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Abstract

Background: Studies assessing volumetric sex differences have provided contradictory results. Total intracranial
volume (TIV) is a major confounding factor when estimating local volumes of interest (VOIs). We investigated how
the number, size, and direction of sex differences in gray matter volume (GMv) vary depending on how TIV
variation is statistically handled.

Methods: Sex differences in the GMv of 116 VOIs were assessed in 356 participants (171 females) without
correcting for TIV variation or after adjusting the data with 5 different methods (VBM8 non-linear-only modulation,
proportions, power-corrected-proportions, covariation, and the residuals method). The outcomes obtained with
these procedures were compared to each other and to those obtained in three criterial subsamples, one
comparing female-male pairs matched on their TIV and two others comparing groups of either females or males
with large/small TIVs. Linear regression was used to quantify TIV effects on raw GMv and the efficacy of each
method in controlling for them.

Results: Males had larger raw GMv than females in all brain areas, but these differences were driven by direct
TIV-VOIs relationships and more closely resembled the differences observed between individuals with large/small
TIVs of sex-specific subsamples than the sex differences observed in the TIV-matched subsample. All TIV-adjustment
methods reduced the number of sex differences but their results were very different. The VBM8- and the
proportions-adjustment methods inverted TIV-VOIs relationships and resulted in larger adjusted volumes in females,
promoting sex differences largely attributable to TIV variation and very distinct from those observed in the
TIV-matched subsample. The other three methods provided results unrelated to TIV and very similar to those of the
TIV-matched subsample. In these datasets, sex differences were bidirectional and achieved satisfactory replication
rates in 19 VOIs, but they were “small” (d < ∣0.38∣) and most of them faded away after correcting for multiple
comparisons.

Conclusions: There is not just one answer to the question of how many and how large the sex differences in GMv
are, but not all the possible answers are equally valid. When TIV effects are ruled out using appropriate adjustment
methods, few sex differences (if any) remain statistically significant, and their size is quite reduced.
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Introduction
The subject of neuroanatomical sex differences in the

brain is unique due to its scientific importance [1–4]

and social repercussions [5, 6]. However, precisely quan-

tifying sex differences in the volumes of specific brain

regions is a challenging task, and studies assessing volu-

metric sex differences have provided heterogeneous and

inconsistent results. Thus, for example, the right amyg-

dala volume has been reported to be substantially larger

in males (M > F [7], no different between females and

males (F ≈M [8]), and larger in females than in males

(F >M [9]). The same thing occurs for many other gray

and white matter structures (e.g., hippocampus: M > F

[7], F ≈M [8], F >M [9]; corpus callosum: M > F [10],

F ≈M [11–13], F >M [14]).

The inconsistencies and contradictions in the results

of different studies evaluating volumetric sex differences

are probably caused by many factors. However, it is be-

lieved that one of the major difficulties in these kinds of

studies is that males and females differ in overall body

and head size [11, 12, 15–17]. In other words, because

sex differences in gross morphology may affect global

and regional brain volumes, these differences introduce

a major allometric challenge that might be subdivided

into three hierarchically organized methodological

questions.

First, the decision has to be made whether or not to

adjust raw neuroanatomical volumes. This decision is

quite important because unadjusted measures seem to

affect the number and direction of sex differences in

brain regional volumes [8, 9, 11–13, 16–19]. Neverthe-

less, there seem to be pros and cons of using both raw

and adjusted volumetric measurements. Thus, adjusted

brain measures are less reliable than unadjusted ones

[20], but adjusted measures are currently considered

more valid [21–23].

A second methodological decision refers to which vari-

able should be chosen to adjust the gross morphological

variations associated with sex. Several measures have

been used for this purpose, including body weight,

height, head circumference, total intracranial volume

(TIV), and total brain volume. However, although they

are still used by some researchers [24–26], body size pa-

rameters (such as height or weight) show weak and in-

consistent correlations with overall brain size [27, 28],

and they are generally perceived as inappropriate. The

inadequacy of body size parameters as possible adjust-

ment factors would be aggravated when trying to assess

small regional volumes; therefore, total brain volume

and TIV are usually preferred (for a more detailed dis-

cussion on this topic, see [29]).

