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Abstract Genes that influence a phenotype earlier in life

may differ from those influencing the same phenotype

later, particularly during significant development periods

such as puberty, when it is known that new genetic and

environmental influences may become important. In the

present study, body mass index (BMI) data were collected

from 470 monozygotic twin pairs and 673 dizygotic twin

pairs longitudinally at ages 12, 14 and 16, roughly strad-

dling puberty. In order to examine whether there are

qualitative and quantitative differences in genetic and

environmental influences affecting BMI in males and

females, during development, a general sex-limitation

simplex model (which represents the longitudinal time

series of the data) was fitted to the repeated measurements

of BMI. The ADE simplex model provided the best fit to

the adolescent data, with disparity in the magnitude of

additive genetic influences between sexes, but no differ-

ences in the non-additive genetic (epistasis or dominance)

or environmental influences. Results found may reflect

many genetic and environmental influences during puberty,

including the possible complex interaction between genes

involved in the biological mechanism of weight regulation

and the development of likely peer pressured activities

such as severe exercise and diet regimes. Although, over

1,000 pairs of twins were used, this study still lacked the

power to properly discriminate between additive and non-

additive genetic variance.
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Introduction

Many studies have investigated the role of genes and

environment in the variability of relative weight, as defined

by body mass index (BMI). BMI is an anthropometric

measure of body mass according to height and is one of the

most extensively studied obesity-related phenotypes.

Obesity causes or exacerbates many health problems such

as type II diabetes mellitus, coronary heart disease, certain

forms of cancer, respiratory complications and osteoar-

thritis. The worldwide prevalence of being overweight

appears to be rising not only in adults but also in children

(Chambers 2001). In Australia, almost a quarter of children

and adolescents are overweight or obese (Australian

Institute of Health and Welfare (AIHW) 2000; Eckersley

2003). In fact, the incidence of obesity induced type II

diabetes among children increased tenfold between 1982

and 1994 (Hill et al. 2003).

Body weight is a multifactorial trait, determined by an

interaction between environmental and genetic factors.

Indisputably, obesity has a significant heritable contribu-

tion. However, estimates of genetic and environmental

effects vary widely, depending on study type, population

and age of subjects. The few studies performed in children,

adolescents and young adults show heritabilities for BMI

from 70% to over 90% (Bouchard et al. 1985; Allison et al.

1994a; Maes et al. 1997; Pietilainen et al. 1999). In adult
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twin populations, variability of body weight ascribed to

genes is between 50 and 80% (Pietilainen et al. 1999).

Adoption studies show only moderate effects of genes (30–

40%) while family studies generally yield estimates of

heritability intermediate between twin and adoption studies

(Bouchard et al. 1985; Pietilainen et al. 1999).

The consistent differences in these estimates may sug-

gest that, in part, the heritable variance is due to non-

additive genetic effects, that is, dominance and recessivity

and/or non-allelic gene interaction (epistasis). Studies in

several populations suggest that major genes inherited in a

recessive manner may account for 35–45% of the variation

in obesity-related traits (Borecki et al. 1998; Perola et al.

2001; Deng et al. 2002). On the other hand, twin studies in

Australian and European adult population cohorts have

found that the variability of BMI is mainly influenced by

additive genetic and unique environmental sources.(Scho-

usboe et al. 2003; Cornes et al. 2005). Thus, shared

environmental effects appear to play little, if any, role in

BMI variance, although it is possible that common envi-

ronment exerts a stronger influence on weight during

adolescence, when siblings reared together are experienc-

ing shared environment directly.

Little is known about the developmental changes in

genetic and environmental influences on body weight,

especially during a major transition such as puberty when

genes play an important role in the biological mechanism

of weight regulation. In the past, very few longitudinal

studies of twins have been conducted in paediatric samples

to address the heritability of BMI. Results from longitu-

dinal studies in adult samples support the suggestions from

cross-sectional data that there are age-specific genetic

effects on BMI (Neale and Cardon 1992; Meyer 1995).

This can be particularly true during puberty, when complex

sequences of hormones are involved in human adolescent

growth and maturation. Concerted actions of growth hor-

mones and sex and adrenal steroids are responsible for

timing of growth spurts, stabilization of the growth pro-

cesses and attainment of maturity (Loesch et al. 1995;

Roemmich and Rogol 1999). However, a disadvantage of

cross-sectional data analyses is that they do not allow for

the discrimination of those transient factors that may exert

a long term influence from one time point to another.

Another area of ambiguity concerns sex-limitation in the

heritability of adiposity. There are well known gender

specific differences in weight from birth to adulthood.

Prenatally and at subsequent ages, girls are physiologically

more mature than boys. There is also evidence to suggest

that genetic effects contributing to the aetiology of varia-

tion in BMI are different in males and females. In a sample

of Finnish teenagers, different sets of genes accounted for

the additive genetic variation in BMI in males and females

(Pietilainen et al. 1999). In contrast, in two studies of

younger twins, no gender effects for BMI were found in

either adolescents (Allison et al. 1994a) or in a pre-ado-

lescent population (Bodurtha et al. 1990). In addition, total

heritability of BMI or body fat in adults seems to be dif-

ferent depending on gender, although studies have yielded

equivocal findings. Some studies have found that females

have a higher heritability for BMI than males (Neale and

Cardon 1992; Allison et al. 1994b; Harris et al. 1995)

including an Australian population study of 933 adult twin

families (Cornes et al. 2005). Others report the opposite

(Stunkard et al. 1990; Korkeila et al. 1991). A Swedish

adoption/twin data study reported a higher heritability of

BMI for men, but the primary sex difference was the rel-

atively large contribution of non-additive genetic effects

among men (Stunkard et al. 1990; Harris et al. 1995).

