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It is generally agreed that there are signifi-
cant and reliable sex differences in human 
cognition that can be revealed using labo-
ratory based tasks (reviewed by Kimura, 
1996; Loring-Meier and Halpern, 1999; 
Weiss et al., 2003). Animal models have 
shown that for at least one type of cogni-
tive process, visual–spatial navigation, these 
sex differences are organized by exposure to 
gonadal steroids early in life (Williams et al., 
1990; Williams and Meck, 1991, 1993) and 
are modulated by exposure to activational 
estrogens after puberty (Rapp et al., 2003; 
Sandstrom and Williams, 2004) as well as 
androgens (Bimonte-Nelson et al., 2003). 
Moreover, hormonally induced alterations 
in the hippocampus, and in the basal fore-
brain cholinergic projections to the hip-
pocampus (Gould et al., 1991; Ragbetli et 
al., 2002; Berger-Sweeney, 2003; Veng et al., 
2003; Gibbs, 2010) appear to be the neural 
mechanisms underlying these sex differ-
ences in spatial cognition.

Interestingly, there are a number of 
studies that suggest that men outperform 
women on tests of temporal discrimination 
and reproduction when the interval being 
timed is short, in the milliseconds to seconds 
range (Roeckelein, 1972; Strang et al., 1973; 
Rammsayer and Lustnauer, 1989; Wittmann 
and Szelag, 2003). It is less clear whether 
there are sex differences in the perception 
or production of longer intervals (seconds 
to minutes – see Friedman, 1977, but also 
see Block et al., 2000). These data suggest 
that there may be hormonally organized 
or activated differences in interval timing, 
a fundamental property of brain that is 
important for many behaviors (e.g., motor 
control, optimal foraging, spatial naviga-
tion, and higher-level cognition). To date, 
relatively little work has been done to exam-
ine possible underlying neuroendocrine 
development and modulation of interval 
timing. An examination of the neural and 
neuroendocrine underpinning of timing 
and time perception is particularly impor-
tant because there are well known sex dif-
ferences in the expression of developmental 
disabilities in learning and cognition (e.g., 

autism), as well as psychiatric illness (e.g., 
depression and schizophrenia) and neuro-
degenerative disease (e.g., Alzheimer’s and 
Parkinson’s disease).

Meck and colleagues (Meck and Church, 
1983; Meck et al., 1985) developed a mode-
control model of temporal integration in 
which the same analog magnitude estima-
tion system is used in different modes of 
pulse accumulation for both timing (run 
mode) and counting (event mode). In such 
a system, a count is equivalent to the amount 
of time that the accumulation process is 
active during the enumeration of the event. 
As a result, the final accumulation of counts 
in the event mode is functionally equivalent 
to the final accumulation of pulses during 
the run mode used for the timing of sig-
nal durations. Consequently, if counting 
and timing are considered basic building 
blocks for symbolic cognition (Cordes and 
Gelman, 2005; Cordes et al., 2007; Lustig, 
2011), and if the temporal integration pro-
cesses common to both abilities would be 
affected by neuroendocrine mechanisms, 
then one might be able to use deficits in 
temporal integration as early predictors of 
these disorders (see Allman, 2011; Allman 
and Meck, 2011; Allman et al., 2011; Falter 
and Noreika, 2011).

These findings raise several interesting 
questions. First, what is the extent of sex dif-
ferences in temporal integration as related 
to timing and counting? Are sex differences 
in temporal integration seen only at short 
(small), millisecond intervals (counts) or 
across all temporal intervals (counts) as dis-
cussed by Buhusi and Cordes (2011)? Is the 
smallest unit of temporal integration (e.g., 
quantal unit) similar in male and female 
rats? While the behavioral data from male 
rats using signal durations over 2 s suggest 
that time and number are represented in the 
same fashion (Meck, 1997), similar proce-
dures suggest differences between counting 
and timing in male rats when using inter-
vals in the milliseconds range (Clarke et al., 
1996) as well as differences between count-
ing and timing in female rats (Breukelaar 
and Dalrymple-Alford, 1998).

