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ABSTRACT  

Background  

The prevalence of Alzheimer’s Disease (AD) is greater in women compared to men, but the reasons 

for this remain unknown. This sex difference has been widely neglected in experimental studies using 

transgenic mouse models of AD.  

Objective 

Here, we studied behaviour and molecular pathology of 5-month-old 5XFAD mice, which express 

mutated human amyloid precursor protein and presenilin-1 on a C57BL/6J background, vs. their wild-

type littermate controls, to compared both sex- and genotype-dependent differences.  

Methods 

A novel behavioural paradigm was utilised (OF-NO-SI), comprising activity measures (Open Field, OF) 

arena, followed by Novel Object exploration (NO) and Social Interaction (SI) of a sex-matched 

conspecific. Each segment consisted of two repeated trials to assess between-trial habituation. 

Subsequently, brain pathology (amyloid load, stress response and inflammation markers, synaptic 

integrity, trophic support) was assessed using qPCR and Western blotting.  

Results 

Female 5XFAD mice had higher levels of human APP and beta-amyloid (Aβ) and heightened 

inflammation vs males. These markers correlated with hyperactivity observed in both sexes, yet only 

female 5XFAD mice presented with deficits in object and social exploration. Male animals had higher 

expression of stress markers and neurotrophic factors irrespective of genotype, this correlated with 

cognitive performance. 
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Conclusion 

The impact of sex on AD-relevant phenotypes is in line with human data and emphasises the necessity 

of appropriate study design and reporting. Differential molecular profiles observed in male vs. female 

mice offer insights into possible protective mechanisms, and hence treatment strategies. 

 

Keywords: beta-amyloid, cognition, activity, social, male, female, ER stress, inflammation, trophic 

factors 
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INTRODUCTION 

As the most common cause of dementia, Alzheimer’s Disease (AD) is a progressive debilitating 

neurodegenerative disease currently affecting > 500,000 people in the UK. Dementia is characterised 

by progressive cognitive deficits, memory loss and non-cognitive behavioural changes in, for example, 

activity, sleep, and mood [1].  

The incidence for AD appears to be greater in women compared to men even when corrected for 

demographic differences [2,3]; AD-associated hippocampal atrophy and cognitive decline are also 

more prominent in female patients [4]. This was traditionally attributed to the longer lifespan of 

women, but recent research has indicated that biological differences (for example in chromosomes, 

hormones or epigenetics) may be just as important  [5–7].  Even though human studies have provided 

some insight into these sex differences in AD patients, sex differences in experimental models of AD 

continue to produce varying and sometimes conflicting results, especially when trying to associate 

behavioural and molecular pathologies. For example, female 3xTg-AD mice (with transgenes for APP 

(amyloid precursor protein, Swedish mutation), tau (P301L mutation), and PSEN-1 (presenilin-1, 

M146V mutation) displayed greater spatial cognitive deficits, neuroinflammation and A burden 

relative to males of the same age [8,9]. On the other hand, sexual dimorphism noted in P301S Tau 

transgenic animals indicated that male mice displayed significant changes in a composite behavioural 

phenotype as well as in tau phosphorylation. Females presented with impairments only in specific 

behavioural tests, such as Morris water maze and open field  and had  lower expression of some 

inflammatory markers [10]. Conversely, no sex differences in gene expression were observed in other 

models such as our knock-in PLB1triple mice (with transgenes for APP, tau and PSEN1) or the PLB4 

(knock-in of human BACE1 (β-secretase)) mice [11,12]. 

Neuropathologically, AD is characterised by the cleavage and subsequent processing of two proteins, 

i.e. APP and the microtubule-associated protein tau [13]. APP is preferentially cleaved by BACE1, 

leading to the loss of secreted APPα in favour of beta-amyloid (Aβ) [14], which aggregates into 
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oligomers and fibrils causing the formation of plaques. It is generally assumed that metabolites of APP 

(and tau) are toxic and cause neuroinflammation, abnormal stress of the endoplasmic reticulum (ER), 

and dysregulation of neurotrophic factors, jointly leading to neurodegeneration [15].  

Chronic neuroinflammation is characterised by an increase in activated astrocytes and resident 

microglia, but also by the activation of the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) 

inflammasome, and these appear to trace disease progression [16,17].  Particularly relevant here are 

immunoreactive Iba-1 (Ionized calcium binding adaptor molecule 1) and GFAP (Glial Fibrillary Acidic 

Protein) as markers for activated microglia and astrocytes respectively, which occur in close proximity 

to A deposits [18–20]. NLRP3, on the other hand, has shown promise as an experimental therapeutic 

target [21,22]. There is also increasing evidence from human studies indicating that sex differences in 

systemic inflammation are linked to greater AD pathology [23]. Similarly, protein aggregation in AD 

has been associated with the chronic unfolded protein response (UPR), typical for prolonged stress 

resulting in apoptosis and synaptic loss and observed to be activated in patients with AD [15,24,25].  

This pathway is connected to amyloid pathology since tunicamycin-induced ER stress can cause 

overproduction of A peptides in cell lines [26] while conversely, A is known to increase multiple ER 

stress markers [27].  Repair and protective mechanisms in neurones are in place to counteract these 

damaging events, such as brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B 

(TrkB), and cAMP response element-binding protein (CREB), and these are all compromised by A 

accumulation  [28,29]. Higher BDNF serum levels were associated with slower cognitive decline in a 

cohort of human patients [30] and more recently, female carriers of specific polymorphisms in 

neurotrophic genes were found to have 93% higher risk of developing AD compared to male non-

carriers suggesting that sex-dependent effects associated with neurotrophic factor can modify the risk 

of AD [31]. These studies are however, limited and require further investigation.  

Overall, how cellular stress and inflammation relate to toxic proteins such as A, and more specifically, 

whether interactions are affected by sex, still remains elusive.  Here, we employed one of the most 
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commonly used murine models of amyloid pathology, the 5X Familial AD mouse (5XFAD), which 

expresses the three human APP (hAPP) gene mutations alongside two human presenilin-1 (hPSEN1) 

mutations [32]. From the three lines originally generated, Tg7699 (now termed 5XFAD) expressed the 

highest levels of transgenic APP and displayed early (at 2 months) and aggressive amyloid pathology, 

as well as elevated inflammatory markers (GFAP) and reduced levels of synaptic markers 

(synaptophysin and PSD-95) by 9 months of age [32]. Surprisingly, an investigation into ER stress 

markers in a mixed-sex cohort in this model failed to identify genotype differences [33].  However, 

conditional delivery of BDNF from astrocytes rescued memory impairments and prevented synaptic 

loss in 5XFAD mice [34].   

The impact of sex on phenotypes in 5XFAD mice is still controversial.  While Sadleir and co-

workers [35] recorded heightened levels of Aβ42 in female transgenic animals relative to their age-

matched male counterparts, a transcriptomic and proteomic analysis of the hippocampi of 4 month 

old 5XFAD animals did not reveal any sex biases for the development of amyloid pathology or the 

inflammation marker GFAP [36]. However, female 5XFAD mice showed heightened gliosis in both 

cortex and hippocampus aged 13 months relative to males [37] and sustained microglial activation 

from 4 to 9 months of age [38]. 

The data on the behavioural profile of 5XFAD mice is more conflicting. Male transgenic mice 

presented with working and short-term memory deficits aged 4-5 months, but there was no overall 

change in locomotor activity [20, but see 28 for contrasting results]. However, deficits in activity were 

reported in specific motor tasks from 9 months, but this was not sex specific [39]. Ambulation in the 

open field or Y-maze was also reduced at this age in females only [40], but this phenotype was lost in 

older cohorts [37,41]. Data from 12-month old male 5XFAD mice suggested intact memory during 

object recognition tasks in an open field and Y-maze while age-matched females displayed clear 

impairments [37]. The authors suggested that the study design and complexity of the task are 

determinants for the discrimination of sex-specific phenotypes. Studies into social deficits, while 
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limited, have indicated abnormal social recognition at 9 months of age (mixed sex; [42] as well as 

decreased exploration of conspecifics in an age-dependent manner in females only [43]). Differences 

in test parameters as well as appropriate study design choices of controls [44] have likely contributed 

to the reported discrepancies. Finally, many studies do not report the sex of animals used [45]. And it 

is frequently unclear whether 5XFAD animals used were on a C57BL6/J background, and whether the 

recessive retinal degradation allele Pde6brd1 or the muscular dystrophy gene Dysfim
 found in the 

original SJL background were eliminated [39].  

Here, we used our novel OF-NO-SI paradigm, which combines elements of the open field, novel object 

exploration and social interaction [46].  Its reliance on multiple neurotransmitters makes it an ideal 

candidate task to explore genotype- and sex-related phenotypes, and to confirm whether such 

phenotypes are consistent with previously reported data from 5XFAD mice. In vivo testing was 

followed by a detailed within-subject post-mortem tissue analysis to measure amyloid pathology, 

inflammatory, synaptic, ER stress and neurotrophic markers, and explore correlations between 

behavioural and molecular endpoints.  

Our data suggest distinct behavioural and molecular phenotypes in female vs. male 5XFAD littermates, 

with only the former displaying subtle behavioural anomalies that correlated with heightened levels 

of beta-amyloid and inflammation, while the latter showed an upregulation of potentially 

neuroprotective pathways.      
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MATERIAL AND METHODS 

This work was conducted according to the ARRIVE guidelines 2.0 for reporting animal research [47] 

and the recommendations of the EQIPD (European Quality in Preclinical Data) WP3 (Work Package 3) 

study group for the internal validity in the design, conduct and analysis of preclinical biomedical 

experiments involving laboratory animals [48].   

Animals and experimental conditions 

5XFAD (B6.Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax) mice on BL/6J background 

were purchased from The Jackson Laboratory (Bar Harbor, Maine, USA: stock number 34848-JAX) and 

bred and maintained on-site at the University of Aberdeen by backcrossing to C57BL6/J mice. 

Genotypes were confirmed from ear-biopsies to identify transgenic (5XFAD) animals expressing both 

APP and PSEN-1 and wildtype (WT) genes, carried out by Transnetyx Inc. (Cordova, USA). A total of 40 

five-month-old mice (male WT, n=10, female WT, n=10; male 5XFAD, n=10; female 5XFAD, n=10) were 

utilised. Animals were group-housed together in conventional type 3 polycarbonate stock cages 

(Tecniplast, Italy) with a maximum of 7-8 animals per cage, separated by sex, and maintained on a 12-

hour day-night cycle (lights on 7am, simulated dusk/dawn 30 mins) in temperature- (20-22°C) and 

humidity- (60-65%) controlled holding facilities with ad libitum access to both food (Special Diet 

Services, Witham, UK) and water.  Enrichment was provided by paper strips, cardboard tubes, and 

corncob as bedding (DBM Scotland Ltd).  Behavioural testing took place on weekdays during the light 

period (09:00-16:00) in a separate testing room.  Animals were tail-handled multiple times a week so 

as to reduce anxiety prior to testing. Three age- and sex-matched C57BL/6J mice (either male or 

female) served as stranger mice for social interaction trials and were kept in a separate holding room, 

under the same housing conditions. The experimenter was blinded to the genotype of the subject and 

testing order was randomised using a random number generator (www.random.org).  No power 

calculation was available; estimates were based on previous research [42]. All procedures were 
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approved by local ethical review, a UK Home Office project licence and complied with the EU directive 

63/2010E and the UK Animal (Scientific Procedures) Act 1986.  

Open Field-Novel Object-Social Interaction (OF-NO-SI) Paradigm 

As described in Yeap et al., the OF-NO-SI paradigm [46] offers multiple within-subject readouts of 

behaviour, including activity and habituation, as well as interaction and recognition of an inanimate 

object vs. a conspecific. Experiments were conducted in a white circular Perspex arena of 50cm 

diameter, illuminated by white LED lights (average light intensity recorded in the arena =160.6 lux) 

facing directly downwards onto the arena. Animals were tracked using an overhead camera (Sony) 

connected to the ANY-maze video and activity tracking software (v 6.0, Ugo Basile, Comero, Italy) 

complemented by manual observations by the experimenter for urination and defecation during 

different trials but no differences were observed (data not reported) [46]. Between trials, the 

apparatus was cleaned with non-alcohol, fragrance-free wipes between trials to remove odour cues. 

Prior to experimentation, mice were individually housed in transport cages (conventional shoe box 

cages (Tecniplast, Italy)) with fresh bedding, water but no food) and habituated to the testing room 

for 45 minutes. Average temperature and humidity of the testing arena were recorded as 20.5°C and 

60.5%, respectively. Arena definitions included a wall zone (5cm from the outer wall of the arena) and 

an interaction zone (centric 5cm wide ring around the cylinder (Fig. 1C)). The protocol followed exactly 

the one reported by Yeap et al. [42] and consisted of three test stages, each with 2 trials of 10 mins, 

separated by an inter-trial interval (ITI) of 15 minutes, during which the test animals were returned to 

their transport cages (Fig. 1A and 1B). The first stage consisted of two open field trials (OF); in the first 

(OF1) the animal was placed randomly along the wall of the empty arena and allowed to explore freely 

for 10 minutes. This was repeated for the second open field trial (OF2) after the 15-minute ITI. OF 

trials served as a habituation component to the remainder of the task components.  
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In the second stage, a novel object (cylindrical wire-mesh cage: 8 cm in diameter, 20 cm tall) was 

introduced into the centre of the arena. Again, two trials (NO1, NO2) were administered, all other 

parameters were identical to the OF trials. In the third social interaction (SI) stage, a stranger mouse 

was introduced into the cylinder; all other parameters were identical to OF and NO stages. It is 

acknowledged that as the stranger mouse was in the cylinder, this interaction was more akin to 

approach behaviours, however the term SI has been retained to maintain similarity with the paradigm 

name described by Yeap and colleagues. Animals were run in pairs so that one animal was tested while 

the other had its ITI (Fig. 1B).   

Behavioural data analyses 

The  distribution of the animal in the arena was visualised by generating heat maps [46] using MatLab 

R2017a (MathWorks, Massachusetts, United States), which illustrated average location preference 

during each trial for one representative animal per genotype and sex (closest to group average values).  

Primary behaviours (activity measured as distance moved, time spent in predefined zones and number 

of visits to selected zones) were recorded and analysed using ANY-maze behavioural tracking software 

(Ugo Basile, IT) tracking the centre of gravity at 10Hz sampling rate. One female (5XFAD, no. 371) had 

to be excluded from analysis because of a tracking error.  

Data are presented as parameters of interest averaged over the 10-minute duration of each trial.  

Total path length (in m) in 10 minutes of each trial during OF was recorded as a measure of 

locomotor activity while time (s) in wall zone served as a proxy for anxiety related behaviours.  To 

establish effective habituation to the open field, data for OF trials are presented as distance moved 

per minute (see Supplementary Information).  Time (in s) spent in the interaction zone (<5 cm from 

the cylindrical mesh cage; Fig. 1C) while ‘directed exploration’ (in s) was recorded when the animal’s 

head was directed at the object/conspecific while in the interaction zone during NO and SI phases. 

These were utilised as proxies for the exploration of the object/stranger. The number of visits to the 

interaction zone was also recorded as a proxy of purposeful approaches to the object / stranger.  
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Statistical analysis and graphs were prepared using Prism (V 8.0; GraphPad; USA). Data were averaged 

per genotype and sex and are represented as mean ±SD for each trial. Normality of data was confirmed 

using the Shapiro-Wilk normality test, while outliers were determined using the method of Grubbs (3- 

standard deviation from mean). This led to the exclusion of one female WT (no. 384) which showed 

abnormal hyperactivity during all phases of the paradigm.  For all analyses, alpha was set to 5% with 

values less than p<0.09 being termed as marginally significant [49]. 

