presence or absence 
of sex differences in these mice. In fact, the majority of papers on 
mitochondrial function and aging we reviewed failed to indicate the 
sex of the mice used in the study. For instance, of the papers cited 
in a 2011 review (32), we found that 88% of the studies included 
failed to indicate the sex of animals used in the experiments. Explicit 
comparisons between the sexes in studies of other model organisms 
such as D. melanogaster and C. elegans are similarly lacking. Thus, 
we know far less than we might about sex differences in mtDNA 
damage during aging.

Telomere Attrition
Telomeres are specialized structures that protect the ends of linear 
chromosomes. They shorten during aging due to the unidirectional 
activity of DNA polymerase, which leaves a section of DNA unrepli-
cated on the lagging strand. Telomeres also are subject to shortening 
by genotoxic stress, such as oxidative damage (33). Among many 
eukaryotes, the enzyme telomerase maintains telomere length; but 
telomerase activity varies over the lifespan and between cell types, 
tissues, and species (34). In most human cells, telomerase is not 
expressed, leading to telomere shortening and altered cellular signal-
ing that contributes to “replicative aging” and cellular senescence. 
However, replicative aging and age-related telomere shortening are 
not universal features of aging, and mechanisms for maintaining 
telomere integrity are diverse, even among closely related species 
(35).

Upregulation of telomerase activity is characteristic of most 
human cancer cells; however, other mechanisms (eg, alternative 
telomere lengthening) also are known be activated in tumors (33). 
Nonetheless, short telomeres and greater telomere attrition rates 
are associated with increased morbidity and mortality in humans 
(33,36) and disappearance from study populations in some, but not 
all, wild birds and mammals [see (36) and references therein]. In 
organisms, such as laboratory mice, that experience negligible telo-
mere shortening with age, individuals engineered to be deficient in 
telomere repair experience reduced lifespan, genetic instability, and 
decreased capacity to respond to stressors (37,38). Thus, it appears 
that telomere attrition is associated with aging in some species, but 
these studies have been largely correlational.

The relationship between age, sex, and telomere length in 
humans is complex. A recent meta-analysis suggested that women 
have longer telomeres than men irrespective of cell type or age. 
However, there were differences associated with the techniques used 
to measure telomeres (real-time PCR, Flow-FISH, and Southern 
blotting), and only Southern blotting showed significant differences 
in mean telomere length between the sexes (39). A  second meta-
analysis of leukocyte telomere length (LTL) in humans found that 
women either had longer telomeres than men or no difference was 
reported, regardless of the telomere assay used (36). Most of these 
studies used mean or median telomere length, and in none of the 
46 studies examined were men reported to have longer telomeres 
than women (36). Similarly, two recent studies measured relative 
telomere length using quantitative PCR and found that women 
had greater mean telomere length than men did at comparable ages 
(40,41). Interestingly, Lapham et al. (40) found that sex differences 

in median telomere length from saliva samples were significant only 
among individuals over the age of 50, when the linear decline in 
telomere length decelerates in women but not men. Contrasting 
results come from Berglund and colleagues, who examined longitu-
dinal changes in LTL mean telomere length over 20 years in older 
(≥50 years of age) twins. They found that women had longer LTLs 
at baseline, but the slopes describing LTL attrition rate were similar 
and nearly linear for men and women, with men having a marginally 
lower intercept and a late-life acceleration of attrition (40). Whether 
these differences reflect the distinct tissues, differences in measure-
ment techniques, differences in populations studied, or differences 
between longitudinal and cross-sectional samples is unclear. While 
there are exceptions (42), most studies find that adult women have 
longer telomeres than men, but the mechanisms associated with sex 
differences remain unclear.