Finally, after having decided to adjust their data and

which adjustment factor to use (e.g., TIV), researchers

must still choose from a variety of adjustment methods.

Three methods (proportions, residuals, and covariate)

have frequently been used to correct TIV scaling effects

[30]. Two recent studies [16, 17] were specifically de-

voted to assessing whether the use of each of these ad-

justment methods affects the number and direction of

brain volumetric sex differences. These studies showed

that the use of proportion-adjusted data results in a lar-

ger number of sex differences, often indicating larger

proportional gray matter volumes in females. By con-

trast, when using either of the other two methods, the

number of sex differences is reduced, and their direction

varies depending on the neuroanatomical region being

considered. Therefore, evidence provided by these and

other studies (e.g., [10, 31]) effectively confirmed that

the choice of the TIV-adjustment method has a strong

influence on the observed outcomes, thus showing its

particular relevance in understanding the current lack of

consensus about the number and direction of volumetric

sex differences.

However, the studies by Nordenskjöld et al. [16], and

Pintzka et al. [17], did not evaluate the outcomes when

using two other currently available TIV-adjustment

methods: the so-called power-corrected proportion ad-

justment method [15] and the one provided by the

“non-linear only” modulation algorithm of the VBM8

[32]. Moreover, these two studies restricted their assess-

ment to a short number of anatomical regions (N = 5

[16]; N = 18 [17]). Therefore, the present study was de-

signed to confirm and extend the results of these studies

by evaluating the results of five different TIV-adjustment

methods in the 116 brain areas defined by the Auto-

mated Anatomical Labeling atlas (AAL [33]). More spe-

cifically, the aim of this study was fourfold. First, we

aimed to assess to what extent sex differences in raw

gray matter volumes are driven by TIV scaling effects.

Second, we compared the number, size, and direction of

the sex differences in the same 116 gray matter regional

volumes after applying the five TIV-adjustment methods

previously mentioned. Third, we tried to validate these

methods by assessing (A) which of them satisfactorily re-

moved TIV-scaling effects and (B) how their results

compared to each other and to those obtained in three

criterial subsamples. Fourth, we tried to summarize the

most reliable differences by integrating the results ob-

tained with the adjustment methods that were found to

remove TIV effects.

We would like to note that the present study focuses

on the statistical description of the possible female-male

differences in gray matter volume but it does not assess

whether or not they might have functional or behavioral

consequences. We would also like to note that through-

out this text, the term “sex” is used because this was the

variable that the participants’ self-reported by choosing

between two (male/female) categories. However, the use

Sanchis-Segura et al. Biology of Sex Differences           (2019) 10:32 Page 2 of 19



of this term does not imply any assumption on the pos-

sible origin of the observed differences (a topic that was

not explored in the present manuscript, either).

Materials and methods

Participants and subsamples

For this study, we collected the scans of 356 healthy sub-

jects (171 females; 185 males) who had participated in

previous studies by our research team, recruited through

local advertisements and word of mouth. All participants

were physically and psychologically healthy, with no his-

tory of neurological or psychiatric disorders. The experi-

ment was approved by the Ethical Committee of the

University Jaume I (Spain).

The demographic characteristics of these participants

are detailed in Table 1. In short, male participants were

slightly older than female participants (M 22.39; SD 3.04

and M 21.64, SD 4.90, respectively), but this difference

did not reach statistical significance. This effect was

small (< 1 year), corresponding to Cohen’s d value 0.186

(that is, below of what Cohen defined as a small effect

[34], p. 25–26), and unreliable (the 95% confidence

intervals for the standardized and non-standardized

difference between means included the zero value). On

the other hand, female participants showed a wider

age range but, as revealed by Levene’s test, the age

variances of females and males did not significantly

differ. Therefore, age was not considered a relevant

variable in this study.

The majority of participants (96.35%) were or had

been university students (education years > = 12), and no

differences were observed between females and males.