Main effects and interactions were assessed for each stage using a three-way analysis of variance 

(ANOVA) with sex (male or female), genotype (5XFAD vs WT) and trial (repeated measures, RM) as 

factors, followed by selected post-hoc Bonferroni’s comparisons (see Supplementary information for 

full details of post-hoc tests). Within-trial habituation (indicated by declining values over the 10 

minutes during trial 1) and between-trial habituation (indicated by higher activity during trial 1 vs trial 

2) was probed using a 2-way ANOVA for each group with trial and time as repeated measures for 

specifically the OF stage (see Supplementary information). Familiarity indices were also calculated for 

NO and SI stages [(Time in/Number of visits to/Directed exploration in interaction zone in trial 1) - 

(Time in/number of visits to/Directed exploration in interaction zone in trial 2)]/(Total time in/total 

visits to  zone) to evaluate memory formed during trial 1; positive values constitute recall. For the 

familiarity indices during NO and SI, a one-sample t-test against a hypothetical chance value of 0 was 

employed within each genotype of each sex to observe if there was a significant change in either time 

spent in zone/number of visits/directed exploration between trial 1 and trial 2. Group effects were 

determined using a two-way ANOVA. To observe differences between object vs social stimulus, 

familiarity indices for NO vs SI for time in zone, number of visits and directed exploration were also 

compared using a three-way ANOVA with sex, genotype and trial (NO vs SI, repeated measures) as 

factors. All data relating to familiarity indices are presented in the Supplementary Material.  
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Brain extraction and lysate preparation 

Mice utilised in the OF-NO-SI experiment (~5.5-month-old at time of brain collection) were terminally 

anaesthetised with Euthatal (Merial Animal Health Ltd., Lyon, France) intraperitoneally and 

transcardially perfused with 0.9% heparinised saline. Extracted hemi-brains were snap-frozen in liquid 

nitrogen and stored in -80°C until use. Samples were processed as described previously [50] to obtain 

soluble and insoluble fractions. In brief, brain tissue (~80mg) was homogenised in ~1:10 (w/v) Igepal 

(Sigma, Dorset, UK) based non-denaturing, non-ionic lysis buffer (in mM: 20 HEPES, 150 NaCl, 1% 

Igepal, 0.1 EDTA, pH= 7.6) with inhibitors for protease and phosphatase (PhosStop) (Roche Life 

Science, Burgess Hill, UK). Samples were centrifuged (13,000g, 4 °C for 20 mins); the supernatant 

constituted the soluble fraction. The pellet was homogenised twice in Igepal lysis buffer (1ml) via 

repeated aspiration with a 1ml pipette tip, briefly vortexed and then centrifuged (14,000 rpm, 20 

mins), and then resuspended in 1:1 (w/v) 70% formic acid at 4 °C for overnight agitation. The formic 

acid fraction was then spun (18000g, 4 °C for 20 mins) and the resultant supernatant formed the 

insoluble fraction. Before use, the insoluble fraction was mixed with 4 volumes of neutralising buffer 

(2M Tris + 2M NaH2PO4).  

Immuno-blotting 

Western and dot blots were performed as previously described [50]. Protein concentration for the 

soluble fraction was adjusted (3µg/ml) following bicinchoninic acid assay measurement (BCA, Sigma-

Aldrich, Poole, UK) and dilution in lysis buffer. A set volume of neutralised samples for the insoluble 

fraction was utilised as protein concentration evaluation using BCA is not possible due to the strong 

reducing action of formic acid [51].  

For Western blotting, all samples (soluble and insoluble) were mixed with lithium dodecyl sulphate 

(LDS, Thermo Fisher, Paisley, UK) and 15 mM dithiothreitol (DTT, Sigma), and heated for 10 mins at 

70 °C (apart from samples meant for detection of amyloid) and run on 4–12% Bis-Tris precast gels 
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(Nupage, Thermo Fisher Scientific) in MOPS buffer (Nupage, Thermo Fisher Scientific) for 45 mins (or 

MES buffer (Nupage Thermo Fisher Scientific) for 35 min in case of Iba-1 only) at 200V constant 

voltage. For detection of full-length APP (fAPP) and monomeric Aβ, samples were mixed only with LDS 

and loaded onto the precast gels in MES buffer without an additional heating step. For these amyloid 

markers and Iba-1, transferring was done onto 0.2 µm nitrocellulose membranes via the iBlot system 

(Nupage, Thermo Fisher Scientific), followed by microwaving for 3 mins in PBS (phosphate buffered 

saline (Sigma Aldrich, UK) for detection of low molecular weight proteins; for all other proteins, 

standard transfer conditions were applied onto 0.45 µm nitrocellulose membranes.  

For the selective detection of amyloid-beta (A) via dot blots [50], samples were dotted directly onto 

0.2 µm nitrocellulose membranes (5 µl of 2 µg/µl per dot for the soluble fraction and 5 µl of 

neutralised insoluble fraction samples). No DTT, LDS or heating steps were involved. Following this, 

washing of all blots was carried out in 0.05% Tween-20 (Sigma) containing Tris- buffered saline (TBST; 

in mM: 50 Trizma base, 150 NaCl, pH= 7.6). All membranes were then blocked for 1 hour at room 

temperature in TBST containing 5% milk powder. Primary antibodies in 5% bovine serum albumin 

(BSA, Sigma Aldrich, UK) containing TBST were then added to the membranes for overnight incubation 

at 4 °C (refer to Table 1 for a list of antibodies utilised). Secondary antibodies (as appropriate) were 

added for 1 hour at room temperature (goat anti- rabbit/ goat anti- mouse, IgG, HRP conjugated; 

Merck Millipore (1:5000)) before visualisation using enhanced chemiluminescence (1.25 mM luminol, 

30 µM coumaric acid, 0.015% H2O2). A Vilber- Fusion- SL camera (Vilber, Eberhardzell, Germany) and 

iBright™ FL1000 Imaging System camera (Invitrogen™, ThermoFisher Scientific) were utilised to 

capture immunoreactivity at 16bit for analysis. Membranes were then processed for total protein 

using both Ponceau and Coomassie protein stains as described previously [50] in order to control for 

loading. 
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qPCR 

Total RNA was extracted from snap-frozen hemi-brain tissue using TRI Reagent (Ambion, Warrington, 

UK) as per the protocol of the manufacturer. Bioline cDNA synthesis kit (Bioline, London, UK) was 

utilised to synthesize cDNA from 1 μg of total RNA. Amplification of genes of interest was achieved by 

quantitative polymerase chain reaction (PCR) in a Roche LightCycler® 480 System (Roche Diagnostics, 

Burgess Hill, UK) using GoTaq qPCR Master Mix (Promega, Southampton, UK).  Relative gene 

expression was calculated using the comparative Ct method (2−δδCt)[52]. A comprehensive list of all 

primer sequences utilised can be found in Table 2. Normalisation of the data utilised the geometric 

mean of three of the most stable reference genes (Y-Whaz, NoNo, 18S, GAPDH or BetaActin). As 

human APP (hAPP) and PSEN-1 (hPSEN-1) were not detectable in WT animals, a ratio of the Ct values 

of most stable reference gene on the plate and the gene of interest was carried out to obtain gene 

expression data. 

Analysis of molecular data 

Quantification for Western and dot blots was performed as area under the curve (AUC) using ImageJ 

(Ver. 1.51, NIH, USA) software, and adjusted to total protein as per Coomassie or Ponceau. Fold change 

was then calculated relative to female WT controls (the WT control group was selected randomly). 

Statistical analysis was carried out using Prism (V8.0, GraphPad). Normality was assessed using a 

Shapiro-Wilk normality test and outliers were determined using the Grubb’s test. Unless otherwise 

stated, data sets were analysed using a regular two-way ANOVA to measure the effect of genotype 

and sex with selected post-hoc paired comparisons using Bonferroni correction. As it was the intention 

of the authors to specifically examine potential sex and genotypic differences from the outset of the 

study, post-hoc analysis without prior significant interaction using pre-planned contrasts were carried 

out. For gene expression data of hAPP and hPSEN1 in the transgenic animals, an unpaired parametric 

t-test was carried to observe differences between sexes. Data are presented as bar charts with scatter 



Sil et al., 2021: Sex difference in 5X mice 

(mean +SD) and alpha was set to 5%.  Only significant terms (p<0.05) and marginally significant values 

(p<0.09) are given for clarity.   

Correlations 

Correlational analysis was carried out between behavioural and molecular markers of interest. For the 

behavioural markers, total activity in OF, NO and SI, as well as time in wall zone during OF, time in 

zone, number of visits, directed exploration during NO and SI and NO were utilised. All markers 

underwent Z-transformation within each group (combined♀+♂ 5XFAD, ♀5XFAD, ♂5XFAD, ♀+♂ WT, 

♀WT, ♂WT) followed by Pearson’s correlation analyses after confirmation of Gaussian distribution of 

datasets. Correlations are displayed in the form of a heat plot matrix with red indicating negative 

correlations and blue indicating positive ones with values of individual correlational coefficients and 

their significant/marginally significant p-values (dark green to light green for p-values between 0.001-

0.06) represented in the Supplementary material. For all comparisons in the Supplementary, 

significance was set at p<0.05. 

RESULTS 

OF-NO-SI Behavioural Experiments 

Normal habituation amidst heightened activity in 5XFAD mice 

Exploration of the open field was recorded as activity, defined as total distance moved, during the 

entire length of OF1 or OF2. A 3-way ANOVA with sex, genotype and trial (RM) as factors revealed a 

very strong effect of genotype (F (1,34) = 18.93); p<0.0001), due to higher locomotor activity in 5XFAD 

animals compared to WT (Fig. 2A). A strong effect of trial (F (1,34) = 182.0; p<0.0001) confirmed lower 

activity during OF2 compared to OF1, i.e. habituation between trials (see also Table S2 for individual 

post-hoc trial-wise comparisons for all groups). And a significant three-way interaction finally 

indicated that genotypic differences during OF were dependent upon both, sex and trial (F (1,34) 

=15.06; p<0.0001) with male 5XFAD mice having the highest level of activity during OF1 and female 
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5XFAD animals having greater activity than their own WT during OF2 (see Table S2 for post-hoc 

Bonferroni’s tests).  Many other post-hoc comparisons also yielded significances (see Suppl. Table S2 

for more details).   

To observe if both within- and between-trial habituation occurred during the OF trials, 2-way ANOVAs 

for each sex and genotype group were conducted (binned per minute over OF1 or OF2, with trial and 

time as repeated measures). Results suggested both intact within- and between-trial habituation for 

all groups, yet the effect was (based on significances obtained) smallest for 5XFAD female mice (see 

Supplementary Figure S1 including statistics). Hence, 5XFAD mice differed in terms of activity, and to 

a lesser extent in the degree of habituation, in a sex-dependent manner. 

Heightened thigmotaxic behaviour in the open field in female 5XFAD mice 

Thigmotaxis, assessed as wall hugging (time in wall zone), was also affected by sex (F (1, 34) = 5.406; 

p<0.05, 3-way ANOVA, Fig. 2B). A strong effect of trial (OF2 vs. OF1), i.e. a decline between trial 1 and 

trial 2, was also noted (F (1, 34) = 46.92; p<0.0001). In contrast to activity, there was no overall 

genotype for thigmotaxis between 5XFAD and WT animals, yet inspection of data and an interaction 

obtained (sex x genotype: F (1, 34) = 6.190; p<0.05) indicated genotypic differences were present due 

to female 5XFAD animals displaying increased thigmotaxis, compared to their WT counterparts 

(p=0.025) and male 5XFAD (p=0.002, see Table S2 for details of post-hoc tests). The representative 

heatmaps which indicated location preference for each trial for each genotype and sex also displayed 

higher occupancy of female 5XFAD mice in the wall zone (see heatmaps in Fig. 2C) especially during 

OF1.  

Exploration of a novel object (NO) in 5XFAD mice 

We next introduced an object (wire mesh cylinder) into the centre of the open field arena and 

returned test subjects for two further trials. Since global path length is not the best indicator for 

habituation during NO trials [46], object exploration and familiarity was indexed by the time the 
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animal spent in the interaction zone (Fig. 1C), directed exploration of the novel object and the number 

of visits to this zone. 

No gross overall differences between 5XFAD animals and controls were observed for contact time in 

the interaction zone (Fig. 3A), but a main effect of sex emerged (F (1, 34) = 8.759; p<0.05), such that 

female animals spent less time in the zone compared to males. The lowest time in zone was recorded 

for female 5XFAD (Fig. 3A), in line with a marginally significant p-value for sex by genotype interaction 

(F (1, 34) = 3.980; p=0.0541), with post-hoc tests confirming differences between male and female 

5XFAD animals (female vs male 5XFAD, p=0.0002, see Table S2). A strong overall effect of trial was 

also detected (F (1, 34) = 15.14; p<0.0001), although the horizontal nature of the graph for the female 

5XFAD animals indicated a potential lack of between-trial habituation for the parameter time in zone 

in these animals. Gross sex differences were identified with regards to directed exploration (Fig 3C), 

as female animals spent less time with the object overall (F (1, 34) = 4.156, p=0.049), accompanied by 

a strong trial-wise decline (F (1,34) = 232.2, p<0.0001).  As for the number of visits (Fig. 3B), 5XFAD 

mice entered the interaction zone more frequently than WT animals, as indicated by a strong effect 

of genotype (F (1,34) = 11.15; p<0.001). A robust trial-wise decrease in the number of visits was also 

observed in all groups (F (1,34) =232.2; p<0.0001).  

5XFAD animals continued to display higher overall activity during the NO stage (genotype: F (1, 34) = 

8.004; p=0.0078, see Supplementary Fig. S2 and Table S2), which was also dependent on the trial (trial: 

F (1, 34) = 317.9; p<0.0001). Heatmaps for representative animals of each group display both reduced 

time in the zone around the cylinder for female 5XFAD compared to other groups during NO1 and 

visibly reduced activity levels during NO2 vs NO1 for most groups (Fig. 3D).  

The familiarity indices for the NO parameters (Supplementary Fig. S3 A, B, C) meanwhile did not report 

any gross group differences, although differences between male and female animals were detected 

for time in zone and directed exploration (one-sample t-test against chance =0), such that only male 

animals of both genotypes had intact indices (see Fig S3). 
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Exploration during social interaction trials (SI) in 5XFAD mice 

In the third and final test stage, we placed a sex-matched conspecific as a stranger into the cylinder 

and again recorded time in zone, directed exploration of the conspecific and entries into the 

interaction zone.  During SI, a genotype difference for time in zone was obtained (F (1, 34) = 7.386; 

p<0.05); this was especially apparent for female 5XFAD animals during SI1 with the lowest contact 

time (Fig. 4A). A strong effect of trial was also observed (F (1, 34) = 18.69; p<0.0001) indicating 

between-trial habituation for all cohorts. Like NO, directed exploration of the conspecific during SI 

indicated a sex difference between male and female animals (F (1, 34) = 9.303, p = 0.004) with female 

animals spending less time directly interacting with the stranger (Fig. 4C). A trial-wise decline in this 

parameter was also noted (F (1, 34) = 22.33; p<0.0001). 