To summarise, the mode of inheritance and the under-

lying complexity of obesity remain largely unresolved.

Moreover, while previous model-fitting analyses are con-

sistent in implicating genetic influences in BMI, they are

inconsistent regarding whether those influences are addi-

tive and/or non-additive. Furthermore, the presence of

distinct male and female patterns of weight gain and fat

distribution suggest that the genetic and environmental

effects contributing to the variation in body mass may not

be identical, or may operate differently, in males and

females throughout development. Finally, the majority of

studies conducted in paediatric samples use cross-sectional

data, which only allows for the discrimination of factors

that affect measurement at one time point.

In light of these factors, we have measured BMI longitu-

dinally at ages 12, 14 and 16 in 1,143 monozygotic (MZ) and

dizygotic (DZ) twin pairs. By performing sex-limited longi-

tudinal analysis on the adolescent twin data, we were able to

establish whether, during puberty, genetic and environmental

determinants of relative weight are the same in males and

females. More specifically: (a) do genetic and environmental

influences for BMI change in magnitude between different

stages of puberty? (b) do the same genetic and environmental

sources occur at different times during puberty? and (c) are the

genetic and environmental influences on BMI similar in males

and females? More importantly, our results from these anal-

yses may add to the current limited knowledge of the genes

regulating body weight during puberty.

Methods

Subjects and measures

MZ and DZ twin pairs were measured longitudinally for

height and weight at the ages of 12, 14 and 16. At ages 12

and 14, data were collected as part of an ongoing study on

melanoma risk factors (Zhu et al. 1999). At age 16, data
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were collected in the context of an ongoing study of cog-

nition (Wright et al. 2001) in which most twins had also

taken part in the melanoma risk factors study. Twins

involved in both studies were recruited by contacting

principals of primary schools in the greater Brisbane area,

through word of mouth and by media appeals. The twins

who registered their interest were contacted and partici-

pation was conditional upon the informed consent of the

twins and their parents. In this study, we report on data

collected from January 1992 until April 2006.

Data were collected from 1,143 complete twin pairs, 470

MZ, 346 DZ same-sex (DZSS) and 327 DZ opposite sex

(DZOS) twin pairs. Data were also collected from 570 non

twin siblings but are not analysed here. Height and weight

were both measured clinically using a stadiometer and

accurate scales, respectively. BMI was calculated by

weight (in kilograms)/ height (in metres)2. To minimise age

bias, measurements were taken as close as possible to the

twins’ 12th, 14th and 16th birthdays. Not all twins returned

for each measurement occasion—403 twin pairs were

measured on only one occasion, 291 twin pairs returned for

a second visit and 449 twin pairs were measured at all three

time points (see Table 1 for complete breakdown).

Zygosity

Initially, the zygosity of twin pairs was determined by

participants completing a standard questionnaire where

questions about similarity were asked. In addition, geno-

typic zygosity diagnosis of same-sex adolescent twins was

determined by typing nine independent highly polymorphic

DNA microsatellite markers and the amelogenin sex

marker using the Profiler multiplex marker set (Amp-

FLSTRR Profiler Plus T, Applied Biosystems, Foster City,

CA, USA). Zygosity was assigned with a probability of

error \10–4 (Nyholt 2006). Subsequently, zygosity of DZ

pairs was confirmed by typing at least 400 markers gen-

ome-wide for linkage analysis.

Biometrical modelling

Genetic analysis

Classical biometrical model-fitting methods were used to

decompose the total phenotypic variance in an observed trait

into four sources of variance: additive genetic (A), non-

additive (dominance, epistasis or recessitivity) genetic (D),

environmental influences shared by members of a family (C)

and environmental influences unique to each family member

(E). However, C and D are confounded and thus cannot be

estimated simultaneously in analyses of twins reared toge-

ther, so only one of these parameters can be estimated in a

model (Grayson 1989; Hewitt 1989). Since MZ twins are

genetically identical, additive and non-additive genetic

effects are correlated as 1.0. DZ twin pairs, like any other

sibling pair, share on average half of their genes and hence

are correlated as 0.5 and 0.25 for additive and non-additive

genetic effects respectively. Shared environment effects

correlate to an equal extent in MZ and DZ twins (i.e. corre-

lated at 1 for members of both MZ and DZ pairs). Unique or

non-shared environmental effects are by definition uncor-

related and also include measurement error.