A second issue is whether sex differences 
in timing and counting are modulated by 
organizational and activational effects of 
gonadal steroids? To date only a few stud-
ies have evaluated the effect of estradiol on 
timing and counting in adult female rats. 
Ross and Santi (2000) found that systemic 
administration of estradiol for 2 weeks 
impaired the ability of ovarectomized rats 
to use both time and number as discrimina-
tive stimuli. Two more recent studies have 
reported an increase in clock speed follow-
ing the administration of estradiol to ova-
riectomized females (Sandstrom, 2007), but 
not to castrated males (Pleil et al., 2011), 
suggesting a sex difference in responsive-
ness to estradiol replacement. There is also 
some evidence that organizational actions 
of gonadal hormones may modify clock 
speed of adult rats (Pleil et al., 2011). A third 
unresolved issue is the determination of the 
neural representation of time and number 
in males and females. Current data indicate 
that cortico-striatal circuits, as well as dopa-
minergic afferents from the substantia nigra 
pars compacta, play a central role in interval 
timing (Harrington et al., 1998; Harrington 
and Haaland, 1999; Matell and Meck, 2000, 
2004; Matell et al., 2003; Coull et al., 2011) 
and these circuits and their response to 
estrogen and dopaminergic agonists are 
sexually dimorphic (e.g., Becker, 1990, 1999; 
Bazzett and Becker, 1994; Xiao and Becker, 
1994). In fact, the striatum is sexually 
dimorphic even during embryonic develop-
ment, when the striata of females are more 
densely packed with dopamine axons and 
the GABAergic neurons that form striatal 
synapses than those of males (Ovtscharoff 
et al., 1992). To date most studies of the neu-
ral representation of time and number have 
used male subjects. Male rats with lesions 
of the dorsal striatum or substantia nigra 
pars compacta behave as though they have a 
severely impaired perception of time (Meck, 
2006a,b). Dopaminergic drug administra-
tion either systemically (Meck, 1996, 2007; 
Cheng et al., 2007a,b,c) or intrastriatally 
(Neil and Herndon, 1978) alters the speed 
of interval timing processes. Moreover, male 
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sex difference has never been explored, one 
study has evaluated the effect of estradiol 
on timing and counting in females (Ross 
and Santi, 2000) and revealed that low dose 
exposure to estradiol in females decreases 
both timing (in the 2–8 s range) and count-
ing accuracy, but does not dissociate per-
formance on timing and counting tasks. 
However, this study did not study male rats, 
and did not examine timing in the millisec-
ond range. Future work should manipulate 
hormone exposure both developmen-
tally and in adulthood in both males, and 
females across several cycles and compare 
the accuracy and precision of their timing 
and counting performance (see Pleil et al., 
2011).

Recent evidence suggests that some 
sexually dimorphic pathways and behav-
ior emerge because of direct genetic sex 
differences, rather than a cascade of hor-
monal events that stem from male–female 
genetic differences. For example, only males 
express the Sry gene, which is known to 
cause the differentiation of the male testes. 
Interestingly, Sry is also expressed in dopa-
minergic neurons in the substantia nigra 
that project to the striatum and have direct 
male-specific effects (Dewing et al., 2006). 
When Sry expression is reduced in adult rats, 
the expression of tyrosine hydroxylase in the 
substantia nigra and striatum are reduced 
and motor performance declines. Thus it is 
possible that direct, sex-specific effects of a 
sex chromosome gene may cause sex dif-
ferences in the neural pathways underlying 
counting and timing. This possibility also 
remains unexplored.

The neural represenTaTion of Time 
and number
Future studies should explore the represen-
tation of time and number by a network of 
neural substrates (including the basal gan-
glia, frontal cortex, and parietal cortex) in 
males and females using ensemble record-
ings at multiple sites (Vodolazhskaya and 
Beier, 2002; Varga et al., 2010; Coull et al., 
2011). We hypothesize that the same neural 
substrates are involved in processing both 
temporal and numerical information, but 
that sexual dimorphisms in the neural 
substrates in temporal processing underlie 
differences in temporal integration and syn-
chronization of the timing pattern as well as 
learning and memory for time in males and 
females (see Cheng et al., 2008).