A difference between 5XFAD and WT animals (F (1, 34) = 6.299; p<0.05) was also obtained for the 

number of visits to the interaction zone (Fig. 4B) during SI trials; female 5XFAD mice visited the social 

partner more frequently than their WT counterparts and male 5XFAD animals during SI (genotype x 

sex interaction: p<0.001; female 5XFAD vs. female WT: p= 0.0001; female vs male 5XFAD: p=0.01, 

Table S2). Together with contact time and directed exploration data, this suggests that female 5XFAD 

mice entered the zone more frequently, but visits were much shorter.  

During SI, the overall activity was not different between 5XFAD and WT animals (Supplementary Fig. 

S2).  However, marginally significant p-values for an effect of sex and related interactions emerged (F 

(1, 34) = 3.393; p=0.07, sex x genotype interaction: (F (1,34) =3.383; p=0.08; sex x trial interaction: F 

(1, 34) = 6.665; p=0.0143), indicating that male and female animals behaved differently in specific 

trials (SI1: Female vs. Male, p=0.02, Table S2). This difference between the sexes is further reflected 

in the heatmaps, which confirm that the female group (especially the female 5XFAD during NO1) spent 

less time in the vicinity of the stranger mouse (Fig. 4D). 
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Once again, as during NO, no gross group differences were observed for the familiarity indices for time 

in zone/directed exploration/number of visits during SI using a two-way ANOVA (Supplementary Fig. 

S3 D, E, F). When using a one-sample t-test for each group against chance (=0), female 5XFAD animals 

had a non-significant SI index  for time in zone (Fig. S3D) (t=1.14, n=9, p>0.05), while all other groups 

displayed positive, significant indices (female WT: t=2.734, n=9, male 5XFAD: t=2.693, n=10, male WT: 

t=2.658, n=10; all p<0.05) for this parameter.  

Interestingly, there was no trial effect for number of visits (trial: p>0.05) and a lack of significant 

familiarity index for the number of visits to the zone (p>0.05) (Fig. S3E) for all groups. This was further 

supported by a very significant effect of trial (F (1, 34) = 64.83; p<0.0001) when the familiarity index 

for number of visits (all groups) were compared between the NO and SI segments (3-way ANOVA with 

sex, genotype and trial, repeated measures: NO vs SI; Figure S3I). This can likely be attributed to the 

stronger social vs inanimate stimulus [46] and provides further evidence that the OF-NO-SI paradigm 

can efficiently report differences between object and stranger exploration.  

Collectively, the 5XFAD cohort, irrespective of sex, was robustly hyperactive during the OF-NO-SI 

paradigm and exhibited more frequent visits to the interaction zone during NO and SI trials. Gross 

object / stranger exploration differences between genotypes were detected for number of visits (NO 

and SI) and time in zone (SI only), while other readouts support the existence of a strong sex difference 

between male and female animals. Female subjects overall spent less time interacting directly with 

the object/conspecific compared to male ones. More specifically, female 5XFAD subjects spent less 

time in the zone with the object/stranger, showed no between-trial habituation for time in zone during 

both NO/SI, but entered the interaction zone more frequently during the SI trials compared to all other 

groups. Table 3 summarises all the 3-way ANOVAs results of the OF-NO-SI test for all groups.  
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Post-mortem molecular analysis 

Heightened gene expression of hAPP, but not hPSEN-1 in female 5XFAD mice 

In line with the behavioural phenotype, 5XFAD female mice had significantly higher hAPP gene 

expression compared to males (t=3.125; p<0.05, +3% cf males, n=6; Fig. 5A). By contrast, gene 

expression of hPSEN1 was not different between sexes (Fig. 5B). As stated earlier, no hAPP and hPSEN1 

were detected in WT animals.  

Heightened levels of APP and its metabolites in female 5XFAD animals in soluble fraction 

Full-length APP (fAPP) was determined by western blotting using the 6E10 antibody in both the soluble 

fraction (Fig. 6A) and  insoluble fraction (Fig. 6B); results confirmed highly significant effects of 

genotype (soluble: F (1,27) =912.4, p<0.0001; insoluble: F (1,25) = 145.6, p <0.0001), sex (soluble: F 

(1,27) = 111.2, p<0.0001; insoluble: F (1,25) = 6.671, p=0.0160) as well as interactions (soluble:  F (1,27) 

= 111.2, p<0.0001; insoluble: F(1, 25) = 4.698, p=0.039). Compared to very low levels in WT mice 

(soluble and insoluble: male WT vs male 5XFAD; female WT vs female 5XFAD: all p<0.0001), 

significantly elevated amounts of fAPP were found in female 5XFAD animals, also compared to male 

5XFAD and particularly in the soluble fraction (+100% for soluble, +45% for insoluble; soluble: 

p<0.0001; insoluble: p=0.01; female 5XFAD vs male 5XFAD) (Fig. 6A and 6B).  

Dot-blot analysis of A protein was carried out using MOAB-2 antibody, which does not cross-react 

with APP or non-A metabolites and has lower affinity for A40 compared to the more neurotoxic 

A42 (see [50]).  In the soluble fraction (Fig. 7B), data mirrored results obtained with 6E10, in that we 

found a very strong effect of genotype (F (1, 28) = 98.41, p<0.0001), sex (F (1,28) = 17.07, p=0.0003) 

and a genotype x sex interaction (F (1, 28) = 12.73, p=0.0013), with higher levels of A in female 5XFAD 

mice compared to their male counterparts (+108% cf male 5XFAD; p<0.0001) and very low levels in 

WT animals (male WT vs 5XFAD: p=0.0007, female WT vs 5XFAD: p<0.0001). An effect of genotype 

was also observed in the insoluble fraction (Fig. 7C; (F (1, 25) = 12.85, p=0.0014; female WT vs 
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5XFAD=p=0.003, post-test) even though values were generally lower and more variable, which may 

explain why the effect of sex did not reach statistical significance (Fig. 7C).  

Overall, both gene and protein analyses confirmed hAPP expression and processing in 5XFAD mice, 

with a higher gene and protein load for female vs male 5XFAD mice confirming previous reports [35]. 

Protein levels were even more dramatically increased in females than suggested by gene expression, 

indicative of additional factors influencing pathology build-up. 

Increased inflammation in female 5XFAD mice 

Western blot analysis of the astrocyte marker GFAP (both bands averaged for quantification) indicated 

a significant overall effect of genotype (F (1,25) = 13.07, p=0.001), yet significantly higher levels of 

GFAP were only found in female 5XFAD animals compared to female WT (+150%, p=0.047; Fig. 8B). 

Immunoblot analysis of the activated microglial marker, Iba-1 (Fig. 8C), indicated a strong significant 

effect of genotype (F (1,26) = 17.53, p=0.003) but also sex (F (1,26) =16.95, p=0.003). Post-hoc planned 

contrasts confirmed that female 5XFAD mice had higher levels compared to female WT (+50%, 

p=0.002), but also vs. male 5XFAD mice (+50%, p=0.0018). A lack of specificity observed while trying 

various NLRP3 antibodies was replaced by utilising a qPCR-based gene expression approach to analyse 

this inflammasomal marker (Fig. 8D).  It also indicated a significant effect of genotype (F (1,17) = 22.08, 

p=0.0002) and sex (F (1,17) = 8.956, p=0.008) with female 5XFAD animals yielding higher expression 

levels of NLRP3 compared to male 5XFAD (+64%, p=0.03) and to their respective WT (+130%, p=0.001) 

using post-hoc planned contrasts. Here, no genotype effect was observed for the male mice. 

No changes in synaptic markers in 5XFAD mice 

Protein levels of the presynaptic marker synaptophysin revealed no overall difference between 

genotypes; however, a sex effect was detected (F (1, 25) = 6.488, p=0.017; Fig. 9B), due to higher levels 

observed in females in both genotypes, with post-hoc contrasts revealing only a marginally significant 

p-value for differences between male and female 5XFAD animals (p=0.08). Immunoblot analysis of the 
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post-synaptic marker PSD-95 (Postsynaptic density protein 95; Fig. 9C), on the other hand, indicated 

an effect of genotype (F (1,26) = 5.174, p=0.03), with increased levels in transgenic mice. Post-hoc 

contrasts indicated only marginally significant differences between female 5XFAD animals and their 

WTs (p=0.08). It therefore appears that despite the high levels of amyloid pathology, a gross reduction 

of synaptic markers could not be confirmed in both sexes of 5XFAD mice.  

Sex-associated differences in specific arms of the ER pathway 

Gene expression analyses of different markers from the ER stress pathway was conducted next (Fig. 

10). The ER is the most essential component of protein folding and secretion and is affectedly 

adversely in AD neurons. In the event of chronic ER stress in AD, the chaperone, BiP (Binding 

immunoglobulin Protein), which supports folding of proteins, can cause the activation of the UPR 

signalling and transcription factors, IRE1 (inositol requiring enzyme), ATF6 (activated transcription 

factor 6), CHOP (C/EBP Homologous protein) and total XBP (XBPt or X-box protein, a further key 

transcription factor involved in ER degradation) which forms spliced XBPs (XBPs). Ultimately, this can 

trigger apoptosis and worsen neurodegeneration in AD [15].  

Following on from the above tissue results, gross genotype effects were only observed for 2 markers: 

CHOP (F (1,20) =5.96, p=0.024; Fig. 10B) and total XBP (XBPt) (F (1,19) = 5, p=0.037; Fig. 10F). However, 

while male 5XFAD animals had higher expression of CHOP (p=0.046, Bonferroni's post-hoc; +50%), 

they had lower expression of XBPt (p=0.028; -25%) compared to male WT.  

In addition, sex-dependent differences were detected for the ER chaperone BiP (F (1, 19) = 82.14, 

p<0.0001; Fig. 10A), as well as the global chaperone marker Hsp70 (Fig. 10B; F (1, 19) = 30.31, 

p<0.0001).  CHOP, a transcription factor involved in ER-associated apoptosis regulation (F (1, 20) = 

64.34, p<0.0001; Fig. 10C) followed the same pattern.  

In stark contrast to amyloid and inflammation markers, male 5XFAD animals had higher expression of 

BiP (p<0.0001; +100%), CHOP (p<0.0001; +100%) and Hsp70 (p=0.002; +120%; Fig. 10A-C) compared 
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to female transgenic animals. For both CHOP and BiP, male WTs also showed higher expression 

compared to the female WTs (p<0.0001, p=0.0015, respectively).  

An interaction of sex x genotype was noted for gene expression of ATF6 (F (1,18) =11, p=0.0038; Fig 

10D) which also reported an effect of sex (F (1, 18) = 7.524, p=0.0134). A matching pattern (interaction 

of sex and genotype) was also observed in the case of XBPt (F (1,19) =5.614, p=0.028, Fig. 10F).  For 

both ATF6 and XBPt, male WT animals had higher gene expression compared to both male 5XFAD 

(ATF6: p=0.009; +50%, for XBPt see above) and female WT (ATF6: p=0.003, +50%;  XBPt: p=0.039, 

+25%) animals. Neither the spliced variant of XBP (XBPs) nor the ratio of XBPs/XBPt displayed any 

effect of genotype or sex (Fig. 10G and 10H)).  

An unusual sex x genotype interaction was also uncovered for IRE1α (F (1,15)=7.254, p=0.016, Fig. 

10E), alongside a marginally significant p-value for a genotype effect (p=0.07), with female 5XFAD 

animals reporting very low expression (cf WT: p=0.026, -91%; , cf male 5XFAD: p=0.08, -78%). No such 

genotypic difference was observed for males. Overall, ER stress markers by and large yielded sex-

specific and UPR-arm specific alterations, also causing a number of sex-dependent genotype effects.  

Heightened levels of neurotrophic markers in male mice 

The downregulation of neurotrophic factors such as BDNF and its TrkB receptor, as well as CREB, which 

controls the transcription of BDNF, have all been reported in AD, and considered as targets for 

treatment [53].  At the same time, sex differences in the expression of neurotrophic factors have also 

been well documented [54], making these protective entities interesting and relevant markers for the 

present study.  

Analysis of the gene expression of BDNF (Fig. 11A) did not yield any reliable differences between the 

sexes or genotypes (but note marginally significant value for genotype: F (1, 18) =3.611, p=0.076). For 

CREB and TrkB, a significant effect of sex was seen (F (1,16) = 46.46, p<0.0001 and F (1,19) = 10.89, 

p=0.004, respectively). Post-hoc analysis of CREB (Fig. 11B) suggested higher expression in males cf. 
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females for both genotypes (p=0.0028, +66% for 5XFAD; p=0.0005, +95% for WT), while for TrkB (Fig. 

11C), male WTs yielded higher levels compared to male 5XFAD (p=0.048, +36%) and female WT 

animals (p=0.0006, +50%). It therefore seems that, like ER stress markers, male mice express enhanced 

levels of neurotrophic and potentially protective factors, particularly CREB.  

Table 4 summarises all the 2-way ANOVAs results of the molecular analysis for all groups while 

Supplementary Figure S4 shows examples of Coomassie loading controls. 

Correlational analyses 

To make advancements regarding our understanding of links between pathways and phenotypes, and 

to explore connections between cognition, AD pathology and related cellular markers, we next 

conducted a multi-factorial correlation analysis in both WT and 5XFAD animals (Fig. 12). The greatest 

power for this analysis is achieved by combination of data sets derived from male and female cohorts.  

Additional sex-specific heatmaps have been provided (Fig. S6 A, B, C, D) are for comparison only; we 

did not analyse those further to avoid type 1 and type 2 errors. Particular weight is placed on the 

emergence of clusters comparing i) behavioural proxies; ii) cellular proxies including pathological and 

inflammatory, but also stress and trophic markers; and iii) behavioural x cellular proxies and their 

differences between genotypes. Supplementary Figure S5 also shows both the WT and 5XFAD 

(combined sex groups) with the values for the correlational coefficients (Pearson’s r value, left) placed 

inside each matrix as well as the p-values less than 0.06 (right). While it is our intention is to 

concentrate on clusters of interest, rather than probing or overinterpreting individual significances, 

plots of the r values alongside the p-values for the combined sex groups have been provided in the 

appendix (Fig. S5) to aid readers who might be interested in understanding individual significances. By 

and large, all the correlations discussed below, were also found to be significant.  
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Correlations between behavioural proxies 

Overall, only modest correlations between the different behavioural proxies were apparent, and this 

was similar in WT and 5XFAD cohorts.  The strongest positive correlations (blue fields in Fig. 12A) were 

between activity measures of all stages of the task and directed exploration during SI and NO stages, 

suggesting that WT animals with heightened locomotor activity also interacted more with the 

object/social partners. Interestingly, the nature of this correlation was reversed in case of the 5XFAD 

mice where activity measures were negatively correlated with directed exploration (red fields in Fig. 

12B).  Another interesting find was that total time in the wall zone was found to be negatively 

correlated to directed exploration during NO and SI, only in the 5XFAD animals, suggesting that 

investigation of the stimulus (object/stranger) could be linked to anxiety-like behaviours in a negative 

fashion, only in the transgenic animals. In extension to our previous work using this paradigm [42], 

there was no correlation between the overall activity during OF and any other stage of testing in WT 

mice (Fig. 12A); by contrast, ambulatory activity correlated positively between all stages of testing in 

5XFAD mice (blue squares in first row, Fig. 12D) strengthening our argument of the predominant 

activity-related phenotype in this AD model.   

