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Abstract
Purpose Throughout the SARS-CoV2 pandemic, multiple reports show higher percentages of hospitalization, morbidity,
and mortality among men than women, indicating that men are more affected by COVID-19. The pathophysiology of this
difference is yet not established, but recent studies suggest that sex hormones may influence the viral infectivity process.
Here, we review the current evidence of androgen sensitivity as a decisive factor for COVID-19 disease severity.
Methods Relevant literature investigating the role of androgens in COVID-19 was assessed. Further, we describe several drugs
suggested as beneficial for COVID-19 treatment related to androgen pathways. Lastly, we looked at androgen sensitivity as a
predictor for COVID-19 progression and ongoing clinical trials on androgen suppression therapies as a line of treatment.
Results SARS-COV2 virus spike proteins utilize Transmembrane protease serine 2 (TMPRSS2) for host entry. Androgen
receptors are transcription promoters for TMPRSS2 and can, therefore, facilitate SARS-COV2 entry. Variants in the
androgen receptor gene correlate with androgen sensitivity and are implicated in diseases like androgenetic alopecia and
prostate cancer, conditions that have been associated with worse COVID-19 outcomes and hospitalization.
Conclusion Androgen’s TMPRSS2-mediated actions might explain both the low fatalities observed in prepubertal children
and the differences between sexes regarding SARS-COV2 infection. Androgen sensitivity may be a critical factor in
determining COVID-19 disease severity, and sensitivity tests can, therefore, help in predicting patient outcomes.
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Introduction

The novel coronavirus disease (COVID-19) caused by severe
acute respiratory syndrome coronavirus 2 (SARS-COV2) has
evolved into a global pandemic and has affected millions of
people worldwide. Two notably consistent findings are the low
rates of prepubertal mortality [1] and that men are more likely
to have severe symptoms and therefore need hospitalization
[1, 2]. Moreover, sex differences in the prevalence of smoking,
cardiovascular diseases, and drinking habits do not fully
account for the higher risks for men [2]. Likewise, disparities
between sexes have also been observed in the Middle East

respiratory syndrome epidemic, where variation sex hormones
were shown to rave a role in the disease susceptibility [3].
Androgens, such as testosterone and dihydrotestosterone, are
steroid hormones produced in both sexes, and their levels
increase with puberty. Androgens levels are higher in males
than females and have been hypothesized to have a role in
COVID-19 diseases [2, 4]. The interest in the role of andro-
gens increased after the uncovering of SARS-COV2 entry
points [5]. Following that, studies have shown that androgens
have a role in COVID-19 disease progression and that a
considerable number of hospitalized patients have an under-
lying androgen-mediated condition [6, 7]. In this review, we
will look at how androgens facilitate SARS-COV2 entry, their
role in disease progression, and their therapeutic value.

The role of androgens is mediated by
TMPRSS2

The spike proteins of SARS-COV2 intermediate the entry
to host cells by undergoing spike protein priming by the
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transmembrane protease serine 2 (TMPSS2) and by binding
to Angiotensin-converting enzyme 2 (ACE2) receptors [5].
Data from prostate cancer research has demonstrated the
androgen receptor as a regulator of TMPRSS2, capable of
increasing the expression of this gene [8]. For example, the
TMPRSS2 plays a role in the pathophysiology of prostate
cancer by interacting with the oncogenic transcription factor
ERG. The interaction between these genes juxtaposes the
androgen receptor elements present in their code, causing
the ERG gene to be also controlled by androgen receptor
signalling [9]. The androgen-dependent nature is also evi-
dent outside of the prostate, as administering exogenous
androgen treatment to a human lung adenocarcinoma-
derived cell line is able to increase expression of
TMPRSS2, mainly in the in type II pneumocytes [10].