As shown in Table 1, the unstandardized mean’s differ-

ence between females and males in this variable equated

to 0.05 education years, and the standard deviations of

both groups of participants were also very similar (2.10

and 2.21, respectively). Consequently, educational level

was not considered a relevant variable in the present

study.

From the participants’ pool, a “main sample” and 3

“criterial subsamples” were created.

Main sample

The “main sample” included the scanning data from all

356 participants, and it was employed to assess possible

sex differences in gray matter volume in the unadjusted

(hereinafter referred as raw) and TIV-adjusted datasets

(see sections “Image pre-processing” and “TIV-adjust-

ments methods”).

Criterial subsamples

Three criterial subsamples were constructed to provide in-

dependent estimations of the effects of sex (“TIV-matched”

Table 1 Demographic characteristics of the participants included in the main sample and in the different subsamples used in the
present study

Main sample Only-females Only-males TIV-matched

Males Females Large TIV Small TIV Large TIV Small TIV Males Females

N 185 171 74 74 74 74 74 74

AGE (years)

Mean (SD) 22.39 (3.04) 21.64 (4.90) 21.08 (2.76) 20.62 (2.98) 22.54 (3.05) 22.11 (3.13) 22.28 (2.97) 21.50 (2.71)

Range 18–30 18–49 18–30 18–30 18–30 18–30 18–30 18–31

Mean difference 0.75 0.46 0.43 0.78

95% CI [− 0.09, 1.59] [− 0.47, 1.39] [−0.57, 1.43] [− 0.14, 1.70]

Cohen’s d [95%CI] 0.18 [− 0.02, 0.39] 0.16 [− 0.16, 0.48] 0.14 [− 0.18, 0.46] 0.27 [− 0.05, 0.60]

t test t354 = 1.75, p = 0.08 t146 = 0.45, p = 0.27 t146 = 0.85, p = 0.39 t146 = 1.68, p = 0.10

Levene’s test F = 1.00, p = 0.36 F = 0.57, p = 0.45 F = 0.06, p = 0.85 F = 0.79, p = 0.37

Education (years)

Mean (SD) 14.61 (2.21) 14.56 (2.10) 14.61 (1.95) 14.61 (1.94) 14.69 (1.99) 14.55 (2.26) 14.69 (2.28) 14.62 (1.87)

Range 8–20 8–19 10–19 8–19 11–18 8–19 8–19 12–19

Mean difference 0.05 0.00 0.14 0.07

95% CI [− 0.40, 0.50] [− 0.63, 0.63] [− 0.55, 0.83] [− 0.61, 0.75]

Cohen’s d [95%CI] 0.02 [− 0.18, 0.23] 0.00 [− 0.32, 0.32] 0.06 [− 0.26, 0.39] 0.03 [− 0.29, 0.36]

t test t354 = 0.24, p = 0.81 t146 = 0.00, p = 1 t146 = 0.39, p = 0.70 t146 = 0.19, p = 0.84

Levene’s test F = 2.24, p = 0.13 F = 0.21, p = 0.65 F = 0.23, p = 0.63 F = 2.59, p = 0.11

No statistically significant differences (p < 0.05) were observed for the age means (t tests) or variances (Levene’s test) of the compared groups in the main sample

or in any of the criterial subsamples
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subsample) and TIV (“only female” and “only male” sub-

samples).

TIV matched subsample The TIV-matched subsample

was created by pairing each subject with the subject of

the other sex with the nearest TIV, but only if this differ-

ence was ≤ 10 ml [17]. A total of 74 pairs of TIV-

matched participants were created, resulting in two

highly similar groups and a total subsample of 148

subjects. The demographic characteristics of the partici-

pants included in this subsample are detailed in Table 1.

“TIV-matching” is an artificial approach that excludes

many participants, thus reducing data comparison to a

TIV limited range and promoting a reduction in statistical

power that might increase the chance of false negatives

[16]. However, matching is the only undisputed method to

completely remove head-size variation [31], and the

results obtained in TIV-matched subsamples have been

considered to be the best approximation to the “ground

truth” of between-group (sex) differences [17].