The standard twin design can be extended to consider

whether the genetic factors influencing the variation in a

Table 1 Study participation data showing the number of twin pairs who were measured for height and weight at each age

Age at data collection Twin pair by zygosity and sex composition

12 14 16 MZF MZM DZF DZM DZOSa Total

• 32 25 26 30 55 168

• – – – – – –

• 67 64 22 18 64 235

• • 61 67 47 46 68 289

• • – – – – 2 2

• • – – – – – –

• • • 81 73 76 81 138 449

Total 241 229 171 175 327 1,143

Total at age 12 years 174 165 149 157 261 906

Total at age 14 years 142 140 123 127 206 738

Total at age 16 years 148 137 98 99 204 684

MZF monozygotic female twin pairs, MZM monozygotic male twin pairs, DZF dizygotic female twin pairs, DZM dizygotic male twin pairs,

DZOS dizygotic opposite sex twin pairs, DZFM dizygotic female–male twin pairs, DZMF dizygotic male–female twin pairs
a This group contains 159 DZFM and 168 DZMF
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trait is identical among males and females, and whether

there are differences in the magnitude of the same genetic

and environmental variance components between the

sexes. These two questions can be formally tested in a

general sex-limitation model. In this model, females and

males have genetic (AF, AM/DF, DM) and environmental

(CF, CM/EF, EM) variables that are not constrained to be

equal, allowing magnitudes of these effects to differ

between the sexes. Including DZOS twins in the analyses,

not only increases power, but allows one to estimate,

separately, an additional male (or female, but not both)

specific additive genetic, A0M (A0F), non-additive genetic,

D0M (D0F), or common environmental, C0M (C0F) variable

which does not correlate with the genetic or environmental

effects on the female (or male) phenotype. Significant

estimates of these sex specific effects indicate that the

genes or environments which influence a trait in males are

not identical to those which influence a trait in females, or

vice versa. Sex-limitation models are discussed in more

detail in Neale and Cardon (1992) and Medland (2004).

Longitudinal analysis

With longitudinal data it is possible to test whether a

genetic factors affecting a trait is the same throughout time

and/or whether ‘‘new’’ genes or ‘‘new’’ environmental

factors start to operate at specific points in time. A model

was fitted to the data that was able to discriminate between

transient factors that affect measurement at one time point

only, and factors that are continuously present or exert a

long term influence throughout the time series (Boomsma

et al. 1989; Neale and Cardon 1992). As such, the simplex

model takes full advantage of the time series nature of

longitudinal data (i.e. that causation is unidirectional

throughout time; Boomsma et al. 1989) allowing testing of

stronger hypotheses about development.

Every variance component structure in a simplex model

is influenced by latent variables at time i, which are, in

turn, influenced by the latent variable at time i - 1 (see

Fig. 1). This relationship between latent variables is termed

autoregressive and can be described by the equation: gi =

bigi–1 + fi, where gi is the latent variable at time i (i [ 0),

bi is the regression of the latent variable at time i on the

previous latent variable at i–1, and fi represents a random

input term (innovation) which is uncorrelated with gi–1.

When using MZ and DZ twin pairs, structural equations of

this type may be expressed for each latent genetic and

environmental source of variation (i.e. A, E and C or D).

Part of the model is a structural equation relating the

observed phenotypes to the latent phenotypes: yi = kigi +

ei, where ki is the loading of the observed phenotype on the

E1 E2 E3

e2 e3e1

e2 e3

e1 e3e2

d3

1

MZ:1; DZ:0.5

MZ:1; DZ:0.25

Twin 1 

d1 d3d2

D1 D3D2

 BMI12 3   BMI14  BMI162

d2 d3

d2

E1 E2 E3

e2 e3e1

e2 e3

e1 e3e2

d3d1

a2 a3
A1 A2 A3

a2a1 a3

a1 a2 a3

d1 d3d2

1

D1 D3D2

  BMI12 3    BMI14 BMII162

d2 d3

d2d1

a2 a3
A1 A2 A3

a2a1 a3

a1 a2 a3

Twin 2

Fig. 1 Full ADE Simplex Model for the observed variable, BMI,

which is measured across three time points (at age 12, 14 and 16). The

loadings of the observed variables (X) on the latent factors (k) are set

to unity and the variances of the innovations terms (f) are estimated.

A measurement error term (e) also influences the variance of each

observed phenotype and is equated across twins and measurement

occasions. The b weights are solely responsible for the covariation

among variables. Correlations between co-twins for additive genetic

factors are fixed to 1 for MZ twin pairs and 0.5 for DZ twin pairs.

Correlations for non-additive genetic factors are 1 for MZ twin pairs

and 0.25 for DZ twin pairs. Unique or non-shared environmental

effects are uncorrelated between co-twins
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latent variable at time i, and ei is a measurement error term

which affects the phenotype, but is uncorrelated with gi. In

this study, the loadings of the observed variables on the

latent variables (i.e. the ks) were set to unity and the

variances of the innovation terms were estimated. This

allows the model to be identified, whereby every parameter

in the structural equation model can be estimated uniquely

and consistently.