Moreover, androgen deprivation therapy (ADT), a
commonly-used treatment for prostate cancer patients, has
been shown to lower TMPRSS2 expression [11]. The pro-
posed mechanism behind this effect is based on the idea that
androgen receptor and, subsequently, TMPPRSS2 expres-
sion affects the SARS-COV2 virus ability to enter host cells
and its spike proteins affinity to bind ACE2 receptors
(Fig. 1). Therefore, ADT shows the potential to provide
partial protection from SARS-CoV2 infections, while
measuring androgen levels might be useful for the prog-
nosis of COVID-19 severity. Nevertheless, further pre-
clinical and clinical studies are needed for a better under-
standing of the androgen receptor effects and possible
therapeutic applications.

Androgen sensitivity and COVID-19 disease
severity

All androgens act through the androgen receptor, which is
encoded by a single-copy gene on the X chromosome
(Fig. 1), and variants of this gene correlate with different
levels of androgen sensitivity. Such modifications increase
the risk of androgen-mediated diseases such as androgenic
alopecia and prostate cancer [12–14]. Evidence of androgen
sensitivity association with COVID-19 disease progression
can, therefore, be observed in such conditions. For example,
androgenetic alopecia, a form of male pattern hair loss, is
present in a substantial number of hospitalized patients [7]
and was shown as a risk factor for developing severe
COVID-19 symptoms [6]. Moreover, prostate cancer
patients who take ADT seem to have a lower risk of
COVID-19 infection compared to cancer patients without
ADT [11].

However, the relationship between circulating androgen
levels, androgen sensitivity, and COVID-19 severity is not
straightforward. As androgens promote androgen receptor
transcriptional activity, it would be expected that

androgen-deprived patients would have a reduced number
of activated androgen receptors to promote TMPRSS2
transcription and, thus, a decreased risk for SARS-CoV2
entry. Nevertheless, reported data from Italy and Germany
suggest a contradictory outcome. Low testosterone levels
can be observed in the majority of COVID-19 intensive
care patients [15] and can predict poor prognosis and
mortality [16]. While both studies have limitations such as

Fig. 1 Androgens facilitate SARS-COV2 entry through a TMPRSS2-
mediated pathway. Both androgen receptor and ACE2 genes are
located on chromosome X. Circulating androgens binds to AR, acti-
vating it, which promotes TMPRSS2 transcription. SARS-CoV2 spike
proteins are then primed by TMPRSS2, allowing the interaction with
ACE2 receptors to enter host cells

Fig. 2 Theoretical mechanisms suggesting CAG repeats length and
associated androgen sensitivity as a predictor for COVID-19 disease
severity
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lack of control groups or testosterone levels prior to
infection, the results warrant consideration. Typically,
androgen levels are correlated to androgen sensitivity, but
many factors can affect this association [17]. For instance,
although testosterone levels are known to drop with age,
there is no exact threshold that predicts androgen-sensitive
phenotypes, and treatments are mostly based on sympto-
matology [18]. A possible modulator that could also
mediate SARS-CoV2 infection is inflammation. Pro-
inflammatory cytokines and systemic inflammatory pro-
cesses are associated with low androgens levels in young
and older men [19, 20]. In addition, there is evidence that
interindividual variation in androgen receptor sensitivity
due to cysteine adenine guanine (CAG) polymorphisms
can account for sensitivity symptoms even with ‘low’
testosterone levels [21, 22]

The androgen receptor has three main functional
domains: the transactivation domain, the DNA-binding
domain, and the ligand-binding domain. The N-terminal
transactivation domain harbors a polymorphic CAG
nucleotide repeat segment. Interestingly, the length of
polymorphic CAG nucleotides repeats is associated with
the prostate cancer pathophysiology, as shorter CAG
repeats inversely correlate to androgen receptor expression
and subsequently increase the risk of prostate cancer [12].
Increased androgen receptor expression might lead to a
higher risk of acquiring a severe COVID-19 disease by
promoting TMPRSS2 transcription (Fig. 2). Moreover,
CAG repeat length was indicated as a mechanism behind
racial variations noticed for the COVID-19 mortality rate.
For example, African Americans have been dis-
proportionately affected by SARS-COV2 compared to
other ethnic groups in the U.S. This ethnic group seems to
have a higher risk of developing progressive prostate
cancer and display shorter CAG repeats [4, 23]. In vitro
diagnostic test clinical trial based on CAG repeats length is
currently ongoing to evaluate COVID-19 disease severity
(Table 2). It is important to notice that, to the best of our
knowledge, the effects of the length of the polymorphic
CAG repeat sequence in pulmonary tissue are still
unknown and no clinical data are available to support this
hypothesis. Thus, the results from the ongoing trials are

vital for evaluating the potential of this mechanism as a
COVID-19 severity marker.