Only-male and only-female subsamples To directly

test the effects of the TIV on gray matter volume, an

“only-male” subsample and an “only-female” subsample

were constructed (the demographic characteristics of the

participants included in these two subsamples are de-

tailed in Table 1). Each of these two single-sex samples

was composed of one “large TIV” group and one “small

TIV” group. To create these groups, participants of each

sex were sorted in ascending order by their TIVs and

median split into two equally sized participant pools.

Seventy-four participants were first randomly selected

from each participant pool, and the difference in the

TIV averages of the resulting groups was calculated.

Then, random within-pool replacements and between-

pool permutations were iterated over these initial groups

until they exhibited TIV differences similar to what was

observed between the females and males in the main

sample (≈d = 1.6; see the “Sex differences in gray matter

volume: raw data” section). In this way, comparing the

large/small TIV groups of the “only-female” and “only-

male” subsamples provided sex-independent estimations

of the TIV effects operating in the main sample. In this

regard, it should be noted that, although the standard-

ized size of the difference (Cohen’s d) between the large/

small TIV groups of the only-male and only-female sub-

samples was the same (and matched what was observed

between males and females in the main sample), the TIV

range for the former (1360.49–1895.36) was larger than

for the latter (1324.06–1641.79). This difference resulted

in smaller averages, standard deviations, and t ratios for

the large/small TIV groups in the only-female subsample

than for their counterparts in the only-male subsample

(see Additional file 1: Tables S9 and S10).

On the other hand, as the only male and only female

subsamples were designed to have the same number of

participants (74 + 74 = 148) and, therefore, the same

statistical power as the TIV-matched subsample, the

number of between-group differences in the three criter-

ial subsamples could be directly compared. This made it

possible to ascertain whether the TIV or the sex factor

was able to produce a larger number of differences, and

which of them mediated most in the differences ob-

served in the main sample.

MRI acquisition

MRI data were collected on a 1.5 T Siemens Avanto

scanner (Erlangen, Germany). Anatomical 3D MPRAGE

volumes were acquired using a T1-weighted gradient

echo pulse sequence (TE, 3.8 ms; TR, 2200ms; flip angle,

15°; matrix, 256 × 256 × 160mm; voxel size, 1 mm3).

Image pre-processing

Except in the case described in the section VBM8 non-

linear modulation, images were preprocessed with the

CAT12toolbox (http://www.neuro.uni-jena.de/cat/, ver-

sion r1184) of the SPM12 (http://www.fil.ion.ucl.ac.uk/

spm/software/spm12/, version 6906) software.

CAT12 preprocessing was conducted following the

standard default procedure suggested in the manual.

Briefly, this procedure includes the following steps: (1)

segmentation of the images into gray matter, white mat-

ter, and cerebrospinal fluid; (2) registration to a standard

template provided by the International Consortium of

Brain Mapping (ICBM); (3) DARTEL normalization of

the gray matter segments to the MNI template; (4)

modulation of the normalized data via the “affine + non-

linear” algorithm; and (5) data quality check (in which

no outliers or incorrectly aligned cases were detected).

Images were not smoothed because we were only inter-

ested in the modulated images.

Note that this procedure does not include any correc-

tion for overall head size (e.g., TIV correction).

Voxels were mapped into 116 regions according to the

Automated Anatomical Labeling atlas (AAL [33]) by cal-

culating the total gray matter volume for each region

and participant via a MATLAB script (http://www0.cs.

ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m). This initial

output (hereinafter, labeled as “raw” data) provided a

volumetric dataset in which sex differences were evalu-

ated and where all the TIV adjustment methods (except

the one described in VBM8 non-linear modulation sec-

tion) were applied. In addition, also following the stand-

ard CAT12 procedure, the total intracranial volume

(TIV) was calculated as the sum of the gray matter,

white matter, and cerebrospinal fluid volumes obtained

in the tissue class images in native space.
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TIV-adjustment methods

With the exception of the VBM8-method, all TIV adjust-

ments were implemented using SPSS 23 (IBM Corp.),

PRISM 7.0 (GraphPad Inc.), and R, using as input the

previously described raw CAT12 output.