There is an important conceptual distinction between

innovations of latent variables and measurement errors of

observed variables. The innovations are the part of the

latent variable at time i that is not caused by the latent

variable at time i - 1, but are part of every subsequent time

point, i + 1, i + 2, ... i +n. In contrast, the random errors of

measurement, e, are terms that do not influence subsequent

observed variables. Thus, the simplex model allows dif-

ferentiation between the long-term consequence of an

experience at one particular time and the continuous

presence and influence of a casual factor (Neale and Car-

don 1992). In addition, the variance of all measurement

error terms was constrained to be equal in order for the

model to be identified. This is because error variance at

these occasions would otherwise be indistinguishable from

innovation variance.

Variance component structures of the genetic and sim-

plex models were estimated through structural equation

modelling using the software package Mx (Neale et al.

2003). Univariate genetic models were applied to the raw

data separately at each age prior to fitting the sex-limited

longitudinal model. Results from these models were used

as guide for the saturated sex-limited simplex model. Ini-

tially, the saturated model (ACE or ADE) was fitted to the

data (i.e. maximum number of parameters). Subsequent,

simplified models were fitted to test whether A, C (or D) or

both parameters could be dropped from the full model. In

the simplex model, the question of whether different genes

or environmental influences affect the trait at different ages

was investigated by removing, one at a time, the relevant

innovation terms from the full model. The fit of each

submodel was tested using the likelihood-ratio Chi-square

test and the Akaike information criterion (AIC) (Akaike

1987), a measure of model fit relative to model parsimony.

For each phenotype, the best-fitting model was identified as

the model with a non-significant likelihood-ratio Chi-

square probability with the largest negative AIC.

Results

Data preparation

Since maximum likelihood variance component analysis

assumes that phenotypic distributions are normal, a natural

logarithm transformation was performed to improve the

shape of the positively skewed BMI distribution (here after

called lnBMI and used in all further analyses). Family

outliers (i.e. bivariate outliers) exceeding three standard

deviations from the mean were identified using the Mx%P

function in Mx (in which the Mahalanobis distance for

each family represented as a Z-score was used) (Neale et

al. 2003) at each age group (age 12, N = 5; age 14, N = 8;

age 16, N = 7) and were excluded from the analysis.

Interestingly, one twin pair were outliers at all three ages, a

different twin pair were outliers at both 12 and 14, and

another twin pair were outliers at both 14 and 16. Means

and standard deviations of BMI by age group, zygosity and

sex are shown in Table 2. These values are obtained after

the removal of twin pair outliers.

The percentage of each age group, stratified by sex, that

met the requirements for classifications as obese, over-

weight (according to cut-offs suggested by Cole et al.

(2000)) and normal weight is shown in Table 3. Most

notably, the percentage of obese adolescent boys was

similar at age 12 and 14 but increased dramatically at age

16. This was also observed in adolescent girls. In addition,

the age trend showed decreasing prevalence in the non-

obese (or ‘‘normal’’) category, with between 80 and 83% of

the population falling within the ‘‘normal’’ BMI range.

Biometrical modelling

Preliminary analysis

Prior to model-fitting, basic assumptions concerning the

equality of means and variances within twin pairs, across

Table 2 Means and standard

deviations (italic) of BMI by

age group and zygosity after the

exclusion of outliers

Age 12 Age 14 Age 16

MZF 18.83 (2.89) 20.56 (3.17) 21.43 (3.22)

MZM 18.31 (2.81) 19.60 (2.70) 21.54 (3.55)

DZF 18.69 (3.00) 20.17 (3.10) 21.52 (3.67)

DZM 18.88 (3.36) 20.22 (3.53) 21.22 (2.87)

DZOSf 18.85 (3.11) 21.12 (3.47) 22.68 (3.93)

DZOSm 18.89 (3.21) 20.33 (3.16) 22.45 (4.00)
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sex and zygosity were formally tested using Mx, in addi-

tion to hypotheses about the covariance structure.

Furthermore, co-twin correlations were used to guide

model selection (ACE, ADE) for biometric analyses.

Means at age 12 could be equated between twin pairs

and across zygosity groups without a significant reduc-

tion in model fit. At age 14, means could be equated

across same-sex zygosity groups. Means for same-sex

male twins could be equated to those of the respective

DZOS-twin (v2
2 ¼ 2:95, p = 0.229), but the means for

same-sex female twins could not be equated (v2
2 ¼ 6:52,

p = 0.038). Means of lnBMI at age 16 could be equated

across same-sex zygosity groups, but the means for

same-sex male and female twins could not be equated to

those of the respective DZOS twins (v2
2 ¼ 12:19,

p \ 0.001; v2
2 ¼ 16:08, p = 0.002, respectively) (see

Table 2).

Several covariates were included in the means

model: age, sex and a sex by age interaction term.

Although great care was taken to measure all twins

close to their 12th, 14th and 16th birthdays, there was

still a small number of adolescents who were unable to

be measured for height and weight at these ages due to

different circumstances and, hence the inclusion of the

age covariate. At all three ages, the age, sex and sex

by age interaction regression coefficients could be

removed from the means model without a significant

loss of fit, indicating that age effects on means at all

time points during puberty are the same for males and

females.