Telomere attrition rates in humans are not constant, and when 
sex differences in telomere length first appear is unclear. Telomere 
attrition occurs rapidly from birth, slowing around 4 years of age, 
and the subsequent trajectory of telomere attrition continues to 
change in an age- and sex-specific fashion (43). In some studies, neo-
nates show no sex differences, regardless of tissue used [eg, (44)]. But 
in others, female newborns are reported to have longer telomeres 
than males [eg, (45)]. Interestingly, a twin study comparing adults 
reported that women had longer mean LTL than men when same-
sex twin pairs (mono- and dizygotic) were compared. In contrast, 
men and women from opposite-sex twin pairs had similar telomere 
lengths, a difference that the authors attributed to antenatal influ-
ences of opposite-sex twins on one another (46). Results from stud-
ies of LTL in prepubescent children are mixed, reporting mean LTL 
either greater in females than in males (47) or not different (48). In 
two studies of adolescents (ages 13–18 years old), mean LTL was 
greater in females than in males (49,50), suggesting that sex differ-
ences in telomere length may arise during sexual maturation. A lon-
gitudinal study of Danish twins found that women had longer LTLs 
at baseline and displayed decelerated LTL attrition following meno-
pause (51). Crucially, while LTL in women declined with age, the 
relationship between LTL attrition and age was no longer significant 
if menopausal status was included as a covariate. These examples 
illustrate that while many studies find greater telomere length in 
females, this trend is not universal.

In sum, as adults men have shorter telomeres than women in 
most populations sampled (39). Whether the sex difference in 
telomere length appears shortly after conception or later in life is 
unclear. Similarly, whether the sex difference in telomere lengths 
observed in adult humans results from slower attrition rates, differ-
ential telomere length at earlier ages, sex differences in the effects of 
telomere length on survival, sex differences in telomere maintenance, 
or other factors in not clear. Additional, carefully controlled longitu-
dinal studies on the dynamics of telomere length and attrition rates 
in multiple tissues using standardized methods are needed to better 
evaluate the mechanisms creating sex differences in human telomere 
attrition during aging.

Comparative studies of age-related telomere attrition in other 
species also reveal a variety of patterns. Barrett and Richardson 
(36) recently summarized the comparative data available on sex 
differences in telomere length. They found a strong correlation 
between male-biased mortality and either shorter telomeres or 
greater telomere attrition in males across bird and mammal taxa. 
However, telomere length did not differ between males and females 
in species where females are shorter-lived than males (36), suggest-
ing that telomere shortening is not associated with species-specific 
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longevity in a simple linear fashion. These studies generally suffer 
from relatively small sample sizes and are largely cross-sectional. 
Further, the use of diverse assays, different tissues (eg, leukocytes 
in mammals vs erythrocytes in birds), and lack of standardized 
benchmarks for accuracy makes comparisons between studies 
difficult.

Several long-term, longitudinal studies of wild and free-rang-
ing animals exist, which suggest that the relationship between sex, 
age, and telomere dynamics over the life course in these species 
is likely to be as complex as in humans. A study on free-ranging 
Soay sheep found adult LTL was positively correlated with early 
life survival in females but not males (52). In addition, sex dif-
ferences in LTL were significant only in older animals (≥3 years), 
with adult males having shorter telomeres than females (53). 
A  longitudinal study of wild European badgers (Meles meles) 
examined LTL and documented within individual age-related 
telomere attrition but no sex differences in mean LTL or LTL 
attrition rate with age (54).

In birds, where erythrocyte telomere length (ETL) is meas-
ured, the majority of species sampled have shown no sex differ-
ence (36). Nonetheless, bird telomere dynamics are complex and, 
as with humans, may be affected by environment and stress. For 
example, a longitudinal study of black-tailed gulls (Larus crassito-
stris) over 2–5 years found no correlation between ETL and age or 
sex. Rather, ETL attrition was correlated with reduced food avail-
ability and environmental stressors (55). In a captive zebra finch 
(Taeniopygia guttata) population, male and female mean telomere 
length decreased with increasing age of the animals, but did not dif-
fer between sexes (56). As these examples illustrate, the relationship 
between telomere length, lifespan, and sex is likely to be complex 
in other vertebrates.

In some organisms, there is no clear relationship between telo-
mere length and lifespan. Age-related telomere attrition could 
not be detected in Daphnia pulex (57) or sea urchin species 
(Strongylocentrotus franciscanus and Lytechinus variegatus) (58). 
Studies in C. elegans examining natural variation in telomere length 
and experimentally manipulated telomere length detect no correl-
ation with lifespan (59,60), and in Drosophila, which uses a telom-
erase-independent mechanism for telomere maintenance, there is a 
similar lack of correlation between longevity and telomere length 
(61). Similarly, data on sex differences in age-related telomere short-
ening are mixed. For example, in the ant species Lasius niger, the 
rate of telomere shortening is more rapid in short-lived males com-
pared to longer-lived females. But, mean telomere length does not 
differ between the two types of females, queens and workers, despite 
the fact that queens live much longer than workers (up to 28 years 
vs 2–3 months) (62). These findings suggest that the question of how 
telomere shortening affects aging across species and how sex affects 
telomere attrition rates are complex.