“number-relevant” standard stimuli have a 
total duration of 4.0 s with either two or 
eight sound-on events, whereas the “time-
relevant” standard stimuli have a total dura-
tion of 2.0 or 8.0 s with the total number 
of events held constant at four. After the 
discrimination is acquired, the four periodic 
standards are pseudorandomly mixed with 
probe (test) signals with variable duration 
(3.0, 4.0, 5.0, and 6.0 s) but constant number 
of events, four, and probe signals of constant 
duration (4.0 s) consisting of either 3, 4, 5, 
and 6 events (see Cordes et al., 2007). By 
using continuous or segmented stimuli in 
this procedure it is also possible to compute 
the equivalent time interval corresponding 
to one increment in counting, also known 
as “quantal unit” (Meck et al., 1985). The 
quantal unit has been show to be about 
200 ms in male rats (Meck and Church, 
1983) and humans (Whalen et al., 1999). 
As yet, separate quantal units for males 
and females tested in the same procedures 
remain to be determined.

sexual differenTiaTion of Timing 
and counTing
As has been suggested recently (McCarthy 
and Arnold, 2011), there are a number of 
ways that sex differences in timing and 
counting might develop. The classic model 
(Phoenix et al., 1959) is that adult brain and 
behavior become sexually differentiated or 
organized during early development by 
gonadal hormones, which are released at 
high levels by male but not female fetuses. 
Thus, as a first step in exploring the underly-
ing neuroendocrine basis of sex differences 
in timing and counting the early hormone 
environment of males and female can be 
manipulated and their adult behavior 
examine. This comparison allows for the 
determination of whether gonadal ster-
oid exposure soon after birth hormonally 
organizes sex differences in timing/count-
ing. To date, no study has manipulated hor-
mones early in development and examined 
the consequences for both adult counting 
and timing, although as mentioned previ-
ously, clock speed appears to be organized 
by early gonadal hormones (Pleil et al., 
2011).

It is also possible that sex differences in 
counting and timing might emerge because 
of sex differences in the effects of circulat-
ing estrogens in the adult female versus tes-
tosterone in the male. While this potential 

Parkinson’s disease patients show deficits in 
reproducing durations when they are off of 
their dopaminergic medications (Malapani 
et al., 1998, 2002; Jahanshahi et al., 2010; 
Jones and Jahanshahi, 2011; Jones et al., 
2011). Brain imaging studies in humans 
show the cortex and striatum are activated 
during timing tasks (Rao et al., 1997, 2001; 
Harrington et al., 1998; Hinton and Meck, 
2004; Meck and Malapani, 2004; Meck et al., 
2008; Allman and Meck, 2011; Coull et al., 
2011). To date, no studies have compared 
neural activations during timing and count-
ing tasks in males versus females.

Male–female differences have also been 
reported in the likelihood temporal infor-
mation versus number information are used 
to solve discriminations. For example, when 
durations are larger than 2 s male rats read-
ily and equally use both time and number 
to solve discrimination tasks (Meck and 
Church, 1983) while females preferentially 
use temporal cues over counting (Breukelaar 
and Dalrymple-Alford, 1998). Possible sex 
differences between temporal integration 
and numerical ability using durations in the 
order of hundreds of milliseconds remain 
to be investigated. The procedure that has 
been used to collect these data is the bisec-
tion procedure (Church and Deluty, 1977; 
Meck, 1983) and the specific variant of 
this procedure used to study counting and 
timing was developed by Meck and Church 
(1983) and has several features that make it 
ideally suited for these sex differences stud-
ies. The bisection procedures can be used 
to study counting and timing simultane-
ously (Breukelaar and Dalrymple-Alford, 
1998; Paule et al., 1999), in a variety of 
species (rat: Meck and Church, 1983; Pleil 
et al., 2011; mouse: Penney et al., 2008; 
monkey: Merritt et al., 2010; human: Allan 
and Gibbon, 1991; Roitman et al., 2007) 
and across developmental stages (children: 
Droit-Volet and Meck, 2007; Droit-Volet 
et al., 2007; Lustig and Meck, 2011; aged 
adult: Lustig and Meck, 2001, 2011). As 
well, these procedures have the advantage of 
being able to dissociate timing at the short 
(millisecond to second) and long (seconds 
to minutes) durations as demonstrated by 
Breukelaar and Dalrymple-Alford (1998) 
and Melgire et al. (2005). Briefly, male and 
female rats can be trained to discriminate 
between four standard stimuli (sequences 
of on/off auditory events) which are either 
“time-relevant” or “number-relevant”; the 
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