Correlations between cellular markers 

Heatmaps differ between genotypes for molecules associated with cellular pathology.  This is mainly 

due to the specific expression of human APP and the resulting amyloid species detected in 5XFAD 

mice, and which are absent in WT. Nevertheless, some clear clusters arose from the comparisons, 

more clearly seen in 5XFAD tissue. Correlations were globally positive between amyloid, inflammatory 

and synaptic markers in 5XFAD brains (Fig. 12D), some of them highly significant (dark blue squares) 

clearly underlining their relationships, especially on the background of tissue stress caused by amyloid 

levels. This was not as clear-cut in WT mice, a more varied pattern between mildly positive (faint blue) 

and mildly negative (faint red) correlations emerged. Similar for both genotypes, however, was the 

observation that stress and neurotrophic markers correlated strongly with each other, but negatively 
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with amyloid load, inflammation, and synaptic protein levels; some of these negative correlations 

were highly reliable (dark red squares).    

Correlations between behavioural proxies and pathological molecules 

Less homogenous were correlations between behavioural readouts and molecular endpoints.  An 

overall scattered and lightly coloured field showed few consistent correlations. Of interest, especially 

in light of the heightened activity found in 5XFAD mice, are positive correlations (blue squares) 

between activity/anxiety-related endpoints (time in wall zone, activity in NO and SI as well as visits to 

the object and social partner) and markers of amyloid, inflammation (Iba-1) and particularly 

presynaptic labelling, which were not found to the same degree in WT mice. Intriguingly, these 

correlations were even stronger in female 5XFAD mice (Fig. S6C) relative to males and may underpin 

the more pronounced phenotype in female transgenic animals. Additionally, especially apparent 

during SI, directed exploration time correlated negatively with pathological, inflammatory markers, 

and to a slightly stronger extent in 5XFAD mice (red raster Fig. 12B) compared to WT animals. A strong 

correlation also appeared between stress/neurotrophic markers and the global activity in the OF stage 

in WT mice (see dark blue raster, bottom of row 1, Fig. 12A).  This characteristic was less pronounced 

in 5XFAD tissue (Fig. 12B), mainly due to male mice (Fig. S6D), which showed negative correlations for 

these same rasters.  This would be in line with the proposed sex-specific protective or compensatory 

molecular response. Finally, both genotypes showed mainly positive correlations between directed 

exploration for NO/SI vs. cellular stress/trophic markers.  Given these offer a cognitive proxy of the 

subjects, this underlines the observation that no overt cognitive impairment was observed in 5XFAD 

mice.       
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DISCUSSION 

Our results indicate distinct and dissociable sex-biases in development of both behavioural and 

molecular pathology in a cohort of 5-month-old 5XFAD mice. Mirroring what has been frequently 

observed in human studies, sex differences in transgenic mouse models of AD suggest a greater 

female-specific propensity for enhanced pathology and AD related cognitive phenotypes [8,37,55,56]. 

Overall, our data indicate that female transgenic 5XFAD animals present with hyperactivity, 

heightened anxiety, and some very subtle anomalies in object processing and social interaction in the 

OF-NO-SI paradigm, which were not found in males. They also exhibited higher levels of inflammatory 

markers and amyloid pathology, alongside reduced levels of protective neurotrophic or heat shock 

protein (HSP)-related markers. Furthermore, our correlation analyses in both WT and transgenic 

animals strongly suggests that the critical factors are not restricted to beta-amyloid itself, but rather 

dependent on the extent of the inflammatory reaction it causes, and how effective the compensatory 

strategies in the form of ER stress and neurotrophic factors are. 

During OF-NO-SI testing [46] multiple interesting within-subject readouts of activity and behaviour 

were obtained. 5XFAD animals exhibited higher locomotor activity compared to WT during the OF 

trials. Both intact within- and between-trial habituation of activity was observed across all groups; yet 

the degree of habituation was least pronounced in female 5XFAD mice compared to all other groups, 

suggesting that previously reported deficits in habituation to an open-field apparatus observed in 

(mixed-sex) 5XFAD cohorts [42,57] may also have been sex-specific. In partial agreement with our 

data, Leary et al. also reported that female 5XFAD animals (on a B6SJL background, unlike the C57BL/6 

background used here) travelled more than their respective WT (at 6 months of age), yet no such 

difference was observed in the male cohort [39]. The relationship between heightened ambulation 

and thigmotaxic (anxiety) behaviour was also increased in female 5XFAD animals compared to WT 

[40]. Hyperactivity is common in AD models and has also been detected in other APP over-expression 

lines [58], while for example low-expression knock-in transgenic mice showed lower activity at 5 
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months of age [12]. In general, a positive link between activity and cognitive phenotypes has been 

previously suggested [59], but hyperactivity can also lead to a more disrupted exploration pattern (as 

seen here in the female 5XFAD mice), and disturbed circadian activity, as often reported in transgenic 

AD lines (reviewed in [60]).  

We also observed that abnormalities in object exploration and social interaction behaviour are 

modulated by both genotype and sex. During NO, female 5XFAD animals spent less time in the zone 

around the object compared to male 5XFAD animals and overall female animals spent less time 

directly interacting with the object compared to males. Both, a lack of deficits in male [61] and in 

female 5XFAD mice have been noted previously for novel object exploration in 8-month old cohorts 

[62], but subtle sex-dependent phenotypes occurred in older subjects at 12 months [37]. In similar 

studies using TASTPM mice with mutant APPswe and PSEN1, both sexes displayed equal impairments 

on object exploration despite much higher Aβ load in females [63]. Although we here report a 

correlation of performance with amyloid load specifically affecting female 5XFAD mice, it appears that 

this relationship may be more complex and depend on the amyloid and non-amyloid factors [64] .  

Genotypic and sex differences during SI were more pronounced (vs NO), with female 5XFAD animals 

spending less time in zone compared to their controls and displaying lack of between-trial habituation 

as assessed by the SI familiarity index for time in zone. Additionally, female animals overall spent less 

time in directed exploration of the stranger mouse. To note, 12 month old transgenic 5XFAD female 

mice have previously exhibited less investigation of a novel stranger in a three-chamber apparatus as 

well as in a free social interaction test [43]. Given the greater anxiety-like phenotype in female 5XFAD 

animals, this could be indicative of novelty aversion due to heightened social anxiety. In other APP and 

PSEN1 mice, males at 6 months of age also displayed reduced sociability, again combined with 

hyperactivity [65]. Overall, transgenic mice with high levels of mutated APP and PSEN1 seem to 

consistently display changes in activity alongside reduced social interaction behaviours, with an 

additional dependency on sex.  
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We also found levels of both fAPP (soluble and insoluble fractions) and MOAB-2 reactive amyloid 

species (soluble fraction) to be higher in female 5XFAD animals compared to males as reported 

previously [35,36,66]. None of these studies, however, discriminated between full-length APP (and 

A) pathology in different fractions. Given the importance of soluble pre-fibrillar A species in tracking 

disease progression and decline in AD [50,51], our results further confirmed higher soluble amyloid 

load in females compared to males. This had previously been attributed to higher hAPP expression 

[35,36]; yet here, the increase in expression was very modest (+3% vs males), but amyloid-related 

protein levels were about double. Thus, gene expression alone is unlikely to fully account for the 

heightened amyloid accumulation. Moreover, no sex difference was observed for PSEN-1 gene 

expression, in line with a previous observation [36], though gamma-secretase activity may of course 

be higher in females. In any case, only one of the introduced transgenes is affected by sex, while the 

other is not. Congruent with the amyloid pathology, inflammatory markers GFAP and Iba-1 as well as 

NLRP3 were generally highest in the female 5XFAD group. The NLRP3 inflammasome has been 

implicated in AD and suggested to contribute to the pathology in APP/PSEN1 mice [67] by potentially 

acting as a sensor of Aβ, and by impairing microglial clearance and promoting inflammation [68,69]. 

One previous report in 5XFAD mice found higher levels of NLRP3 in transgenic animals compared to 

WT; however this did not reach statistical significance [70], potentially due to the use of only male 

mice.  

Our within-subject correlational analysis further confirmed the direct link between amyloid markers 

and inflammatory pathways in both control and 5XFAD mice, with stronger positive clusters observed 

in the transgenic animals.  Positive correlations between activity measures (and number of visits) 

during NO/SI and both soluble and insoluble amyloid markers as well as inflammatory markers (in 

form of Iba-1) predominantly in the transgenic group strongly suggest that high levels of amyloid are 

causally linked with the hyperactivity/anxiety phenotype. As a corollary, directed exploration during 

NO/SI correlated negatively with these pathology markers in 5XFAD mice and with time in zone during 

OF (anxiety-like phenotype).    
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Somewhat surprising was the unexpectedly higher (rather than lower) levels of the synaptic marker 

PSD-95 in 5XFAD mice. It is important to note that total protein levels were measured in our study 

rather than functional synapses (which would be more accurate). Changes in the level of synaptic 

markers depend largely on the region investigated  and may be a late-occurring event in the pathology 

of AD [25]. The increase in PSD-95 levels has also been observed in 5XFAD females by others [37], who 

attributed it to the loss of PSD-95 from apical dendrites and their movement and build-up in cell bodies 

[71], but this remains unexplained functionally. We here show that more positive correlations (blue) 

between PSD-95 and behavioural proxies in WT mice turn into no or negative correlations (red) in 

5XFAD subjects indicating that enhanced levels of PSD-95 is functionally detrimental.  By contrast, the 

presynaptic marker synaptophysin was unchanged in 5XFAD mice but correlations with activity-

dependent behavioural endpoints were generally positive, and with familiarity indices negative.  This 

is more like the pattern found for pathology/inflammation markers and confirms that both pre-and 

postsynaptic alterations may be responsible for functional changes recorded in the OF-NO-SI. While 

Maiti and colleagues have confirmed earlier reports of reduced synaptophysin and PSD-95 in cortex 

and hippocampus in 5XFAD mice from 4-12 months of age [32,72–74], others have published data 

reporting no differences in both markers [75]. However, most studies used exclusively males from a 

mixed B6/SJL background and control mice often were purchased from different vendors.    

ER stress and neurotrophic pathways in both the 5XFAD and WT groups revealed negative correlations 

with soluble and insoluble amyloid markers, indicating that reduced levels of chaperones (BiP, Hsp70 

and CHOP) and neurotrophic factors associate with amyloidosis. In fact, the elevated levels of some 

ER stress markers and neurotrophic factors observed in males may have provided protection against 

amyloid-induced toxicity. ER markers all exhibited strong sex-dependent effects with male animals 

displaying much higher levels compared to females. It has been demonstrated previously that 

expression of HSPA1 and HSPB1 (which constitute Hsp70) along with six other heat-shock proteins 

(HSPs) showed male-biased expression in the hippocampus of both 5XFAD and their C57BL/6 WT 

controls  at 4 months of age [36,76]. HSPs in general stabilise proteins and prevent misfolding [77], 
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while secreted Hsp70 masks Aβ in the extracellular space and suppresses neurotoxicity [78–80]. From 

this perspective, the higher expression of Hsp70 (and by extension BiP, a member of the Hsp70 family 

localised to the ER) in male mice may have offered some protection against Aβ accumulation and 

disease progression. Protein levels of CHOP were also increased in male APP/PSEN1 mice compared 

to their WTs [81], but our results are at odds with the lack of differences between genotypes and/or 

sex in protein levels of CHOP or BiP reported in 4-month 5XFAD mice previously [33].  Markers 

belonging to other arms of the UPR pathway such as ATF6 also displayed strong sex-related and 

genotypic differences (male WT>male 5XFAD). Investigations into the ATF6 pathway in transgenic 

models of AD remain limited [24] and to our knowledge this is the first report into its role in both sexes 

of the 5XFAD model. Of interest are also low levels of gene expression of IRE-1α in female 5XFAD 

animals and the lack of changes in expression of activated XBP (XBPs), which may reflect an age-

dependent change in the directionality of gene expression of these markers [82]. Strong sex-

dependent effects were also observed for neurotrophic markers like CREB and TrkB such that all male 

animals exhibited higher levels, yet here no genotype differences emerged. Similar to our 

observations, sex-related differences in CREB signalling (lower in females) have been described in 12 

month old 3xTg-AD mice [8]. No strong positive or negative correlations between behavioural and ER 

stress/trophic markers were revealed. All correlations were moderate to weak and the scatter in WT 

is similar to the scatter in 5XFAD mice. Finally, unique positive links were observed between HSP-

related ER stress markers/CREB and total activity during OF only in controls, which were absent in the 

5XFAD animals. Their relevance is not clear yet.   

Collectively, our results point towards sustained hyperactivity during all phases of the test in 5X mice, 

this correlated well with levels of pathological and inflammatory markers in 5XFAD mice. Phenotypes 

were more pronounced in females, in line with observations in human patients. Conversely, 

neurotrophic factors and ER chaperones support better cognitive performance and correlated with 

one another and were particularly prominent in male mice, possibly contributing to the alleviation of 

their phenotype.  
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Table 1 

Primary Antibodies utilised for Western blotting 

Primary antibody Epitope Dilution Supplier Product 
code 

PSD-95 aa 50-150 1:1000 Abcam (Cambridge, UK) ab18258 

Synaptophysin aa 250- 350 1:10000 Abcam ab32127 

IBA-1 C- terminus 1:1000 Wako (Eastleigh, UK) 019-19741 

GFAP Not reported 1:1000 Sigma G3893 

6e10 full length APP, monomeric Aβ 1:500 Biolegend  803001 

MOAB-2 Residues 1-4 of human amyloid 

beta peptide 40/42 

1:500 Biosensis M-1586-100 

A list of all primary antibodies utilised in immunoblotting with their epitopes, dilutions and manufacturers listed.  
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Table 2 

 qPCR Primers 

 

 

 

 

 

 

 

 

 

 

 

 

A list of all primers for both genes of interest as well as housekeeping genes utilised for qPCR with forward and reverse 

primers indicated.   