VBM8 non-linear modulation

Until the recent development of the CAT12 software,

VBM8 was probably one of the most popular programs

for analyzing structural neuroimaging data. The VBM8

toolbox is a series of extensions to the segmentation

algorithm implemented in the “New Segment” toolbox

of the SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/) software.

In this study, the so-called optimized voxel-based

morphometry (VBM) protocol [35] was used to auto-

matically obtain gray matter volumes corrected for

individual TIV size (hereinafter, referred to as “VBM8-

adjusted dataset”). The image preprocessing was carried

out with the VBM8 toolbox (version r445) under SPM8

(version 6316). Similarly to the CAT12, this protocol

includes five main steps: (1) segmentation of the images

into gray matter, white matter, and cerebrospinal fluid;

(2) registration to a standard template provided by the

International Consortium of Brain Mapping (ICBM); (3)

a high-dimensional DARTEL normalization of the gray

matter segments to the MNI template; (4) non-linear

modulation (a step in which the normalized gray matter

segments are multiplied only by the non-linear determi-

nants of the normalization deformation matrix to cor-

rect the images for individual differences in size [32];

and (5) data quality check (in which no outliers or incor-

rectly aligned cases were detected). Finally, following the

same procedure described in the “Image pre-processing”

section for the CAT12, we also calculated the total gray

matter volume of the 116 AAL regions from the modu-

lated images of each participant.

To isolate the effects of the TIV-adjustment intro-

duced by the non-linear modulation step and ensure

that the outcomes of the VBM8-adjusted dataset were

fully comparable to those of all the other adjustment

methods, a second set of VBM8 images was obtained. In

this case, VBM8 images were preprocessed following the

same protocol described above, but the images were

modulated using the “affine + non-linear” algorithm,

which does not correct for individual differences in

brain size. Sex differences were also calculated in this

uncorrected “affine + non-linear VBM8” dataset and

compared to those observed in the CAT12 raw

dataset (Additional file 1: Table S2).

Proportion adjustment method

This method implicitly assumes a proportional relation-

ship between TIV and the volume of any neuroanatomical

structure of interest (VOI). The adjusted volume (VOIadj)

is individually calculated according to the following

formula:

VOIadj ¼ VOI=TIV

Therefore, the resultant is not an absolute quantity,

but rather a ratio or proportion, and the adjustment

operates at the individual level (although it might be

averaged by group, and between-group differences

might be determined using difference tests; O’Brien et

al. [29]).

Covariate regression method

This procedure does not provide adjusted VOIs that

are free of TIV-scaling effects. Instead, it allows esti-

mating the group (in this case, sex) effects without

any influence of the TIV effect, by simultaneously

introducing TIV and sex as putative predictors of

each VOI in a multiple regression model, resulting in

the following formula:

VOI ¼ b0 þ bTIVTIV þ bsexsexþ ε

This method incorporates information from all the

participants, and having a similar number of participants

in each group (sex) becomes critical to ensure the re-

liability of the results [16]. In addition, because all

the parameters included in the regression model

compete in explaining the variance in each VOI, the

obtained standardized regression coefficients (βTIV and

βsex) already provide a direct estimation of the vari-

ation that can be associated with the TIV and sex for

each VOI. Moreover, each regression coefficient is

associated with a significance level, thus making

second-level analyses (i.e., between-group difference

tests) unnecessary. Finally, as the unstandardized bsex
coefficients represent the average predicted difference

between males and females for each VOI while all

other independent variables are held constant,

Cohen’s d can be estimated by dividing the b coeffi-

cients obtained by the corresponding VOIs’ standard

deviations.

PCP

The power-corrected proportion method (PCP) was

recently proposed by Liu et al. (2014) as an improve-

ment over the commonly used “proportion method”

(see the “Proportion adjustment method” section).