At age 12 and 14, under the best-fitting means model,

variances could be equated across all zygosity groups. At

age 16, however, under the best-fitting means model,

variances for same-sex female twins could be equated to

those of the respective DZOS twin (v2
2 ¼ 1:63, p = 0.442),

but variances for same-sex male twins could not be

equated (v2
2 ¼ 8:89, p = 0.012). Twin–twin correlations

for the best-fitting means and variance model for each age

are shown in Table 4. Under the best-fitting means and

variances model at all three ages, twin correlations could

be equated across MZ groups and across DZ groups

without reducing the fit of the model significantly. How-

ever, correlations could not be equated across zygosities at

any age, indicating that genetic effects explained signifi-

cant portions of the variance (v2
1 ¼ 243:67, p \ 0.001 at

age 12; v2
1 ¼ 198:81, p \ 0.001 at age 14; v2

1 ¼ 203:56,

p \ 0.001 at age 16). Furthermore, familial aggregation

(i.e. whether family members are more similar on the trait

under investigation than unrelated individuals) was tested

by setting all correlations to 0 and found to be present for

lnBMI at age 12 (v2
2 ¼ 604:37, p \ 0.001), 14

(v2
2 ¼ 470:54, p \ 0.001) and 16 (v2

2 ¼ 430:99,

p \ 0.001).T
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Genetic analysis

After testing the basic assumptions concerning the means

and variances within twin pairs, a standard univariate model

was fitted to the lnBMI data for each age. The magnitude of

the MZ:DZSS correlation ratios (rMZ [ 2rDZSS) at age 12, 14

and 16 indicated evidence for genetic dominance (see

Table 4). An ADE saturated model provided the better fit in

males and females across all three ages, with variance

components able to be equated across the sexes. In further

simplified models, at age 12 and 14, the non-additive genetic

variance could be removed from the model. However, at age

16, there was a very large non-additive genetic component,

and thus the best-fitting model include additive genetic, non-

additive genetic and unique environmental parameters.

Variance components estimates for the saturated and best-

fitting models for lnBMI are shown in Table 5. All best-

fitting models displayed had the lowest AIC.

Longitudinal analysis

Male and female phenotypic correlations between the three

different measurement occasions for lnBMI are shown in

Table 6. Correlations for lnBMI in each sex were the

highest amongst adjacent occasions and the lowest between

distant occasions (i.e. between 12 and 16 years of age),

consistent with a simplex model.

An ADE general sex-limited model was fitted to the

lnBMI data, with additional female specific additive

genetic (A0F) and non-additive genetic (D0F) variance

components estimated separately. However, A0F and D0F
could be removed from the sex-limitation model, indicat-

ing there is no significant evidence of either female specific

additive genetic or female non-additive genetic influences

on lnBMI (v2
5 ¼ 1:98, p = 0.852 and v2

5 ¼ 0:992,

p = 0.963, respectively), and thus, an ADE simplex model

provided the best fit in males and females (i.e. had the

lowest AIC). Non-additive genetic and unique environ-

mental variance components were the same across sexes

(v2
5 ¼ 5:74, p = 0.332 and v2

5 ¼ 8:68, p = 0.122, respec-

tively), whilst the additive genetic variance component

differed significantly (v2
5 ¼ 15:58, p = 0.008). Simplex

models for males and females are shown in Figs. 2a

and 3a, respectively.

In each variance component structure, the effects of

dropping the innovation at age 14, the innovation at 16, and

both innovations from the model were tested. The additive

Table 4 Twin–twin

correlations for lnBMI after

removal of outliers by age

group, with 95% confidence

intervals given in brackets

Age 12 r (95% CI) Age 14 r (95% CI) Age 16 r (95% CI)

MZF 0.89 (0.86–0.91) 0.89 (0.85–0.91) 0.88 (0.85–0.91)

MZM 0.89 (0.86–0.91) 0.89 (0.84–0.91) 0.87 (0.83–0.91)

DZF 0.47 (0.33–0.58) 0.41 (0.26–0.55) 0.31 (0.12–0.46)

DZM 0.32 (0.18–0.43) 0.33 (0.18–0.42) 0.24 (0.04–0.42)

DZFM 0.44 (0.34–0.52) 0.40 (0.28–0.50) 0.29 (0.16–0.40)

Table 5 Standardised variance component estimates (with 95% confidence intervals) for saturated and best-fitting univariate models for lnBMI

at age 12, 14 and 16

Age Model Males Females Dv2 Ddf p-value AIC

AM DM EM AF DF EF

12 Saturated 0.66

(0.35–0.91)

0.23

(0.00–0.54)

0.11

(0.08–0.13)

0.84

(0.51–0.91)

0.04

(0.00–0.37)

0.12

(0.09–0.15)

Best-fittinga 0.89

(0.87–0.91)

–b 0.11

(0.09–0.13)

3.41 4 0.49 –4.59

14 Saturated 0.55

(0.22–0.89)

0.32

(0.00–0.66)

0.13

(0.10–0.16)

0.81

(0.34–0.92)

0.08

(0.00–0.56)

0.11

(0.08–0.14)

Best-fittinga 0.88

(0.86–0.90)

–b 0.12

(0.10–0.14)

3.99 4 0.41 –4.01

16 Saturated 0.19

(0.00–0.89)

0.68

(0.00–0.89)

0.13

(0.11–0.18)

0.40

(0.00–0.90)

0.48

(0.00–0.90)

0.12

(0.09–0.15)

Best-fittinga 0.28

(0.00–0.62)

0.59

(0.26–0.89)

0.13

(0.11–0.15)

1.50 3 0.68 –4.50

Males are denoted by AM, DM, EM and females by AF, DF, EF for lnBMI
a For this model, variance component estimates are equated for males and females and fit is judged against saturated model
b Dashes indicate the parameter was set to 0
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genetic structures were similar in both sexes. The most

important component was the large genetic innovation

influencing the first measurement occasion (i.e. at age 12).