 

 

 

  

Marker Forward Reverse 

Primers for genes of interest 

hPSEN1 ACAGGTGCTATAAGGTCATCCA CAGATCAGGAGTGCAACAGTAAT 

hAPP ACTGGCTGAAGAAAGTGACAA ATCACCATCCTCATCGTCCTCG 

Hsp70 CAGCGAGGCTGACAAGAAGAA GGAGATGACCTCCTGGCACT 

Bip TTCAGCCAATTATCAGCAAACTCT TTTTCTGATGTATCCTCTTCACCAGT 

CREB CCCAAAAACGAAGGGAAATCCT CCTGGTGCATCAGAAGATAAGTC 

BDNF TCATACTTCGGTTGCATGAAGG ACACCTGGGTAGGCCAAGTT 

TRkB CCGCTAGGATTTGGTGTACTG CCGGGTCAACGCTGTTAGG 

ATF6 TTATCAGCATACAGCCTGCG CTTGGGACTTTGAGCCTCTG 

IRE-1a ACACTGCCTGAGACCTTGTTG GGAGCCCGTCCTCTTGCTA 

NLRP3 TGCTCTTCACTGCTATCAAGCCCT ACAAGCCTTTGCTCCAGACCCTAT 

XBPt AAGAACACGCTTGGGAATGG ACTCCCCTTGGCCTCCAC 

XBPs AAACAGAGTAGCAGCGCAGACTGC TCCTTCTGGGTAGACCTCTGGGAG 

CHOP CCACGGGACCTACTACGAGT ACGGCAAAGAGATCGGAGAGA 

Housekeeping Primers 

Nono GCCAGAATGAAGGCTTGACTAT TATCAGGGGGAAGATTGCCCA 

18S CTCTGTTCCGCCTAGTCCTG AATGAGCCATTCGCAGTTTC 

Y-whaz GAAAAGTTCTTGATCCCCAATGC TGTGACTGGTCCACAATTCCTT 

β-actin GATCTGGCACCACACACCTTC GGGGTGTTGAAGGTCTCAAA 

GAPDH TGACCACAGTCCATGCCATC GACGGACACATTGGGGGTAG 



Sil et al., 2021: Sex difference in 5X mice 

Table 3  

Summary of the behavioural OF-NO-SI results 

  
ACTIVITY TIME IN ZONE 

NUMBER OF 
VISITS 

DIRECTED 
EXPLORATION     

Wall 
zone 

Interaction 
zone 

   
 

 
OF NO SI OF NO SI OF NO SI OF NO SI 

Trial **** **** **** **** *** *** N/A **** ns N/A **** **** 

Sex ns ns 0.07 * ** ns N/A ns ns N/A * ** 

Genotype *** ** ns ns ns *** N/A ** * N/A ns ns 

Trial x Sex 0.07 0.08 * ns ns ns N/A ns ns N/A ns ns 

Trial x Genotype ns 0.07 ns ns ns ns N/A ns ns N/A ns ns 

Sex x Genotype ns ns 0.08 * 0.05 ns N/A ns * N/A ns ns 

Trial x Sex x 
Genotype 

*** ns ns ns ns ns N/A ns ns N/A ns ns 

A summary table indicating all outcomes from a 3-way ANOVA with sex, genotype and trial (repeated measures) as factors 
for the OF (Open Field), NO (Novel Object) and SI (Social Interaction) segments of the OF-NO-SI paradigm for female and 
male 5XFAD and WT groups; significances are indicated as: ****=p <0.0001, ***= p<0.001, *=p<0.05, ns=not significant, 
N/A= not applicable, values in italics indicate marginally significant p-values.  
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Table 4 

Summary of the molecular data 

Marker  Interaction Genotype Sex 
hAPP N/A N/A $ 

Sol. fAPP **** **** **** 

Insol. fAPP * **** * 

Sol. MOAB2 ** **** *** 

Insol. MOAB2 ns ** ns 

GFAP ns ** ns 

Iba-1 ns *** *** 

NLRP3 ns *** ** 

Synaptophysin ns ns * 

PSD-95 ns * ns 

BiP ns ns **** 

Hsp70 ns ns **** 

CHOP ns * **** 

ATF6 ** ns * 

IRE-1a * 0.06 ns 

XBPt * * ns 

XBPs ns ns ns 

BDNF ns 0.07 ns 

CREB ns ns *** 

TrkB ** ns ** 
A summary table indicating all outcomes from 2-way ANOVAs with sex and genotype as factors (or t-test in case of hAPP) for 
female and male 5XFAD and WT groups; significances are indicated as: ****=p <0.0001, ***= p<0.001, *=p<0.05, $= p<0.05 
for t-test, ns=not significant, values in italics indicate marginally significant p-values.  
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FIGURE LEGENDS 

Fig. 1: The OF-NO-SI experimental design: OF-NO-SI consists of a circular Perspex arena first used as 

an open field (OF) (A). Next, a cylinder is placed in the centre of the arena (novel object trials, NO) 

and finally a stranger mouse was introduced into the cylinder for social interaction trials (SI). (B) An 

overview summary of a single run of the OF-NO-SI experiment: green boxes depict inter-trial 

intervals (ITIs, 15-minutes), during which a second animal can be interspersed. (C) An outline of 

borders and zones used for the parameters examined:  The ‘wall zone’ (5cm from the outer wall) and 

‘interaction zone’ (5cm from the cylinder) are indicated. 

Fig 2: Activity measures for the open field trials (OF1 and OF2): Total distance travelled (in meters, 

m, per trial) during OF1 and OF2 trials for female and male 5XFAD vs WT mice (A), and total time 

spent in the thigmotaxis zone (in seconds, s) (B). Tables below graphs indicate statistically significant 

outcomes from a 3-way ANOVA with sex, genotype and trial (repeated measures) as factors. The 

pattern of exploratory behaviour for each group is also illustrated by representative heatmaps of 

one individual animal belonging to each group where bright colours indicate locations of frequent 

visits and darker colours indicate areas of rare approaches during OF1 and OF2 (C). Full statistical 

details can be found in Suppl. 1. All data are group means ±SD, Significances are indicated as: ****=p 

<0.0001, ***= p<0.001, *=p<0.05. 

Fig. 3: Exploration of the novel object during NO1 and NO2: Total time in the exploration zone (in 

seconds, s, per trial) during NO1 and NO2 for female and male 5XFAD vs WT mice (A), total time in 

directed exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to this 

zone (C). Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with sex, 

genotype and trial (repeated measures) as factors. Representative heatmaps for exploratory activity 

during NO trials (D) clearly reveal how pattern of exploratory activity has shifted to the novel object 

zone during these trials (brighter colour concentrated around the centre where object was placed). 

Full statistical details can be found in Suppl. 1. Data are presented as group means ± SD with symbols 
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representing individuals; significances are indicated as: ****=p <0.0001, ***= p<0.001, *=p<0.05, 

ns=not significant.  

Fig. 4: Exploration of the conspecific during SI1 and SI2: Total time in the exploration zone (in seconds, 

s, per trial) during SI1 and SI2 for female and male 5XFAD vs WT mice (A) total time in directed 

exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to the zone (C). 

Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with sex, 

genotype and trial (repeated measures) as factors. Heatmaps for exploratory activity (brighter colour 

marks more frequent visits) during SI trials (D) are displayed. Full statistical details can be found in 

Suppl. 1. Data are presented as group means ± SD, Significances are indicated as: ****=p <0.0001, 

***= p<0.001, *=p<0.05, ns=not significant.  

Fig. 5: Gene expression of hAPP, but not PSEN-1 is higher in female 5XFAD animals compared to 

male transgenic mice: Gene expression of hAPP (A) and PSEN-1 (B) for 5XFAD animals of both sexes 

are reported as ratio of Ct values of most stable reference gene on plate (y-whazz/b-actin) with gene 

of interest (hAPP/hPSEN-1). Data are illustrated as scatter plots with mean ±SD; significance is 

displayed as: *=p<0.05 (parametric t-test), n=6.  

Fig. 6: Greater levels of full-length APP in female 5XFAD mice in soluble and insoluble fractions: 

Representative images of western blots of both soluble and insoluble fractions probed with antibody 

6E10 for the detection of full-length APP (fAPP) with molecular weight in kDA (A). Protein levels 

were higher in female 5XFAD compared to male transgenic animals in both the soluble (B) and 

insoluble (C) fractions. All data were normalised to female WT with data sets visualised as scatter 

plots with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as 

****=p<0.0001, **=p<0.01 (Bonferroni post-hoc test). 

Fig. 7: Heightened MOAB-2 levels in female 5XFAD mice compared to male 5XFAD mice in soluble 

but not insoluble fractions: Representative images of dot blots of both soluble and insoluble 

fractions probed with MOAB-2 for the detection of Aβ (A). Protein levels were higher in female 
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5XFAD animals compared to male transgenic animals in soluble (B) but not insoluble (C) fraction. All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as ****=p<0.0001, ***=p<0.001, **=p<0.01 (Bonferroni 

post-hoc test).  

Fig. 8: Inflammation was enhanced in 5XFAD mice: Representative images of western blots for 

GFAP and Iba-1 with corresponding molecular weights in kDa (A). Group average protein levels for 

GFAP (B), Iba-1 (C), and gene expression of NLRP3 (D) were higher in female 5XFAD animals 

compared to their corresponding WT and compared to the male 5XFAD (for Iba-1 and NLRP3). All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as, ***=p<0.001, **=p<0.01, *=p<0.05 (Bonferroni post-hoc 

test).  

Fig. 9: No major changes in pre- and post-synaptic markers: Representative images of Western 

blots for synaptophysin and PSD-95 with corresponding molecular weights in kDa (A).  A subtle sex 

effect (but no effect of genotype) was noted for synaptophysin such that females had heightened 

levels of this presynaptic protein (B). Protein levels of PSD-95 were higher in 5XFAD animals only 

relative to their WT (C). All data were normalised to female WT and are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as *=p<0.05 

(Bonferroni post-hoc test). 

Fig. 10: Heightened expression of HSP-related markers in male mice: Gene expression of ER stress 

markers BiP (A), Hsp70 (B), and CHOP (C) were higher in male 5XFAD animals compared to female 

5XFAD. Male WT animals also had higher expression compared to female WT animals in case of BiP 

and CHOP. In addition, male WT had higher expression of ATF6 (D) and XBPt (F) compared to both 

male 5XFAD and female WT animals.  Female 5XFAD animals had very low expression of IRE1α 
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expression (E) compared to female WT and male 5XFAD (marginally significant) while neither XBPs 

(G) nor the ratio of XBPs/XBPt (H) revealed any differences. All data are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as, 

****=p<0.0001, *=p<0.05 (Bonferroni post-hoc test).  

Fig. 11: Heightened neurotrophic factor expression in male mice: Gene expression of neurotrophic 

factors revealed no genotypic or sex differences in BDNF (A). CREB (B) was higher in male 5XFAD (or 

WT) compared to female 5XFAD (or WT) but TrkB was found to be higher in male WT compared to 

female WT as well as male 5XFAD animals (C). Data are presented as scatter plots with mean ± SD; 

tables indicate significant 2-way ANOVA effects where int=interaction, gen=genotype; significances 

for individual genotypes/sexes are displayed on graph as ***=p<0.001, **=p<0.01, *=p<0.05 

(Bonferroni post-hoc test). 

Fig. 12: Correlations matrices between behavioural and molecular markers: Heat plots depict Z-score 

converted (overall mean) correlation matrices with positive (blue) and negative (red) correlations 

based on Pearson’s r correlational coefficient, for WT ♀+♂ (A) and (B) 5XFAD ♀+♂ animals. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 

total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2); Exploration NO/SI= Total time in directed 

exploration during NO (NO1+NO2)/SI (SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 
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FIGURE 1 
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FIGURE 2 
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FIGURE 3 
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FIGURE 4 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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FIGURE 10 
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FIGURE 11 
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FIGURE 12 
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SUPPLEMENTARY TABLE S1 

COMPLETE RESULTS OF 3-WAY ANOVA FOR OF-NO-SI  

OPEN FIELD 

ACTIVITY IN THE OPEN FIELD (see Figure 2a for the significant results, 

graphs and 2c for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 182.0 P<0.0001 

Sex F (1, 34) = 2.853 P=0.1003 

Genotype F (1, 34) = 18.93 P=0.0001 

Trial x Sex F (1, 34) = 3.431 P=0.0727 

Trial x Genotype F (1, 34) = 0.4296 P=0.5166 

Sex x Genotype F (1, 34) = 0.1267 P=0.7241 

Trial x Sex x Genotype F (1, 34) = 15.06 P=0.0005 

 

TIME IN WALL ZONE (see Figure 2b for the significant results and 

graphs and 2c for heatmaps)  

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 46.92 P<0.0001 
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Sex F (1, 34) = 5.406 P=0.0262 

Genotype F (1, 34) = 1.947 P=0.1720 

Trial x Sex F (1, 34) = 0.007340 P=0.9322 

Trial x Genotype F (1, 34) = 1.180 P=0.2851 

Sex x Genotype F (1, 34) = 6.190 P=0.0179 

Trial x Sex x Genotype F (1, 34) = 0.0006814 P=0.9793 

 

NOVEL OBJECT 

NO: TIME IN ZONE (see Figure 3a for the significant results, graphs 

and 3d for the heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 15.14 P=0.0004 

Sex F (1, 34) = 8.759 P=0.0056 

Genotype F (1, 34) = 0.5173 P=0.4769 

Trial x Sex F (1, 34) = 2.232 P=0.1444 

Trial x Genotype F (1, 34) = 0.8432 P=0.3649 

Sex x Genotype F (1, 34) = 3.980 P=0.0541 

Trial x Sex x Genotype F (1, 34) = 0.8274 P=0.3694 
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NO: NUMBER OF VISITS (see Figure 3b for the significant results, 

graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 0.4673 P=0.4989 

Genotype F (1, 34) = 11.15 P=0.0020 

Trial x Sex F (1, 34) = 3.064 P=0.0891 

Trial x Genotype F (1, 34) = 2.042 P=0.1621 

Sex x Genotype F (1, 34) = 0.1969 P=0.6601 

Trial x Sex x Genotype F (1, 34) = 2.042 P=0.1621 

 

NO: DIRECTED EXPLORATION ((see Figure 3c for the significant 

results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 4.156 P=0.0493 

Genotype F (1, 34) = 1.627 P=0.2108 



Sil et al., 2021: Sex difference in 5X mice 

Trial x Sex F (1, 34) = 2.781 P=0.1045 

Trial x Genotype F (1, 34) = 0.1379 P=0.7126 

Sex x Genotype F (1, 34) = 0.0004 P=0.9840 

Trial x Sex x Genotype F (1, 34) = 0.9038 P=0.3485 

 

NO: OVERALL ACTIVITY (see Supplementary Figure S2A for significant 

results, graphs) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 317.9 P<0.0001 

Sex F (1, 34) = 1.314 P=0.2596 

Genotype F (1, 34) = 8.004 P=0.0078 

Trial x Sex F (1, 34) = 3.085 P=0.0880 

Trial x Genotype F (1, 34) = 3.420 P=0.0731 

Sex x Genotype F (1, 34) = 1.748 P=0.1949 

Trial x Sex x Genotype F (1, 34) = 1.444 P=0.2378 

 

SOCIAL INTERACTION 

SI: TIME IN ZONE (see Figure 4a for the significant results, graphs and 

4d for heatmaps) 
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3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 18.69 P=0.0001 

Sex F (1, 34) = 1.123 P=0.2967 

Genotype F (1, 34) = 7.386 P=0.0103 

Trial x Sex F (1, 34) = 0.1888 P=0.6667 

Trial x Genotype F (1, 34) = 0.4639 P=0.5004 

Sex x Genotype F (1, 34) = 0.2600 P=0.6134 

Trial x Sex x Genotype F (1, 34) = 2.323 P=0.1367 

 

SI: NO OF VISITS 

3-way ANOVA, with sex, genotype, trial (RM) as factors (see Figure 

4b for the significant results, graphs and 4d for heatmaps) 

Factor F value P-value 

Trial F (1, 34) = 1.180 P=0.2849 

Sex F (1, 34) = 0.4670 P=0.4990 

Genotype F (1, 34) = 6.299 P=0.0170 

Trial x Sex F (1, 34) = 0.4534 P=0.5053 

Trial x Genotype F (1, 34) = 1.682 P=0.2034 

Sex x Genotype F (1, 34) = 8.979 P=0.0051 
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Trial x Sex x Genotype F (1, 34) = 0.02226 P=0.8823 

 

SI: DIRECTED EXPLORATION (see Figure 44 for the significant results, 

graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 22.33 P<0.0001 

Sex F (1, 34) = 9.303 P=0.0044 

Genotype F (1, 34) = 0.890 P=0.3520 

Trial x Sex F (1, 34) = 2.452 P=0.9961 

Trial x Genotype F (1, 34) = 1.499 P=0.2292 

Sex x Genotype F (1, 34) = 0.3048 P=0.5845 

Trial x Sex x Genotype F (1, 34) = 0.1162 P=0.7353 

 