This method explicitly assumes that the relationship

between the TIV and a VOI is not proportional, but

instead follows a power law. Thus, corrected volumes

are estimated through a VOI/TIV ratio that includes
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an exponential correcting parameter, leading to the

generic formula:

VOIadj ¼ VOI=TIVb

The b parameter of this formula was obtained by cal-

culating the slope value of the regression line between

LOG(VOI) and LOG(TIV).

The residuals adjustment method

This procedure was initially discussed by Arndt et al.

[20], but its use spread after its reevaluation by Matha-

lon et al. [21]. This method aims to remove an implicitly

assumed linear TIV-VOI relationship through the fol-

lowing formula:

VOIadj ¼ VOI‐b TIV‐TIV
� �

;

where b is the slope of the VOI-TIV regression line,

and TIV is the mean of the TIV measures of the control

group. When, as in the study of sex differences, there is

no control group, the VOI-TIV regression and the TIV

are calculated using the whole sample of participants.

Statistical analyses

Sex differences

Except for the covariate regression adjustment method

(see “Covariate regression method” section), sex differ-

ences in gray matter volume were assessed through 116

separate Student’s t tests for independent groups. The

significance threshold was initially set at 0.05, although

when describing the results for the criterial subsamples

(whose size is less than half of that of the main sample),

differences that achieve p values below 0.1 are also

mentioned in the main text, and exact p values for all

comparisons are provided in the corresponding Supple-

mentary Tables. To maximize statistical power, no

corrections for multiple comparisons were initially intro-

duced, and following recent recommendations of the

American Statistics Association [36, 37], we focused our

analysis on effect sizes rather than p values. Neverthe-

less, in a separate section (“Replication of differences

across methods”), we assessed how different multiple-

comparison correction methods (two false discovery rate

and two family-wise error) changed the number of

statistically significant differences observed in each TIV-

adjusted dataset. More specifically, in decreasing order

according to their expected statistical power, the

Benjamini, Krieger and Yekutieli [38] Benjamini and

Hochberg [39], Holm [40] and Bonferroni-Dunn [41]

corrections for multiple comparisons were tested.

Furthermore, effect sizes were estimated by calculating

Cohen’s d values and their corresponding 95%

confidence intervals (CI). In this study, positive d values

indicate larger gray matter volumes in males than in fe-

males (M > F), whereas negative d values indicate larger

gray matter volumes in females than in males (F >M).

Following recent recommendations [42–44], the Cohen’s

d values for the most reliable sex differences (see the

“Replication score” section) were transformed into two

more intuitive effect size indexes: the percent of overlap

and the percent of superiority [45]. The percent of over-

lap denotes the proportion of scores that overlap in two

normal distributions which means differ in some magni-

tude, whereas the percent of superiority denotes the

probability that a randomly sampled member of popula-

tion a will have a score (Ya) that is higher than the score

(Yb) attained by a randomly sampled member from

population b [46]. These indexes were estimated using

the online calculator provided by Magnusson, 2014 [47]

at http://rpsychologist.com/d3/cohend/, which computes

the percent of overlap using the rationale and amended

proportions described in [48] and the percent of super-

iority described in [49].

Evaluation of the TIV-adjustment methods

Relationship with the TIV before and after TIV

adjustment Previous studies have shown that in the ab-

sence of any correction, the local volumes of particular

brain areas are directly related to the TIV [15, 17, 18,

29]. The presence of this relationship in our own raw

data was assessed by performing linear regression ana-

lyses relating the TIV and each of the 116 VOIs consid-

ered in this study. The possible effects of these predicted

linear TIV-VOI relationships on the observed sex differ-

ences in gray matter volumes were also investigated by

calculating the rank-order correlation between the slope

values of the former and the p and Cohen’s d of the

latter. Because females and males differ in TIV, larger

sex differences would be more likely in VOIs showing a

steeper relationship with TIV.