The innovations influencing the second (i.e. age 14) and

third (i.e. age 16) occasions were small and could be

dropped, together and separately, from the model without a

significant loss in fit in males only (v2
2 ¼ 1:26, p = 0.532).

In females, the additive genetic innovations at age 14 and

16 could not be removed from the model, separately or

together without a significant loss in fit (v2
2 ¼ 12:69,

p = 0.002).

In both sexes, there were also large transmission coef-

ficients, indicating that most genetic variance was

transmitted to subsequent ages. This in turn implies that the

same genetic factors are responsible for the variation across

all three measurement occasions. The non-additive genetic

innovation at age 14 in males and females could be

Table 6 Pearson correlations for lnBMI within female (above the

diagonal) and in male (below the diagonal) twins between the dif-

ferent measurement occasions (excluding outliers)

lnBMI Females

Age 12 Age 14 Age 16

Males

Age 12 – 0.88 0.78

Age 14 0.90 – 0.85

Age 16 0.82 0.86 –

(a)
0.88 

(0.71-1.00)
0.19 

(0.00-0.33)
0.00 

(0.00-0.26)

E3E2

 lnBMI12

0.13 
(0.05-0.17)

lnBMI14  lnBMI16

0.29 
(0.25-0.32)

0.22 
(0.17-0.28)

0.15 
(0.06-0.22)

0.13 
(0.05-0.17)

0.13 
(0.05-0.17)

0.81 
(0.66-0.99)

D1 D2 D3

0.36 
(0.00-0.65)

1  1  1

1

0.86 
(0.70-1.06)

0.92 
(0.60-1.03)

 A1 A2 A3

11 1

E1 0.82 
(0.64-0.99)

  1  1 0.17 
(0.00-0.33)

0.31 
(0.16-0.35)

0.85 
(0.60-3.33) 

1.40 
(0.26-3.45) 

(b)
0.96 

(0.91-1.02)
0.31 

(0.28-0.34)
0.30 

(0.25-0.35)

E3E2

 lnBMI12

0.13 
(0.07-0.17)

lnBMI14  lnBMI16

0.29 
(0.25-0.32)

0.24 
(0.19-0.28)

0.16 
(0.08-0.22)

0.13 
(0.07-0.17)

0.13 
(0.07-0.17)

0.82 
(0.68-0.98)

1

0.94 
(0.90-0.98)

0.90 
(0.86-0.95)

 A1 A2 A3

11 1

E1

0.80 
(0.62-0.99)

  1  1 

Fig. 2 Parameter estimates

(with 95% confidence intervals)

for simplex models for lnBMI in

males. (a) Best-fitting simplex

model and (b) AE simplex

model. 95% confidence

intervals are given in brackets
and insignificant pathways are

indicated with dashed arrows.

Only twin one is shown in

figure. (N.B. DZOS twins are

included in analysis)
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dropped from the model without deterioration in model fit

(v2
1 ¼ 0:13, p = 0.721). However, innovation at age 16

could not be dropped from the model (v2
1 ¼ 6:20,

p = 0.013). In addition, both innovations could not be

dropped together (v2
2 ¼ 6:36, p = 0.042).

For the unique environmental structure, innovations at

14 and 16 were significant and could not be dropped

without a significant loss in fit, separately or together

(v2
2 ¼ 26:24, p \ 0.001). The error measurements for each

sex could be equated across males and females (v2
1 ¼ 1:65,

p = 0.199) and could not be dropped from the model

(v2
1 ¼ 5:10, p = 0.024).

In view of our small samples and consequently low

power to disentangle additive and non-additive genetic

variance components, we fitted an AE simplex model to

males and females (Figs. 2b, 3b, respectively). Since it is

known that estimates of A and D are strongly correlated in

the classical twin design (r & –0.91), fitting A alone will

absorb most of any dominance (or additive · additive

epistasis) that is present and so Â (estimates of A) is a

reasonable estimate of the total genetic variance. By doing

so, we now see that there are significant genetic innova-

tions at 14 and 16 (v2
2 ¼ 190:91, p \ 0.001 and

v2
2 ¼ 261:58, p \ 0.001 for males and females, respec-

tively), whereas in Figs. 2a and 3a these innovations were

partitioned between A and D sources and neither was sig-

nificant. This indicates that non-additive genetic variance

has moved into the additive genetic variance component,

(a)
0.84 

(0.66-0.95)
0.25 

(0.10-0.37)

E3E2

 lnBMI12

0.13 
(0.05-0.17)

lnBMI14  lnBMI16

0.29 
(0.25-0.32)

0.22 
(0.17-0.28)