These examples illustrate that, while sex differences exist, the 
rates of age-associated telomere attrition, the impact of sex on 
telomere length, and the mechanisms associated with age-related 
changes in telomere length vary between species. The available data 
do not explain the origins of or mechanisms involved in sex dif-
ferences in telomere length during aging or why such differences 
are seen in some species and not in others. Given this diversity, it 
may be possible to use the many differences in life histories, breed-
ing systems, and sex determination systems to address this question. 
Comparative studies across multiple species that carefully control 
for these parameters will be of great use in delineating the sources of 
sex differences in telomere biology during aging.

Epigenetics
In addition to increased DNA damage, mutations, and telomere 
attrition, large-scale epigenetic changes have been associated with 
increased age in a number of species. The epigenetic changes seen 
in old compared to young animals are quite diverse and include 
changes in histone modifications, DNA methylation, and levels of 
chromatin remodeling and modifying enzymes [for recent reviews 
see (63) or (64)]. Heterochromatin, the silent form of chromatin 
required for proper centromere and telomere function and repres-
sion of transposable elements, is often lost during aging. Increased 
transcriptional noise associated with epigenetic changes during 
aging has been proposed to cause at least some of the degenera-
tive phenotypes observed with increased age. While a variety of epi-
genetic changes occur with age, the relative importance of each of 
these changes and the impact of sex and genetic background on these 
changes is poorly understood.

DNA Methylation
In mammalian systems, much of the work has focused on DNA 
methylation dynamics during the aging process. A variety of studies 
have indicated that overall, DNA methylation levels decrease with 
age (65), which is thought to lead to spurious loss of gene silenc-
ing and increased transcriptional noise. However, the notion that 
aging is associated with global decline in DNA methylation levels is 
not universally accepted. Much recent work in humans has focused 
on the idea of the epigenetic clock. Based on analysis of over 8000 
DNA methylation datasets, Horvath proposed that a subset of DNA 
methylation sites exist that behave in a predictable way with age and 
can thus be used to deduce chronological and biological age (66). 
The “clock CpGs” include sites that gain as well as those that lose 
DNA methylation with age, and Horvath proposes that the DNA 
methylation dynamics observed with aging reflect the action of a 
postulated “epigenetic maintenance system” (66). Horvath and col-
leagues investigated the role of sex in this epigenetic clock model of 
aging and found increased rates of epigenetic aging in men relative 
to women in blood, saliva, and brain but not cerebellum (67). In 
contrast, a longitudinal (10 years) study of elderly twins (age at start 
of study 73–82  years) found no sex differences, but did find that 
age-related changes in methylation at CpG sites were consistent in 
the twins studied (68). Thus, data from epigenetic clock analyses and 
other studies suggest that age-related epigenetic changes in humans 
may be associated with either gain or loss of DNA methylation. In 
the case of human clock CpGs, this gain/loss may occur at a greater 
rate in males than in females in some tissues, suggesting that this dif-
ference might contribute to the different aging pattern seen in men 
and women but further studies are needed.

There remains considerable unexplained sex- and tissue-specific 
variation in the dynamics of DNA methylation during aging. An ele-
gant 2016 mouse study illustrates this complexity. Hadad et al. (69) 
measured both DNA methylation levels and the levels of the enzymes 
regulating DNA methylation in aging mice in the hippocampus. This 
carefully controlled study involved animals housed under identical 
conditions at two institutions and utilized several different meth-
ods to assay DNA methylation levels. The authors found no age-
dependent changes in gene expression of DNA methyltransferases or 
ten-eleven-translocation (TET) enzymes, nor did they detect consist-
ent differences between the sexes. Neither were global, age-related 
changes in DNA methylation levels detected in the hippocampus for 
either 5mC or 5hmC. Males did show a small but significant increase 
in levels of 5mC compared to females when measured by ELISA. 
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Interestingly, a follow-up oxBS-seq experiment revealed that age and 
sex only affected DNA methylation levels in certain sequence con-
texts, whereas global effects were not detectable by these assays in 
the mouse hippocampus (69). Data from these human and mouse 
studies suggest that the simple and seductive notion that genome-
wide loss of DNA methylation is a hallmark of aging needs to 
be revised to include the existence of age-associated increase and 
decrease of methylation levels and to reflect sex- and base-specific 
alterations in DNA methylation and hydroxymethylation.