SI: OVERALL ACTIVITY (see Supplementary Figure S2B for significant 

results, graphs) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 30.06 P<0.0001 

Sex F (1, 34) = 3.393 P=0.0742 
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Genotype F (1, 34) = 1.365 P=0.2508 

Trial x Sex F (1, 34) = 6.665 P=0.0143 

Trial x Genotype F (1, 34) = 1.772 P=0.1920 

Sex x Genotype F (1, 34) = 3.057 P=0.0894 

Trial x Sex x Genotype F (1, 34) = 0.2716 P=0.6057 

 

 

 

SUPPLEMENTARY TABLE S2 

SIGNIFICANT RESULTS OF POST-HOC MULTIPLE COMPARISON’S 

(BONFERRONI’S) FOR OF-NO-SI  

OF: Activity 

Factors P-value 

OF1:Female WT vs. OF2:Female WT <0.0001 

OF1:Female 5XFAD vs. OF2:Female 5XFAD 0.0176 

OF1:Male WT vs. OF2:Male WT <0.0001 

OF1:Male 5XFAD vs. OF2:Male 5XFAD <0.0001 

OF1:Male WT vs. OF1:Male 5XFAD 0.01 

OF2:Female WT vs. OF2:Female 5XFAD 0.0013 

OF1:Female 5XFAD vs. OF1:Male 5XFAD 0.0817 
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OF1:Female WT vs. OF1:Male 5XFAD 0.0027 

OF1:Female WT vs. OF2:Male WT 0.0174 

OF1:Female 5XFAD vs. OF2:Female WT <0.0001 

OF1:Female 5XFAD vs. OF2:Male WT 0.0001 

OF1:Female 5XFAD vs. OF2:Male 5XFAD 0.0179 

OF1:Male WT vs. OF2:Female WT <0.0001 

OF1:Male 5XFAD vs. OF2:Female WT <0.0001 

OF1:Male 5XFAD vs. OF2:Female 5XFAD <0.0001 

OF1:Male 5XFAD vs. OF2:Male WT <0.0001 

OF2:Female WT vs. OF2:Male 5XFAD 0.0401 

 

OF: Time in wall zone  

Factors P-value 

Female 5XFAD vs. Female WT 0.025 

Female 5XFAD vs Male 5XFAD 0.002 

 

 

 

 

 

NO: Time in zone 
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Factors P-value 

Female 5XFAD vs. Male 5XFAD 0.0002 

  

NO: Activity 

Factors P-value 

NO1: WT vs. 5XFAD   0.004 

NO1 vs. NO2: WT <0.0001 

NO1 vs. NO2: 5XFAD <0.0001 

  

SI: Number of visits 

Factors           P-value 

    Female 5XFAD vs. Female WT 0.0001 

  Female 5XFAD vs. Male 5XFAD 0.0146 

  

  

  

 SI: Activity 

Factors P-value 

Female: SI1 vs SI2 <0.0001 

SI1: Female vs Male 0.022 

 

SUPPLEMENTARY FIGURE LEGENDS 
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Fig. S1: Locomotor activity in the open field trials (OF1 and OF2): Time course of distance traversed 

(in meters, m) during OF1 and OF2 trials for female (♀) (A) and male (♂) 5XFAD vs WT mice (B). All 

data are group means +/- SD, with statistical outcomes of 2-way ANOVA with trial and time as 

repeated measures for each sex/genotype indicated below. Significances are indicated as: ***=p 

<0.001, **=p<0.01, *=p<0.05 (see methods for further details about the 2-way ANOVAs). 

Fig. S2: Overall activity measures during NO and SI: Total distance traversed (in meters, m, per trial) 

during NO (A) and SI (B) trials for female and male 5XFAD vs WT mice. Tables below graphs indicate 

statistically significant outcomes from a 3-way ANOVA with sex, genotype and trial (repeated 

measures) as factors. Full statistical details can be found in Suppl. 1. All data are group means +/- SD, 

Significances are indicated as: ****=p <0.0001, ***= p<0.001, **=p<0.01, *=p<0.05. 

Fig. S3: Familiarity index for time in zone, number of visits and directed exploration during trials: 

Familiarity indices in the form of scatter plots for time in zone, number of visits and directed 

exploration during NO (A, B and C, respectively); SI (D, E and F, respectively) and NO vs SI (G, H, and I, 

respectively) for female and male 5XFAD and WT mice. Results of one-sample t-tests for each group 

(against chance), and significances (or lack of) are indicated above the bars. No group difference using 

a one-way ANOVA was observed. Table below graph in G indicates statistically significant outcomes 

from a 3-way ANOVA with sex, genotype and trial (repeated measures, NO vs SI) as factors. Data are 

presented as group means ± SD with symbols representing individuals; significances are indicated as: 

****=p <0.0001, ***= p<0.001, *=p<0.05, ns=not significant. 

Fig. S4: Coomassie loading controls: Example images of Coomassie total protein-stained nitrocellulose 

membranes, relating to examples of ECL images of western blots provided in main manuscript. 

Densitometric measurements were taken from each lane for normalisation of ECL measures specific 

to target protein.  Note that some membranes were used for the detection of more than one antigen 

(PSD-95 and GFAP) whereas Ponceau was used for the normalisation of Iba-1 as Coomassie did not 

bind very well to the membrane.  
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Fig. S5: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) and p-values indicated: Heat plots depict Z-score converted (overall 

mean) correlation matrices with values of the Pearson’s correlational coefficients (positive (blue) and 

negative (red)) indicated within each of the matrices on the left for WT    +    (A)and 5XFAD    +     (C) 

animals and p-values on the right (<0.06) for WT    +     (B)and 5XFAD    +    (D), respectively. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 

total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time spent in directed 

exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 

Fig. S6: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) indicated for each sex/genotype group: Heat plots depict Z-score 

converted (overall mean) correlation matrices with Pearson’s correlational coefficients (positive (blue) 

and negative (red)) for WT     (A), WT    (B), 5XFAD     (C) and 5XFAD     (D) animals, respectively. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 

total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time spent in directed 
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exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 
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FIGURE S2 
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FIGURE S3 
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FIGURE S4 
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FIGURE S5 
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FIGURE S6 
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FIGURE LEGENDS 

Fig. 1: The OF-NO-SI experimental design: OF-NO-SI consists of a circular Perspex arena first used as 

an open field (OF) (A). Next, a cylinder is placed in the centre of the arena (novel object trials, NO) 

and finally a stranger mouse was introduced into the cylinder for social interaction trials (SI). (B) An 

overview summary of a single run of the OF-NO-SI experiment: green boxes depict inter-trial 

intervals (ITIs, 15-minutes), during which a second animal can be interspersed. (C) An outline of 

borders and zones used for the parameters examined:  The ‘wall zone’ (5cm from the outer wall) and 

‘interaction zone’ (5cm from the cylinder) are indicated. 

Fig 2: Activity measures for the open field trials (OF1 and OF2): Total distance travelled (in meters, 

m, per trial) during OF1 and OF2 trials for female and male 5XFAD vs WT mice (A), and total time 

spent in the thigmotaxis zone (in seconds, s) (B). Tables below graphs indicate statistically significant 

outcomes from a 3-way ANOVA with sex, genotype and trial (repeated measures) as factors. The 

pattern of exploratory behaviour for each group is also illustrated by representative heatmaps of 

one individual animal belonging to each group where bright colours indicate locations of frequent 

visits and darker colours indicate areas of rare approaches during OF1 and OF2 (C). Full statistical 

details can be found in Suppl. 1. All data are group means ±SD, Significances are indicated as: ****=p 

<0.0001, ***= p<0.001, *=p<0.05. 

Fig. 3: Exploration of the novel object during NO1 and NO2: Total time in the exploration zone (in 

seconds, s, per trial) during NO1 and NO2 for female and male 5XFAD vs WT mice (A), total time in 

directed exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to this 

zone (C). Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with sex, 

genotype and trial (repeated measures) as factors. Representative heatmaps for exploratory activity 

during NO trials (D) clearly reveal how pattern of exploratory activity has shifted to the novel object 

zone during these trials (brighter colour concentrated around the centre where object was placed). 

Full statistical details can be found in Suppl. 1. Data are presented as group means ± SD with symbols 
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representing individuals; significances are indicated as: ****=p <0.0001, ***= p<0.001, *=p<0.05, 

ns=not significant.  

Fig. 4: Exploration of the conspecific during SI1 and SI2: Total time in the exploration zone (in seconds, 

s, per trial) during SI1 and SI2 for female and male 5XFAD vs WT mice (A) total time in directed 

exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to the zone (C). 

Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with sex, 

genotype and trial (repeated measures) as factors. Heatmaps for exploratory activity (brighter colour 

marks more frequent visits) during SI trials (D) are displayed. Full statistical details can be found in 

Suppl. 1. Data are presented as group means ± SD, Significances are indicated as: ****=p <0.0001, 

***= p<0.001, *=p<0.05, ns=not significant.  

Fig. 5: Gene expression of hAPP, but not PSEN-1 is higher in female 5XFAD animals compared to 

male transgenic mice: Gene expression of hAPP (A) and PSEN-1 (B) for 5XFAD animals of both sexes 

are reported as ratio of Ct values of most stable reference gene on plate (y-whazz/b-actin) with gene 

of interest (hAPP/hPSEN-1). Data are illustrated as scatter plots with mean ±SD; significance is 

displayed as: *=p<0.05 (parametric t-test), n=6.  

Fig. 6: Greater levels of full-length APP in female 5XFAD mice in soluble and insoluble fractions: 

Representative images of western blots of both soluble and insoluble fractions probed with antibody 

6E10 for the detection of full-length APP (fAPP) with molecular weight in kDA (A). Protein levels 

were higher in female 5XFAD compared to male transgenic animals in both the soluble (B) and 

insoluble (C) fractions. All data were normalised to female WT with data sets visualised as scatter 

plots with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as 

****=p<0.0001, **=p<0.01 (Bonferroni post-hoc test). 

Fig. 7: Heightened MOAB-2 levels in female 5XFAD mice compared to male 5XFAD mice in soluble 

but not insoluble fractions: Representative images of dot blots of both soluble and insoluble 

fractions probed with MOAB-2 for the detection of Aβ (A). Protein levels were higher in female 
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5XFAD animals compared to male transgenic animals in soluble (B) but not insoluble (C) fraction. All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as ****=p<0.0001, ***=p<0.001, **=p<0.01 (Bonferroni 

post-hoc test).  

Fig. 8: Inflammation was enhanced in 5XFAD mice: Representative images of western blots for 

GFAP and Iba-1 with corresponding molecular weights in kDa (A). Group average protein levels for 

GFAP (B), Iba-1 (C), and gene expression of NLRP3 (D) were higher in female 5XFAD animals 

compared to their corresponding WT and compared to the male 5XFAD (for Iba-1 and NLRP3). All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as, ***=p<0.001, **=p<0.01, *=p<0.05 (Bonferroni post-hoc 

test).  

Fig. 9: No major changes in pre- and post-synaptic markers: Representative images of Western 

blots for synaptophysin and PSD-95 with corresponding molecular weights in kDa (A).  A subtle sex 

effect (but no effect of genotype) was noted for synaptophysin such that females had heightened 

levels of this presynaptic protein (B). Protein levels of PSD-95 were higher in 5XFAD animals only 

relative to their WT (C). All data were normalised to female WT and are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as *=p<0.05 

(Bonferroni post-hoc test). 

Fig. 10: Heightened expression of HSP-related markers in male mice: Gene expression of ER stress 

markers BiP (A), Hsp70 (B), and CHOP (C) were higher in male 5XFAD animals compared to female 

5XFAD. Male WT animals also had higher expression compared to female WT animals in case of BiP 

and CHOP. In addition, male WT had higher expression of ATF6 (D) and XBPt (F) compared to both 

male 5XFAD and female WT animals.  Female 5XFAD animals had very low expression of IRE1α 
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expression (E) compared to female WT and male 5XFAD (marginally significant) while neither XBPs 

(G) nor the ratio of XBPs/XBPt (H) revealed any differences. All data are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as, 

****=p<0.0001, *=p<0.05 (Bonferroni post-hoc test).  

Fig. 11: Heightened neurotrophic factor expression in male mice: Gene expression of neurotrophic 

factors revealed no genotypic or sex differences in BDNF (A). CREB (B) was higher in male 5XFAD (or 

WT) compared to female 5XFAD (or WT) but TrkB was found to be higher in male WT compared to 

female WT as well as male 5XFAD animals (C). Data are presented as scatter plots with mean ± SD; 

tables indicate significant 2-way ANOVA effects where int=interaction, gen=genotype; significances 

for individual genotypes/sexes are displayed on graph as ***=p<0.001, **=p<0.01, *=p<0.05 

(Bonferroni post-hoc test). 

Fig. 12: Correlations matrices between behavioural and molecular markers: Heat plots depict Z-score 

converted (overall mean) correlation matrices with positive (blue) and negative (red) correlations 

based on Pearson’s r correlational coefficient, for WT ♀+♂ (A) and (B) 5XFAD ♀+♂ animals. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 

total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2); Exploration NO/SI= Total time in directed 

exploration during NO (NO1+NO2)/SI (SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 
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SUPPLEMENTARY TABLE S1 

COMPLETE RESULTS OF 3-WAY ANOVA FOR OF-NO-SI  

OPEN FIELD 

ACTIVITY IN THE OPEN FIELD (see Figure 2a for the significant results, graphs and 2c for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 182.0 P<0.0001 

Sex F (1, 34) = 2.853 P=0.1003 

Genotype F (1, 34) = 18.93 P=0.0001 

Trial x Sex F (1, 34) = 3.431 P=0.0727 

Trial x Genotype F (1, 34) = 0.4296 P=0.5166 

Sex x Genotype F (1, 34) = 0.1267 P=0.7241 

Trial x Sex x Genotype F (1, 34) = 15.06 P=0.0005 

 

TIME IN WALL ZONE (see Figure 2b for the significant results and graphs and 2c for heatmaps)  

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 46.92 P<0.0001 

Sex F (1, 34) = 5.406 P=0.0262 

Genotype F (1, 34) = 1.947 P=0.1720 
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Trial x Sex F (1, 34) = 0.007340 P=0.9322 

Trial x Genotype F (1, 34) = 1.180 P=0.2851 

Sex x Genotype F (1, 34) = 6.190 P=0.0179 

Trial x Sex x Genotype F (1, 34) = 0.0006814 P=0.9793 

 

NOVEL OBJECT 

NO: TIME IN ZONE (see Figure 3a for the significant results, graphs and 3d for the heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 15.14 P=0.0004 

Sex F (1, 34) = 8.759 P=0.0056 

Genotype F (1, 34) = 0.5173 P=0.4769 

Trial x Sex F (1, 34) = 2.232 P=0.1444 

Trial x Genotype F (1, 34) = 0.8432 P=0.3649 

Sex x Genotype F (1, 34) = 3.980 P=0.0541 

Trial x Sex x Genotype F (1, 34) = 0.8274 P=0.3694 

 

 

NO: NUMBER OF VISITS (see Figure 3b for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 
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Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 0.4673 P=0.4989 