0.15 
(0.06-0.22)

0.13 
(0.05-0.17)

0.13 
(0.05-0.17)

0.81 
(0.66-0.99)

D1 D2 D3

0.36 
(0.00-0.65)

1 1 1

1

0.86 
(0.68-1.07)

0.91 
(0.56-1.03)

 A1 A2 A3

11 1

E1 0.82 
(0.64-0.99)

  1  1 0.17 
(0.00-0.33)

0.31 
(0.16-0.35)

0.85 
(0.60-3.33)

0.21 
(0.09-0.34)

1.40 
(0.26-3.45)

(b)
0.92 

(0.87-0.97) 
0.35 

(0.32-0.38)
0.37 

(0.32-0.42)

E3E2

 lnBMI12

0.13 
(0.07-0.17)

lnBMI14  lnBMI16

0.29 
(0.25-0.32)

0.24 
(0.19-0.28)

0.16 
(0.08-0.22)

0.13 
(0.07-0.17)

0.13 
(0.07-0.17)

0.82 
(0.68-0.98)

1

0.95 
(0.91-0.97)

0.90 
(0.85-0.95)

 A1 A2 A3

11 1

E1

0.80 
(0.62-0.99)

  1  1 

Fig. 3 Parameter estimates

(with 95% confidence intervals)

for simplex models for lnBMI in

females. (a) Best-fitting simplex

model and (b) AE simplex

model. 95% confidence

intervals are given in brackets
and insignificant pathways are

indicated with dashed arrows.

Only twin one is shown in figure

(N.B. DZOS twins are included

in analysis)
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providing evidence that using broad sense heritability to

represent genetic variance (instead of both additive and

non-additive genetic variance) eases interpretability when

very large samples are not available.

Table 7 displays the proportion of the phenotypic var-

iance due to innovation or transmitted from previous

occasions for each source (A, D and E) of covariance. This

table emphasises that most of the lnBMI phenotypic vari-

ances for males and females were due to genetic factors

transmitted from previous ages.

Discussion

Our study represents one of the few longitudinal studies of

twins conducted in paediatric samples to address the heri-

tability of BMI. It adds to our currently limited knowledge of

the developmental changes in genetic and environmental

influences in weight regulation during puberty. We applied a

general sex-limitation model that allowed for both the

assessment of whether genetic effects operating longitudi-

nally during puberty may differ between males and females,

and the assessment of sex differences in magnitude of

genetic and environmental variance components. Genetic

analyses of adolescent longitudinal data can help distinguish

the changes during development in both sexes, possibly

leading to a better understanding of the genetic and envi-

ronmental regulation of weight. Furthermore, longitudinal

analyses increase power to detect sources of variance that are

too small to be detected in univariate or cross-sectional

analyses. The results from the current analyses suggest that

the patterns of developmental change in gene expression in

BMI are not the same in the two sexes.

One interesting finding in our study is the mean and

standard deviation differences between same-sex female

and same-sex male twins compared to their respective

DZOS twin (see Table 2). For instance, the females of the

DZOS twin pairs had a higher mean than those from the

same-sex twin pairs, more noticeably at age 16. One pos-

sibility, is the likely exposure of prenatal masculinization

by the hormones of the male co-twin (Resnick et al. 1993;

Miller 1994; Loehlin and Martin 1998, 2000). Evidence

from numerous studies have found that for several litter-

bearing mammals, female foetuses exposed prenatally to

male hormones, when located between two male foetuses,

may show masculinized effects on a variety of anatomical

and behavioural characteristics, compared to female foe-

tuses that have been located between two female foetuses

(vom Saal 1989). However, evidence of this occurring in

humans across different traits, particularly in personality

traits, has been inconclusive (Burns et al. 1992; McFadden

1993; Resnick et al. 1993; Miller 1994; Rodgers et al.

1998).T
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In this study, a longitudinal model comprising additive

genetic (A), non-additive genetic (D) and unique environ-

mental (E) variances provided the best fit to the adolescent

male and female data. Sex differences were found in the

magnitude of additive genetic variances between males and

females, but the non-additive genetic and unique environ-

mental variances were equal across sexes. Furthermore, no

female-specific genetic or environmental effects were

found. Most of the variation in BMI at all three ages was

explained by genetic (additive and/or non-additive) influ-

ences for males and females, confirming findings from

other twin studies (Loesch et al. 1995; Huggins et al.

2000). In males, the only input of additive genetic influence

for BMI occurs at age 12 and consequently this genetic

variance influenced BMI at subsequent ages. However, in

females, as well as a substantial influence at age 12, new

sources of additive genetic variances were present at age 14

and 16.

Epidemiologic observations of the relative constancy of

body composition over long periods of time support

strongly a biological basis for the regulation of body fat.

The additive genetic variance observed in the sex-limita-

tion models may be explained by several regulatory and

structural genes responsible for weight regulation during

puberty. Additionally, differences were found between

males and females in the timing of largest amount of

weight gain (largest mean change) and in the period of

maximum genetic influence on BMI. These differences are

consistent with known sex differences in the role of leptin

in regulation of food intake, weight gain and body fat

distribution. Leptin is known to control body fat by co-

ordinated regulation of feeding behaviour, metabolic rate,

autonomic nervous system regulation and body energy

balance. Past research has found that there are important

age and gender-based differences in the regulation and

action of leptin during childhood and adolescence (Ong

et al. 1999; Apter 2003).