Histone Modifications
DNA methylation is mostly absent from the repertoire of epigen-
etic mechanisms used by the two common invertebrate models of 
aging D.  melanogaster and C.  elegans. Thus, research on epigen-
etic changes during aging in invertebrates has largely focused on a 
variety of histone marks and chromatin proteins. Unfortunately, the 
impact of sex and genetic background are rarely considered in these 
studies. Nonetheless, some data do exist suggesting that epigen-
etic changes may have sex-specific effects on lifespan. The cellular 
metabolite acetyl-coenzyme A  (AcCoA) serves as the acetyl-donor 
for histone acetylation and, by modulating levels of AcCoA, has the 
potential to alter chromatin states and gene expression levels. In a 
recent study using RNAi knockdown of the AcCoA synthase enzyme 
in Drosophila brains, both males and females showed a signifi-
cant increase in mean and maximum lifespan but the nature of the 
response to this treatment differed markedly between the sexes (70). 
Age-specific mortality was reduced among treated females at all ages 
compared to controls. In contrast, early life mortality was increased 
among treated males, followed by a deceleration of mortality rate 
at midlife compared to controls (70). While the mechanism(s) are 
unknown, these results suggest that the effect of altering histone 
acetylation via down-regulation of AcCoA is sex-specific and affects 
lifespan trajectories differently in males and females.

Sex differences in lifespan extension may also be influenced by 
the type intervention used to alter histone acetylation levels, the 
genetic background, and type of study animals. For example, SIR2, 
a histone deactylase, has been linked to longevity in a variety of 
organisms (71,72); however, the results of studies are inconsistent. 
In one study of Drosophila, dSir2 overexpression increased average 
lifespan across all experimental lines by 18% for males and 29% 
for females (71). However, a recent study (73) by Burnett and col-
leagues found that dSir2 overexpression did not increase lifespan in 
Drosophila or the nematode C. elegans when confounds due to gen-
etic background and transgene effect were controlled. In yet another 
study, targeted, inducible overexpression of Sir2 in the adult fat body 
of adult Drosophila extended median lifespan in males and females 
equally, by about 13% (74). Clearly much work remains to be done 
to elucidate the role of SIR2 in aging, and investigating sex differ-
ences in response to interventions that affect SIR2 will be a critical 
part of this effort.

Other manipulations of histone acetylation levels also have 
unpredictable impacts on aging depending on sex. The transcrip-
tional repressor SIN3a is a structural component of histone deacety-
lase complexes (75). Knockdown of Sin3A in Drosophila using RNAi 
reduced lifespan and stress resistance in both male and female flies 
to a comparable extent (76). In contrast, deacetylation of histones 
by feeding spermidine, a polyamine compound that has been shown 
to repress age-related histone acetylation changes, had distinct sex-
specific effects when administered to mice and flies. In Drosophila, 
spermidine feeding induced a more robust lifespan extension in 
females than in males (77). In mice spermidine administered to older 

(18  months) retired male and female C57BL/6 breeders extended 
median lifespan in both sexes equally, by about 10% (78). In another 
study, flies fed 4-phenylbutyrate (PBA) had increased lifespan and 
showed a global increase in histone acetylation, but the effect 
was greater in females than males (79). Clearly, sex, study animal, 
and other aspects of genetic background contribute to organism’s 
responses to the epigenetic changes that can occur with age.