Genotype F (1, 34) = 11.15 P=0.0020 

Trial x Sex F (1, 34) = 3.064 P=0.0891 

Trial x Genotype F (1, 34) = 2.042 P=0.1621 

Sex x Genotype F (1, 34) = 0.1969 P=0.6601 

Trial x Sex x Genotype F (1, 34) = 2.042 P=0.1621 

 

NO: DIRECTED EXPLORATION ((see Figure 3c for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 4.156 P=0.0493 

Genotype F (1, 34) = 1.627 P=0.2108 

Trial x Sex F (1, 34) = 2.781 P=0.1045 

Trial x Genotype F (1, 34) = 0.1379 P=0.7126 

Sex x Genotype F (1, 34) = 0.0004 P=0.9840 

Trial x Sex x Genotype F (1, 34) = 0.9038 P=0.3485 

 

NO: OVERALL ACTIVITY (see Supplementary Figure S2A for significant results, graphs) 
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3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 317.9 P<0.0001 

Sex F (1, 34) = 1.314 P=0.2596 

Genotype F (1, 34) = 8.004 P=0.0078 

Trial x Sex F (1, 34) = 3.085 P=0.0880 

Trial x Genotype F (1, 34) = 3.420 P=0.0731 

Sex x Genotype F (1, 34) = 1.748 P=0.1949 

Trial x Sex x Genotype F (1, 34) = 1.444 P=0.2378 

 

SOCIAL INTERACTION 

SI: TIME IN ZONE (see Figure 4a for the significant results, graphs and 4d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 18.69 P=0.0001 

Sex F (1, 34) = 1.123 P=0.2967 

Genotype F (1, 34) = 7.386 P=0.0103 

Trial x Sex F (1, 34) = 0.1888 P=0.6667 

Trial x Genotype F (1, 34) = 0.4639 P=0.5004 

Sex x Genotype F (1, 34) = 0.2600 P=0.6134 
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Trial x Sex x Genotype F (1, 34) = 2.323 P=0.1367 

 

SI: NO OF VISITS 

3-way ANOVA, with sex, genotype, trial (RM) as factors (see Figure 4b for the significant results, 

graphs and 4d for heatmaps) 

Factor F value P-value 

Trial F (1, 34) = 1.180 P=0.2849 

Sex F (1, 34) = 0.4670 P=0.4990 

Genotype F (1, 34) = 6.299 P=0.0170 

Trial x Sex F (1, 34) = 0.4534 P=0.5053 

Trial x Genotype F (1, 34) = 1.682 P=0.2034 

Sex x Genotype F (1, 34) = 8.979 P=0.0051 

Trial x Sex x Genotype F (1, 34) = 0.02226 P=0.8823 

 

SI: DIRECTED EXPLORATION (see Figure 44 for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 22.33 P<0.0001 

Sex F (1, 34) = 9.303 P=0.0044 

Genotype F (1, 34) = 0.890 P=0.3520 
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Trial x Sex F (1, 34) = 2.452 P=0.9961 

Trial x Genotype F (1, 34) = 1.499 P=0.2292 

Sex x Genotype F (1, 34) = 0.3048 P=0.5845 

Trial x Sex x Genotype F (1, 34) = 0.1162 P=0.7353 

 

SI: OVERALL ACTIVITY (see Supplementary Figure S2B for significant results, graphs) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 30.06 P<0.0001 

Sex F (1, 34) = 3.393 P=0.0742 

Genotype F (1, 34) = 1.365 P=0.2508 

Trial x Sex F (1, 34) = 6.665 P=0.0143 

Trial x Genotype F (1, 34) = 1.772 P=0.1920 

Sex x Genotype F (1, 34) = 3.057 P=0.0894 

Trial x Sex x Genotype F (1, 34) = 0.2716 P=0.6057 

 

 

 

SUPPLEMENTARY TABLE S2 

SIGNIFICANT RESULTS OF POST-HOC MULTIPLE COMPARISON’S (BONFERRONI’S) FOR OF-NO-SI  
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OF: Activity 

Factors P-value 
OF1:Female WT vs. OF2:Female WT <0.0001 

OF1:Female 5XFAD vs. OF2:Female 5XFAD 0.0176 
OF1:Male WT vs. OF2:Male WT <0.0001 

OF1:Male 5XFAD vs. OF2:Male 5XFAD <0.0001 
OF1:Male WT vs. OF1:Male 5XFAD 0.01 

OF2:Female WT vs. OF2:Female 5XFAD 0.0013 
OF1:Female 5XFAD vs. OF1:Male 5XFAD 0.0817 

OF1:Female WT vs. OF1:Male 5XFAD 0.0027 
OF1:Female WT vs. OF2:Male WT 0.0174 

OF1:Female 5XFAD vs. OF2:Female WT <0.0001 
OF1:Female 5XFAD vs. OF2:Male WT 0.0001 

OF1:Female 5XFAD vs. OF2:Male 5XFAD 0.0179 
OF1:Male WT vs. OF2:Female WT <0.0001 

OF1:Male 5XFAD vs. OF2:Female WT <0.0001 
OF1:Male 5XFAD vs. OF2:Female 5XFAD <0.0001 

OF1:Male 5XFAD vs. OF2:Male WT <0.0001 
OF2:Female WT vs. OF2:Male 5XFAD 0.0401 

 

OF: Time in wall zone  

Factors P-value 
Female 5XFAD vs. Female WT 0.025 
Female 5XFAD vs Male 5XFAD 0.002 

 
 
 
 

 

NO: Time in zone 

Factors P-value 
Female 5XFAD vs. Male 5XFAD 0.0002 

  

NO: Activity 

Factors P-value 
NO1: WT vs. 5XFAD   0.004 

NO1 vs. NO2: WT <0.0001 
NO1 vs. NO2: 5XFAD <0.0001 

  

SI: Number of visits 

Factors           P-value 
    Female 5XFAD vs. Female WT 0.0001 
  Female 5XFAD vs. Male 5XFAD 0.0146 

  
  
  

 SI: Activity 
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Factors P-value 
Female: SI1 vs SI2 <0.0001 

SI1: Female vs Male 0.022 
  

SUPPLEMENTARY FIGURE LEGENDS 

Fig. S1: Locomotor activity in the open field trials (OF1 and OF2): Time course of distance traversed 

(in meters, m) during OF1 and OF2 trials for female (♀) (A) and male (♂) 5XFAD vs WT mice (B). All 

data are group means +/- SD, with statistical outcomes of 2-way ANOVA with trial and time as 

repeated measures for each sex/genotype indicated below. Significances are indicated as: ***=p 

<0.001, **=p<0.01, *=p<0.05 (see methods for further details about the 2-way ANOVAs). 

Fig. S2: Overall activity measures during NO and SI: Total distance traversed (in meters, m, per trial) 

during NO (A) and SI (B) trials for female and male 5XFAD vs WT mice. Tables below graphs indicate 

statistically significant outcomes from a 3-way ANOVA with sex, genotype and trial (repeated 

measures) as factors. Full statistical details can be found in Suppl. 1. All data are group means +/- SD, 

Significances are indicated as: ****=p <0.0001, ***= p<0.001, **=p<0.01, *=p<0.05. 

Fig. S3: Familiarity index for time in zone, number of visits and directed exploration during trials: 

Familiarity indices in the form of scatter plots for time in zone, number of visits and directed 

exploration during NO (A, B and C, respectively); SI (D, E and F, respectively) and NO vs SI (G, H, and I, 

respectively) for female and male 5XFAD and WT mice. Results of one-sample t-tests for each group 

(against chance), and significances (or lack of) are indicated above the bars. No group difference using 

a one-way ANOVA was observed. Table below graph in G indicates statistically significant outcomes 

from a 3-way ANOVA with sex, genotype and trial (repeated measures, NO vs SI) as factors. Data are 

presented as group means ± SD with symbols representing individuals; significances are indicated as: 

****=p <0.0001, ***= p<0.001, *=p<0.05, ns=not significant. 

Fig. S4: Coomassie loading controls: Example images of Coomassie total protein-stained nitrocellulose 

membranes, relating to examples of ECL images of western blots provided in main manuscript. 

Densitometric measurements were taken from each lane for normalisation of ECL measures specific 
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to target protein.  Note that some membranes were used for the detection of more than one antigen 

(PSD-95 and GFAP) whereas Ponceau was used for the normalisation of Iba-1 as Coomassie did not 

bind very well to the membrane.  

Fig. S5: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) and p-values indicated: Heat plots depict Z-score converted (overall 

mean) correlation matrices with values of the Pearson’s correlational coefficients (positive (blue) and 

negative (red)) indicated within each of the matrices on the left for WT    +    (A)and 5XFAD    +     (C) 

animals and p-values on the right (<0.06) for WT    +     (B)and 5XFAD    +    (D), respectively. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 

total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time spent in directed 

exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 

Fig. S6: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) indicated for each sex/genotype group: Heat plots depict Z-score 

converted (overall mean) correlation matrices with Pearson’s correlational coefficients (positive (blue) 

and negative (red)) for WT     (A), WT    (B), 5XFAD     (C) and 5XFAD     (D) animals, respectively. 

Behavioural and tissue markers are placed in sequence of their examination. Upper and lower triangle 

represent mirror images and dashed lines denote proxy categories (behavioural, pathology and 

inflammation, stress and trophic support. Abbreviations utilised are as follows: Activity OF/NO/SI= 
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total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall zone during OF; Time 

zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); Visits NO/SI= Total 

number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time spent in directed 

exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; Path/infl= 

pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or inflammatory 

pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by markers belonging to 

ER stress/neurotrophic pathways. For further detail, see Results. 
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FIGURE S2 
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FIGURE S3 
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FIGURE S4 

 

 

 



Sil et al., 2021: Sex difference in 5X mice 

FIGURE S5 
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FIGURE LEGENDS 

Fig. 1: The OF-NO-SI experimental design: OF-NO-SI consists of a circular Perspex arena first used as 

an open field (OF) (A). Next, a cylinder is placed in the centre of the arena (novel object trials, NO) 

and finally a stranger mouse was introduced into the cylinder for social interaction trials (SI). (B) An 

overview summary of a single run of the OF-NO-SI experiment: green boxes depict inter-trial 

intervals (ITIs, 15-minutes), during which a second animal can be interspersed. (C) An outline of 

borders and zones used for the parameters examined:  The ‘wall zone’ (5cm from the outer wall) and 

‘interaction zone’ (5cm from the cylinder) are indicated. 

Fig 2: Activity measures for the open field trials (OF1 and OF2): Total distance travelled (in meters, 

m, per trial) during OF1 and OF2 trials for female and male 5XFAD vs WT mice (A), and total time 

spent in the thigmotaxis zone (in seconds, s) (B). Tables below graphs indicate statistically significant 

outcomes from a 3-way ANOVA with sex, genotype and trial (repeated measures) as factors. The 

pattern of exploratory behaviour for each group is also illustrated by representative heatmaps of 

one individual animal belonging to each group where bright colours indicate locations of frequent 

visits and darker colours indicate areas of rare approaches during OF1 and OF2 (C). Full statistical 

details can be found in Suppl. 1. All data are group means ±SD, Significances are indicated as: ****=p 

<0.0001, ***= p<0.001, *=p<0.05. 

Fig. 3: Exploration of the novel object during NO1 and NO2: Total time in the exploration zone (in 

seconds, s, per trial) during NO1 and NO2 for female and male 5XFAD vs WT mice (A), total time in 

directed exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to this 

zone (C). Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with 

sex, genotype and trial (repeated measures) as factors. Representative heatmaps for exploratory 

activity during NO trials (D) clearly reveal how pattern of exploratory activity has shifted to the novel 

object zone during these trials (brighter colour concentrated around the centre where object was 

placed). Full statistical details can be found in Suppl. 1. Data are presented as group means ± SD with 
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symbols representing individuals; significances are indicated as: ****=p <0.0001, ***= p<0.001, 

*=p<0.05, ns=not significant.  

Fig. 4: Exploration of the conspecific during SI1 and SI2: Total time in the exploration zone (in 

seconds, s, per trial) during SI1 and SI2 for female and male 5XFAD vs WT mice (A) total time in 

directed exploration of the novel object (in seconds, s, per trial) (B) and total number of visits to the 

zone (C). Tables below graphs indicate statistically significant outcomes from a 3-way ANOVA with 

sex, genotype and trial (repeated measures) as factors. Heatmaps for exploratory activity (brighter 

colour marks more frequent visits) during SI trials (D) are displayed. Full statistical details can be 

found in Suppl. 1. Data are presented as group means ± SD, Significances are indicated as: ****=p 

<0.0001, ***= p<0.001, *=p<0.05, ns=not significant.  

Fig. 5: Gene expression of hAPP, but not PSEN-1 is higher in female 5XFAD animals compared to 

male transgenic mice: Gene expression of hAPP (A) and PSEN-1 (B) for 5XFAD animals of both sexes 

are reported as ratio of Ct values of most stable reference gene on plate (y-whazz/b-actin) with gene 

of interest (hAPP/hPSEN-1). Data are illustrated as scatter plots with mean ±SD; significance is 

displayed as: *=p<0.05 (parametric t-test), n=6.  

Fig. 6: Greater levels of full-length APP in female 5XFAD mice in soluble and insoluble fractions: 

Representative images of western blots of both soluble and insoluble fractions probed with antibody 

6E10 for the detection of full-length APP (fAPP) with molecular weight in kDA (A). Protein levels 

were higher in female 5XFAD compared to male transgenic animals in both the soluble (B) and 

insoluble (C) fractions. All data were normalised to female WT with data sets visualised as scatter 

plots with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as 

****=p<0.0001, **=p<0.01 (Bonferroni post-hoc test). 
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Fig. 7: Heightened MOAB-2 levels in female 5XFAD mice compared to male 5XFAD mice in soluble 

but not insoluble fractions: Representative images of dot blots of both soluble and insoluble 

fractions probed with MOAB-2 for the detection of Aβ (A). Protein levels were higher in female 

5XFAD animals compared to male transgenic animals in soluble (B) but not insoluble (C) fraction. All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as ****=p<0.0001, ***=p<0.001, **=p<0.01 (Bonferroni 

post-hoc test).  

Fig. 8: Inflammation was enhanced in 5XFAD mice: Representative images of western blots for 

GFAP and Iba-1 with corresponding molecular weights in kDa (A). Group average protein levels for 

GFAP (B), Iba-1 (C), and gene expression of NLRP3 (D) were higher in female 5XFAD animals 

compared to their corresponding WT and compared to the male 5XFAD (for Iba-1 and NLRP3). All 

data were normalised to female WT and visualised as scatter plots with mean ± SD; tables indicate 

significant 2-way ANOVA effects where int=interaction, gen=genotype; significances for individual 

genotypes/sexes are displayed on graph as, ***=p<0.001, **=p<0.01, *=p<0.05 (Bonferroni post-hoc 

test).  