Androgen suppression targeted treatment
for COVID-19

Since the start of the COVID-19 pandemic, various drugs
have been proposed for treatment [24–26], but there is
still no universal therapy approved. However, some
medications (Table 1) have received attention due to their
supposedly beneficial effects such as Hydroxy-
chloroquine, Nitric oxide (NO), and dexamethasone.
Hydroxychloroquine, an antimalarial drug, was shown to
limit SARS-COV2 infections and prevent the virus entry
[27, 28]. This drug was initially granted temporary FDA
approval but was later revoked due to adverse effects and
reported mortality [29]. However, the link to androgen’s
role might be significant. There is evidence that Hydro-
xychloroquine can also decrease androgens secretion
progressively with the duration of treatment [30].

Similarly, NO affects androgen receptor activity. NO
production and actions are dependent to some extent on
androgen receptors and blocking androgen receptors redu-
ces NO production [31]. Moreover, NO decreases androgen
receptor promoter actions [32], which can subsequently
affect TMPRSS2 and ACE 2 expression limiting the viral
ability to enter host cells. NO has been shown to suppress
SARS-COV2 replication [33]. In addition, NO affects the
virus spike proteins and the interactions with ACE2, sug-
gesting a multifunctional role against COVID-19 [34].
Taken together, these results indicate that androgen path-
ways might be the primary mechanism behind the observed
NO beneficial outcome.

Recently, preliminary results from the Randomized
Evaluation of COVID-19 therapy (RECOVERY) trial have
been labeled as a scientific breakthrough and received
international praise due to its promising results. Dex-
amethasone, a glucocorticosteroid drug, reduced the mor-
tality rate by one-third in mechanically ventilated patients
and by one-fifth for those receiving oxygen without venti-
lation [26]. Notably, dexamethasone has been shown to

Table 1 Drugs investigated as a line of treatment for COVID-19 infection, their primary targets, common indications, and proposed mechanism of
action for COVID-19 treatment. Obtained from drugbank.ca

Drug Main targets Primary indication Mechanism of action

Hydroxychloroquine TLR-7, TLR-9, ACE2 Malaria prophylaxis and
uncomplicated malaria

Inhibits terminal glycosylation
of ACE2.

Nitric oxide GUCY1A2, MT1A, IDO1 Hypoxic respiratory failure (neonates) Inhibition of androgen receptors.

Dexamethasone Glucocorticoid receptors, NR0B1, Annexin
A1, NOS2, NR1I2

Bacterial infection; inflammatory
conditions

Regulates testosterone synthesis.
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lower testosterone synthesis in animal models [35, 36] and
human patients [36]. Lower androgen levels might be a
contributor to dexamethasone observed beneficial effects;
however, these preliminary results should be interpreted
with caution.

Finally, high-throughput screening to identify com-
pounds able to reduce ACE-2 levels revealed screening hits
commonly can target androgen signalling pathway. More-
over, androgen inhibitors were able to reduce ACE2 levels
suggesting beneficial effects of this approach [37]. Ongoing
clinical trials demonstrate the therapeutic potential of
androgen suppression (Table 2). As most of these treat-
ments are well-known and globally available, if approved,
they can provide accessible and efficient COVID-19
therapies.

In summary, androgen’s TMPRSS2-mediated actions
can explain both the low fatalities observed in prepubertal
children and the differences between sexes regarding
SARS-COV2 infection. Androgen sensitivity might be a
critical factor in determining COVID-19 disease severity,
and sensitivity tests can, therefore, help in predicting patient
outcomes. There is still a large potential for development of
androgen suppression-based treatments for COVID-19, but
ongoing trials will provide valuable knowledge that can
lead to improved therapies.
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