Histone methylation also has been linked to aging. A  2015 
genetic screen in yeast identified the histone 3 residue lysine 36 
(H3K36), a known methylation site, as a key histone residue con-
trolling replicative lifespan but the relationship is complex (80). 
Removing the demethylase (rph1Δ) and increasing H3K36 methyla-
tion levels increased replicative lifespan by 30%, while removing the 
methyltransferase (set2Δ) and lowering H3K36 methylation levels 
decreased the yeast’s replicative lifespan by 15%. The loss of H3K36 
methylation in old cells was found to be associated with cryptic tran-
scription, which was also seen in aging C. elegans (80). In C. elegans, 
similar to yeast, loss of H3K36me decreased lifespan, while add-
itional H3K36me extended lifespan (81). Unfortunately, no data are 
available that directly investigate the role of this mechanism for the 
suppression of cryptic transcription in both sexes, but a study of 
gene expression changes observed in older humans suggests that it 
might be. Variance in gene expression profiles tends to increase with 
age, and generally, it is thought that transcriptional noise increases. 
A 2008 study examined post-mortem samples of brain tissue from 
cognitively normal individuals (aged 20–99) and found that gene 
expression profiles change drastically between the sixth and seventh 
decades of life in males, whereas female gene expression changes 
most during the eighth and ninth decades (82). This finding suggests 
that the timing of age-related transcriptional changes differ between 
men and women and that therefore transcription-regulating mecha-
nisms, such as those controlling H3K36me, might show sex-depend-
ent patterns as well.

Together, the examples above provide strong evidence that epi-
genetics—both DNA methylation and histone modifications—influ-
ence aging and that these impacts can differ between the sexes. The 
data from human DNA methylation studies suggest that alterations 
to the epigenome occur at a slower pace in females than in males. 
The data from model organisms are limited; additional studies will 
be needed to get a clear picture of how age-associated epigenetic 
changes might contribute to the sex-differences in aging observed.

Nuclear Architecture
Reports from several species indicate that the nuclear architecture 
undergoes large-scale changes with aging (83). These changes include 
shifts in the ratio of heterochromatin to euchromatin and alterations 
to the nuclear lamina. Most studies of nuclear architecture ignore 
sex in their study design, and thus the available data on sex dif-
ferences in age-associated changes to nuclear architecture are very 
limited. One exception comes from a set of studies on dilated cardio-
myopathy. Mutations in the lamin A/C gene (LMNA) are associated 
with approximately 8% of familial and sporadic dilated cardiomy-
opathy cases (DCM) (84). In human patients, DCM is more frequent 
and severe in males than in females (M:F ratio 2.5) (84). Similarly, 
a mouse DCM model carrying a missense mutation (H222P) has 
male biased morbidity and mortality and cardiomyocyte-specific 
nuclear accumulation of androgen receptor (AR) (85). Gonadectomy 
improved survival and cardiac function in LmnaH222P/H222P  
male mice, whereas treatment with testosterone enhanced nuclear 
accumulation of AR, exacerbated the DCM phenotype and reduced 
survival in both sexes. Finally, an AR antagonist suppressed nuclear 
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accumulation of AR in testosterone-treated mice. Taken together, 
these results suggest that testosterone interacts with the LMNA 
mutation to produce cardiomyocyte-specific nuclear accumulation 
of AR and the associated DCM phenotype (84). These studies illus-
trate that in the rodent models of aging, the impact of sex on genome 
instability is variable and might depend on the tissue examined and 
the genetic background.

Conclusion

Currently available data thus indicate that sex influences measures 
of age-associated genomic instability. The levels of genomic instabil-
ity increase in both males and females with age, in humans and in 
model organisms. However, how sex affects genome instability is 
less clear, as tissue studied, genetic background, and the method 
selected can influence results immensely. In humans, males experi-
ence higher levels of age-associated mosaicism and somatic muta-
tions, possibly due to an earlier age at onset. In animal models, the 
results are more mixed; sometimes females experience a higher level 
of genomic instability with age, sometimes males. This complexity 
exists in both rodent and insect models. Likely, differences in tis-
sues studied, the age of the study animals, and differences in assay 
methodologies contribute to the variability. In Drosophila, it appears 
that genetic background plays an important role in determining the 
interaction of sex and genomic instability; whether this is true in 
rodents remains to be determined, since the vast majority of studies 
are performed in a single inbred strain, C57BL/6. While humans rep-
resent an outbred species, the model systems that are currently in use 
tend to be highly inbred and thus might amplify genotype-dependent 
effects that are undetectable in the outbred human population.