Fig. 9: No major changes in pre- and post-synaptic markers: Representative images of Western 

blots for synaptophysin and PSD-95 with corresponding molecular weights in kDa (A).  A subtle sex 

effect (but no effect of genotype) was noted for synaptophysin such that females had heightened 

levels of this presynaptic protein (B). Protein levels of PSD-95 were higher in 5XFAD animals only 

relative to their WT (C). All data were normalised to female WT and are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as *=p<0.05 

(Bonferroni post-hoc test). 
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Fig. 10: Heightened expression of HSP-related markers in male mice: Gene expression of ER stress 

markers BiP (A), Hsp70 (B), and CHOP (C) were higher in male 5XFAD animals compared to female 

5XFAD. Male WT animals also had higher expression compared to female WT animals in case of BiP 

and CHOP. In addition, male WT had higher expression of ATF6 (D) and XBPt (F) compared to both 

male 5XFAD and female WT animals.  Female 5XFAD animals had very low expression of IRE1α 

expression (E) compared to female WT and male 5XFAD (marginally significant) while neither XBPs 

(G) nor the ratio of XBPs/XBPt (H) revealed any differences. All data are presented as scatter plots 

with mean ± SD; tables indicate significant 2-way ANOVA effects where int=interaction, 

gen=genotype; significances for individual genotypes/sexes are displayed on graph as, 

****=p<0.0001, *=p<0.05 (Bonferroni post-hoc test).  

Fig. 11: Heightened neurotrophic factor expression in male mice: Gene expression of neurotrophic 

factors revealed no genotypic or sex differences in BDNF (A). CREB (B) was higher in male 5XFAD (or 

WT) compared to female 5XFAD (or WT) but TrkB was found to be higher in male WT compared to 

female WT as well as male 5XFAD animals (C). Data are presented as scatter plots with mean ± SD; 

tables indicate significant 2-way ANOVA effects where int=interaction, gen=genotype; significances 

for individual genotypes/sexes are displayed on graph as ***=p<0.001, **=p<0.01, *=p<0.05 

(Bonferroni post-hoc test). 

Fig. 12: Correlations matrices between behavioural and molecular markers: Heat plots depict Z-

score converted (overall mean) correlation matrices with positive (blue) and negative (red) 

correlations based on Pearson’s r correlational coefficient, for WT    +     (A) and (B) 5XFAD    +     

animals. Behavioural and tissue markers are placed in sequence of their examination. Upper and 

lower triangle represent mirror images and dashed lines denote proxy categories (behavioural, 

pathology and inflammation, stress and trophic support. Abbreviations utilised are as follows: 

Activity OF/NO/SI= total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall 

zone during OF; Time zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); 
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Visits NO/SI= Total number of visits during NO (NO1+NO2)/SI(SI1+SI2); Exploration NO/SI= Total time 

in directed exploration during NO (NO1+NO2)/SI (SI1+SI2); Sol. = Soluble ; insol.= insoluble; 

Path/infl= pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or 

inflammatory pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by 

markers belonging to ER stress/neurotrophic pathways. For further detail, see Results. 
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SUPPLEMENTARY TABLE S1 

COMPLETE RESULTS OF 3-WAY ANOVA FOR OF-NO-SI  

OPEN FIELD 

ACTIVITY IN THE OPEN FIELD (see Figure 2a for the significant results, graphs and 2c for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 182.0 P<0.0001 

Sex F (1, 34) = 2.853 P=0.1003 

Genotype F (1, 34) = 18.93 P=0.0001 

Trial x Sex F (1, 34) = 3.431 P=0.0727 

Trial x Genotype F (1, 34) = 0.4296 P=0.5166 

Sex x Genotype F (1, 34) = 0.1267 P=0.7241 

Trial x Sex x Genotype F (1, 34) = 15.06 P=0.0005 

 

TIME IN WALL ZONE (see Figure 2b for the significant results and graphs and 2c for heatmaps)  

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 46.92 P<0.0001 
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Sex F (1, 34) = 5.406 P=0.0262 

Genotype F (1, 34) = 1.947 P=0.1720 

Trial x Sex F (1, 34) = 0.007340 P=0.9322 

Trial x Genotype F (1, 34) = 1.180 P=0.2851 

Sex x Genotype F (1, 34) = 6.190 P=0.0179 

Trial x Sex x Genotype F (1, 34) = 0.0006814 P=0.9793 

 

NOVEL OBJECT 

NO: TIME IN ZONE (see Figure 3a for the significant results, graphs and 3d for the heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 15.14 P=0.0004 

Sex F (1, 34) = 8.759 P=0.0056 

Genotype F (1, 34) = 0.5173 P=0.4769 

Trial x Sex F (1, 34) = 2.232 P=0.1444 

Trial x Genotype F (1, 34) = 0.8432 P=0.3649 

Sex x Genotype F (1, 34) = 3.980 P=0.0541 

Trial x Sex x Genotype F (1, 34) = 0.8274 P=0.3694 
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NO: NUMBER OF VISITS (see Figure 3b for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 0.4673 P=0.4989 

Genotype F (1, 34) = 11.15 P=0.0020 

Trial x Sex F (1, 34) = 3.064 P=0.0891 

Trial x Genotype F (1, 34) = 2.042 P=0.1621 

Sex x Genotype F (1, 34) = 0.1969 P=0.6601 

Trial x Sex x Genotype F (1, 34) = 2.042 P=0.1621 

 

NO: DIRECTED EXPLORATION ((see Figure 3c for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 232.2 P<0.0001 

Sex F (1, 34) = 4.156 P=0.0493 

Genotype F (1, 34) = 1.627 P=0.2108 
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Trial x Sex F (1, 34) = 2.781 P=0.1045 

Trial x Genotype F (1, 34) = 0.1379 P=0.7126 

Sex x Genotype F (1, 34) = 0.0004 P=0.9840 

Trial x Sex x Genotype F (1, 34) = 0.9038 P=0.3485 

 

NO: OVERALL ACTIVITY (see Supplementary Figure S2A for significant results, graphs) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 317.9 P<0.0001 

Sex F (1, 34) = 1.314 P=0.2596 

Genotype F (1, 34) = 8.004 P=0.0078 

Trial x Sex F (1, 34) = 3.085 P=0.0880 

Trial x Genotype F (1, 34) = 3.420 P=0.0731 

Sex x Genotype F (1, 34) = 1.748 P=0.1949 

Trial x Sex x Genotype F (1, 34) = 1.444 P=0.2378 

 

SOCIAL INTERACTION 

SI: TIME IN ZONE (see Figure 4a for the significant results, graphs and 4d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 
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Factor F value P-value 

Trial F (1, 34) = 18.69 P=0.0001 

Sex F (1, 34) = 1.123 P=0.2967 

Genotype F (1, 34) = 7.386 P=0.0103 

Trial x Sex F (1, 34) = 0.1888 P=0.6667 

Trial x Genotype F (1, 34) = 0.4639 P=0.5004 

Sex x Genotype F (1, 34) = 0.2600 P=0.6134 

Trial x Sex x Genotype F (1, 34) = 2.323 P=0.1367 

 

SI: NO OF VISITS 

3-way ANOVA, with sex, genotype, trial (RM) as factors (see Figure 4b for the significant results, 

graphs and 4d for heatmaps) 

Factor F value P-value 

Trial F (1, 34) = 1.180 P=0.2849 

Sex F (1, 34) = 0.4670 P=0.4990 

Genotype F (1, 34) = 6.299 P=0.0170 

Trial x Sex F (1, 34) = 0.4534 P=0.5053 

Trial x Genotype F (1, 34) = 1.682 P=0.2034 

Sex x Genotype F (1, 34) = 8.979 P=0.0051 
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Trial x Sex x Genotype F (1, 34) = 0.02226 P=0.8823 

 

SI: DIRECTED EXPLORATION (see Figure 44 for the significant results, graphs and 3d for heatmaps) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 22.33 P<0.0001 

Sex F (1, 34) = 9.303 P=0.0044 

Genotype F (1, 34) = 0.890 P=0.3520 

Trial x Sex F (1, 34) = 2.452 P=0.9961 

Trial x Genotype F (1, 34) = 1.499 P=0.2292 

Sex x Genotype F (1, 34) = 0.3048 P=0.5845 

Trial x Sex x Genotype F (1, 34) = 0.1162 P=0.7353 

 

SI: OVERALL ACTIVITY (see Supplementary Figure S2B for significant results, graphs) 

3-way ANOVA, with sex, genotype, trial (RM) as factors 

Factor F value P-value 

Trial F (1, 34) = 30.06 P<0.0001 

Sex F (1, 34) = 3.393 P=0.0742 
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Genotype F (1, 34) = 1.365 P=0.2508 

Trial x Sex F (1, 34) = 6.665 P=0.0143 

Trial x Genotype F (1, 34) = 1.772 P=0.1920 

Sex x Genotype F (1, 34) = 3.057 P=0.0894 

Trial x Sex x Genotype F (1, 34) = 0.2716 P=0.6057 

 

 

 

SUPPLEMENTARY TABLE S2 

SIGNIFICANT RESULTS OF POST-HOC MULTIPLE COMPARISON’S (BONFERRONI’S) FOR OF-NO-SI  

OF: Activity 

Factors P-value 

OF1:Female WT vs. OF2:Female WT <0.0001 

OF1:Female 5XFAD vs. OF2:Female 5XFAD 0.0176 

OF1:Male WT vs. OF2:Male WT <0.0001 

OF1:Male 5XFAD vs. OF2:Male 5XFAD <0.0001 

OF1:Male WT vs. OF1:Male 5XFAD 0.01 

OF2:Female WT vs. OF2:Female 5XFAD 0.0013 
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OF1:Female 5XFAD vs. OF1:Male 5XFAD 0.0817 

OF1:Female WT vs. OF1:Male 5XFAD 0.0027 

OF1:Female WT vs. OF2:Male WT 0.0174 

OF1:Female 5XFAD vs. OF2:Female WT <0.0001 

OF1:Female 5XFAD vs. OF2:Male WT 0.0001 

OF1:Female 5XFAD vs. OF2:Male 5XFAD 0.0179 

OF1:Male WT vs. OF2:Female WT <0.0001 

OF1:Male 5XFAD vs. OF2:Female WT <0.0001 

OF1:Male 5XFAD vs. OF2:Female 5XFAD <0.0001 

OF1:Male 5XFAD vs. OF2:Male WT <0.0001 

OF2:Female WT vs. OF2:Male 5XFAD 0.0401 

 

OF: Time in wall zone  

Factors P-value 

Female 5XFAD vs. Female WT 0.025 

Female 5XFAD vs Male 5XFAD 0.002 
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NO: Time in zone 

Factors P-value 

Female 5XFAD vs. Male 5XFAD 0.0002 

  

NO: Activity 

Factors P-value 

NO1: WT vs. 5XFAD   0.004 

NO1 vs. NO2: WT <0.0001 

NO1 vs. NO2: 5XFAD <0.0001 

  

SI: Number of visits 

Factors           P-value 

    Female 5XFAD vs. Female WT 0.0001 

  Female 5XFAD vs. Male 5XFAD 0.0146 
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 SI: Activity 

Factors P-value 

Female: SI1 vs SI2 <0.0001 

SI1: Female vs Male 0.022 

  

SUPPLEMENTARY FIGURE LEGENDS 

Fig. S1: Locomotor activity in the open field trials (OF1 and OF2): Time course of distance traversed 

(in meters, m) during OF1 and OF2 trials for female (    ) (A) and male (    ) 5XFAD vs WT mice (B). All 

data are group means +/- SD, with statistical outcomes of 2-way ANOVA with trial and time as 

repeated measures for each sex/genotype indicated below. Significances are indicated as: ***=p 

<0.001, **=p<0.01, *=p<0.05 (see methods for further details about the 2-way ANOVAs). 

Fig. S2: Overall activity measures during NO and SI: Total distance traversed (in meters, m, per trial) 

during NO (A) and SI (B) trials for female and male 5XFAD vs WT mice. Tables below graphs indicate 

statistically significant outcomes from a 3-way ANOVA with sex, genotype and trial (repeated 

measures) as factors. Full statistical details can be found in Suppl. 1. All data are group means +/- SD, 

Significances are indicated as: ****=p <0.0001, ***= p<0.001, **=p<0.01, *=p<0.05. 

Fig. S3: Familiarity index for time in zone, number of visits and directed exploration during trials: 

Familiarity indices in the form of scatter plots for time in zone, number of visits and directed 

exploration during NO (A, B and C, respectively); SI (D, E and F, respectively) and NO vs SI (G, H, and 

I, respectively) for female and male 5XFAD and WT mice. Results of one-sample t-tests for each 

group (against chance), and significances (or lack of) are indicated above the bars. No group 

difference using a one-way ANOVA was observed. Table below graph in G indicates statistically 
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significant outcomes from a 3-way ANOVA with sex, genotype and trial (repeated measures, NO vs 

SI) as factors. Data are presented as group means ± SD with symbols representing individuals; 

significances are indicated as: ****=p <0.0001, ***= p<0.001, *=p<0.05, ns=not significant. 

Fig. S4: Coomassie loading controls: Example images of Coomassie total protein-stained 

nitrocellulose membranes, relating to examples of ECL images of western blots provided in main 

manuscript. Densitometric measurements were taken from each lane for normalisation of ECL 

measures specific to target protein.  Note that some membranes were used for the detection of 

more than one antigen (PSD-95 and GFAP) whereas Ponceau was used for the normalisation of Iba-1 

as Coomassie did not bind very well to the membrane.  

Fig. S5: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) and p-values indicated: Heat plots depict Z-score converted (overall 

mean) correlation matrices with values of the Pearson’s correlational coefficients (positive (blue) 

and negative (red)) indicated within each of the matrices on the left for WT    +   (A)and 5XFAD 

   +     (C) animals and p-values on the right (<0.06) for WT    +    (B)and 5XFAD    +     (D), 

respectively. Behavioural and tissue markers are placed in sequence of their examination. Upper and 

lower triangle represent mirror images and dashed lines denote proxy categories (behavioural, 

pathology and inflammation, stress and trophic support. Abbreviations utilised are as follows: 

Activity OF/NO/SI= total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall 

zone during OF; Time zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); 

Visits NO/SI= Total number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time 

spent in directed exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; 

Path/infl= pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or 

inflammatory pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by 

markers belonging to ER stress/neurotrophic pathways. For further detail, see Results. 
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Fig. S6: Correlations matrices between behavioural and molecular markers with values of 

correlational coefficients (r) indicated for each sex/genotype group: Heat plots depict Z-score 

converted (overall mean) correlation matrices with Pearson’s correlational coefficients (positive 

(blue) and negative (red)) for WT     (A), WT    (B), 5XFAD     (C) and 5XFAD    (D) animals, 

respectively. Behavioural and tissue markers are placed in sequence of their examination. Upper and 

lower triangle represent mirror images and dashed lines denote proxy categories (behavioural, 

pathology and inflammation, stress and trophic support. Abbreviations utilised are as follows: 

Activity OF/NO/SI= total activity in OF1+OF2/NO1+NO2/SI1+SI2; wall zone OF= total time in wall 

zone during OF; Time zone NO/SI= total time in interaction zone during NO (NO1+NO2)/SI (SI1+SI2); 

Visits NO/SI= Total number of visits during NO (NO1+NO2)/SI(SI1+SI2);Exploration NO/SI= Total time 

spent in directed exploration during NO (NO1+NO2)/ SI(SI1+SI2); Sol. = Soluble ; insol.= insoluble; 

Path/infl= pathology/inflammation indicating clusters formed by markers for amyloid, synaptic or 

inflammatory pathways; Stress/Troph= ER stress, neurotrophic indicating clusters formed by 

markers belonging to ER stress/neurotrophic pathways. For further detail, see Results. 
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FIGURE S1 
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FIGURE S2 
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FIGURE S3 
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FIGURE S4 
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FIGURE S5 
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FIGURE S6 

 

 

 



Sil et al., 2021: Sex difference in 5X mice 

 