Throughout puberty, non-additive genetic variance

could be equated across males and females, suggesting that

significant epistatic, dominant or recessive effects influ-

enced BMI similarly in the sexes at 12, 14 and 16.

However, in the univariate models at age 12 and 14, non-

additive genetic influences could be removed as a source of

variation for male and female BMI. This could be the result

of type II errors due to reduced power in univariate models

compared to longitudinal models (Martin et al. 1978).

Most interestingly, during development, the percentage of

non-additive genetic effects influencing BMI increased

with age (see Table 7). Similar results were found in a

sample of young Polish twins, where there was an

increasing non-additive genetic component, especially after

age 16 (Huggins et al. 2000). In a young Australian twin

sample (aged 18–30), genetic dominance (or other genetic

non-additivity) explained most of the variance of BMI in

males and females (Neale and Cardon 1992). The inter-

action of sex steroids, hormones, leptin production, insulin

and growth hormones may explain the non-additive genetic

influences observed in the current study. Furthermore, non-

additive genetic variance may represent gene–gene inter-

action occurring during puberty when many metabolic

roles of hormones are controlled by a complex interaction

of genes which cause a direct or indirect influence on lipid

metabolism, the amount of adiposity and its regional dis-

tribution (Roemmich and Rogol 1999).

Common environmental influences were not important

in this study in the variation in BMI in males and females

during development. But unique environment accounted

for a small percentage of the overall phenotypic variation

in BMI. Other research has also shown that unique envi-

ronmental effects have a considerable influence on obesity,

whereas common environmental influences are small or

negligible (Jacobson and Rowe 1998). This does not rule

out the possibility that there are common environmental

influences on BMI during puberty, but the effects must be

small relative to non-additive genetic effects (Grayson

1989; Hewitt 1989). In western societies, numerous envi-

ronmental influences may play a part in weight regulation

of young adults. Unique or non-shared environmental

influences might include dietary habits such as severe

dieting and eating disorders, fitness routines and sporting

exercise, interactions with siblings and the influence of

television and other media, in addition to stochastic epi-

genetic influences. The results from this study suggest that

the unique environmental sources were the same in males

and females. Most interestingly, the percentage of envi-

ronmental variation transmitted from previous ages to age

16 was the same, suggesting that unique habits occurring at

age 12 and 14 continue to have an effect later in puberty.

Booth et al. (1998) noted that patterns of physical activity

learned during adolescence are generally carried into

adulthood. Thus, activities that promote sedentary behav-

iours should be kept to a minimum to prevent unfavourable

weight gain later in life.

Limitations and future directions

Whilst reliable pubertal status was available in girls (age at

menarche were collected), no reliable information was

obtained for boys (presence of auxiliary hair was used as

opposed to age at spermache), and hence, this information

was not used in the current analyses. Furthermore, in pre-

liminary analyses, the current accessible information was

not found to be significant within the means model.

However, in a study by Anderson et al. (in press) the

estimation of the average age at menarche for the majority
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of the girls included in this sample was 154.9 months

(approximately 12.91 years), although it is unclear what is

the average age at spermache due to lack of data. Never-

theless, once reliable pubertal status becomes available for

boys, further investigation of these analyses is warranted to

provide perhaps more accurate results.

The main limitation in this study is the lack of power,

despite our relatively large sample size of over 1,100 twin

pairs. Our results highlight that very large samples are

needed to discriminate between additive and non-additive

genetic parameters in twins; over 1,000 twin pairs are

needed to detect non-additive genetic variance that

accounts for at least 20% of the total variation (Martin

et al. 1978). However, in the current case, we had less than

1,000 pairs in each univariate model, and in addition, fewer

than 1,000 pairs were measured at all three ages in the

longitudinal model (see Table 1). With respect to power,

additive genetic variance and non-additive genetic variance

are negatively confounded. That is, if one of these variance

components is removed, then the variation explained by

that parameter is expected to move to the other source of

genetic variation. Therefore the heritabilities reported

should be interpreted as broad sense genetic heritabilities

encompassing the sum of additive and non-additive genetic

factors, giving a true estimate of overall genetic variance.

When taken in this broad sense, there are now appreciable

genetic innovations (AI + DI; see Table 7, Figs. 2b, 3b) at

age 14 and 16, that would not have been significant if the

genetic source had been separated into additive and non-

additive genetic variance.

Results from this study suggest that genes play an

important part in the variation in BMI during puberty. Our

analysis also suggests that the genetic architecture of BMI

may indeed be different across sexes, perhaps resulting

from selective processes during human evolution. Covari-

ation between the measures across time in males and

females was mostly due to the same genetic factor, making

it possible to use multivariate methods to identify likely

QTLs. Identification of these genes, and understanding

their physiological pathways and potential interactions

with environmental factors, may inform appropriate pre-

vention strategies for childhood and adolescent obesity,

and contribute to a better understanding of how and why

obesity develops later in life.
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