Unfortunately, many studies reviewed here have used one sex 
only, failed to analyze the effects of sex when using both males and 
females, or failed to report the sex of the animals used. Studies that 
included both sexes but did not analyze sex differences represent an 
untapped resource: data from those studies could be used to inter-
rogate sex differences retrospectively if study design is appropriate. 
There is a clear need for additional studies, both in humans, model 

systems, and non-model organisms that have a population structure 
more similar to humans.

A Robust Design for Studying Sex Differences
Given the urgent need for additional, well-designed studies to eluci-
date sex differences in aging, we want to highlight one such effort. 
The National Institute on Aging (NIA) Intervention Testing Program 
(ITP) was designed to provide rigorous, reproducible studies to 
identify pharmacological and nutritional interventions that extend 
lifespan and healthspan in mice. The ITP uses female and male gen-
etically heterogeneous UM-Het3 mice in carefully controlled studies 
that compare median and maximum lifespan at three separate sites 
and explicitly compares survival and aspects of health between the 
sexes (86).

With this study design, six compounds out of the 20+ com-
pounds tested to date have extended lifespan in UM-Het3 mice, and 
all show sex-specific effects: rapamycin had a larger effect in females 
than males, acarbose had a greater effect in males, and three robustly 
extended lifespan in male mice only (87). Nordihydroguaiaretic 
acid (NDGA) and aspirin have antioxidant and anti-inflammatory 
properties and are known to activate the histone deacetylase SIR2. 
Both increased median lifespan in male but not female mice (88). 
Similarly, 17  α-estradiol (17  α-ER) is a non-feminizing estrogen 
with antioxidant and anti-inflammatory properties that extends life 
in males only (89). Acarbose, a treatment for type 2 diabetes and 
purported dietary restriction mimetic, showed a more robust impact 
on male compared to female lifespan (median lifespan extension of 
22 vs 5% respectively) (89). Rapamycin, a potent mTOR inhibitor, 
delays aging and extends lifespan in both male and female mice, in 
multiple genetic backgrounds, given early or late in life, administered 
enterically, or by injection (90–94). Inhibition of mTOR, whether via 
rapamycin, rapalogues, or genetic downregulation of mTOR activ-
ity, acts in a dose-, sex-, and tissue-specific fashion and illustrates 
the interconnectedness of all of the major pathways that influence 
aging (1,95,96).

The ITP has shown that with appropriate study design, sex dif-
ferences in response to aging interventions can be detected, and 

Table 1. Sex Differences in Age-associated Genome Instability

Type of Genome Instability Species Sex Differences Detected? Sex Most Affected

DNA damage/mutations

 Nuclear Human Yes Male
Mouse Sometimes Mixed
Fly Yes Mixed

 Mitochondrial Rat Yes Male
Mouse ? ?
Fly ? ?

Telomere attrition Human Yes Male
Mammals Sometimes Male
Birds Sometimes Male
Fly No —
Worm — —

Epigenetic
 DNA methylation Human Sometimes Male

Mouse Maybe ?
 Histone modifications Fly Maybe ?

Worm Maybe ?
 Nuclear architecture Human Maybe ?

Mouse Maybe ?
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based on these results, they are likely to be pervasive. Table 1 sum-
marizes what this review has reported regarding sex differences 
in age-associated genome instability. Mechanisms involved in the 
maintenance of genomic integrity vary among species and, as the 
data reviewed here suggest, may differ between sexes of the same 
species. Clearly, there are many more questions than answers and 
for most mechanisms and most species, very little is known. Sex dif-
ferences in aging humans are pervasive and that alone makes them 
worth studying. The biology of sex differences in aging is of interest 
in its own right and is important for the development of effect-
ive interventions. Lastly, sex differences and sex-specific responses 
to senescence-retarding therapies offer a tool for interrogating the 
basic biological mechanisms involved in aging. For most mecha-
nisms reviewed here, there are insufficient data to make a clear 
determination regarding the impact of sex, largely because sex dif-
ferences have not been analyzed or both sexes studied. Overall, our 
findings reveal an urgent need and terrific opportunities for well-
designed studies that explicitly examine sex differences in molecular 
drivers of aging.
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