TIV-VOIadj relationships provided a first and powerful

criterion to evaluate the goodness of the different adjust-

ment methods tested in this study. That is, because the

aim of the adjustment methods is to get rid of TIV ef-

fects and provide an unadulterated estimation of sex dif-

ferences, satisfactorily adjusted data should not show the

linear TIV-VOIadj relationship predicted for the raw

data, and the likelihood or size of sex differences in local

gray matter volumes should not be associated with TIV-

VOIadj slope values. Therefore, deviations from zero in

the slope values of the 116 TIV-VOIadj regression lines,

as well as their possible rank order correlation with the

p and Cohen’s d values of the sex differences observed,

were assessed in each TIV-adjusted dataset. In addition,

when adequate, chi-squared association tests were used
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to compare the relative frequency of sex differences in

the brain regions showing significant/non-significant lin-

ear relationships with TIV.

Concordance between methods The degree of agree-

ment in the methods was initially assessed at the nom-

inal (statistically significant difference/no statistically

significant difference) level using the free-marginal

multi-rater kappa index [50, 51]. Moreover, following

the directions provided by O′ Brien et al. [30], the over-

all agreement across methods was also assessed in terms

of ordinal ranking through Kendall’s W. Finally, and also

following the methodology described by O′ Brien et al.

[30], we used Spearman’s rho correlation to specifically

compare the concordance between each pair of methods.

In these analyses, p values were used instead of test sta-

tistics because the former provide standardized versions

of the latter that can be compared across all the adjust-

ment methods and samples used in the present study

(for a more detailed discussion, see [30]).

Relationship with criterial subsamples Spearman’s rho

was used to quantify the similarity between the p values

of the between-group differences observed in the criter-

ial subsamples and the sex differences obtained in the

raw and TIV-adjusted datasets.

To obtain a more detailed comparison with the TIV-

matched subsample, we analyzed the relative frequency

of coincidental and non-coincidental findings of this cri-

terial subsample and each TIV-adjusted dataset. A coin-

cidental result (hit) was scored when (1) a statistically

significant sex difference of the same sign was found in

the same anatomical region in a TIV-adjusted dataset

and in the TIV-matched subsample; or (2) when a statis-

tically significant sex difference in a particular brain

region was neither found in the TIV-adjusted dataset

and in the TIV-matched subsample. On the other hand,

non-coincidental results (no-hits) included (1) “false

positives” (when a statistically significant sex difference

found in a TIV-adjusted dataset was not replicated in

the TIV-matched subsample); (2) “false negatives” (when

a statistically significant sex difference found in the TIV-

matched subsample was not observed in a TIV-adjusted

dataset); and (3) “reversions” (when statistically signifi-

cant differences of an opposite sign were found in the

TIV-matched subsample and in a TIV-adjusted dataset).

These data were analyzed by means of Cohen’s kappa

agreement index, codifying statistically significant M > F

differences as 1, non-statistically significant differences

as 0, and statistically significant F >M differences as − 1.

The Cohen’s kappa values obtained were interpreted

according to the guidelines provided by Landis and

Koch [52], which define “poor” (kappa < 0.0), “slight”

(0.00–0.20), “fair” (0.21–0.40), “moderate” (0.41–0.60),

“substantial” (0.61–0.80), and “almost perfect” (0.81–1.00)

levels of agreement.

Replication score Trying to identify the brain areas

where sex differences might have the highest and lowest

likelihood of occurring, a replication score was calcu-

lated. This calculation was carried out using the results

obtained in the TIV-matched subsample, as well as with

results from adjusted datasets that proved to be trust-

worthy. More specifically, attending to the codification

of Cohen’s d sign used in the present study (see the “Re-

lationship with the TIV before and after TIV adjust-

ment” section), M > F statistically significant differences

were scored as + 1, F >M statistically significant differ-

ences were scored as − 1, and the absence of statistically

significant differences was scored as 0. In a second step,

the individual scores for each VOI in the different data-

sets were added together, and the final score obtained

was interpreted without attending to its sign. A differ-

ence was considered highly replicable when it was

observed in all or all except one of the included data

sets. In addition, taking into account that the absence of

evidence does not necessarily provide evidence of

absence [53], a more restrictive criterion (replication

score = 0) was applied before concluding “sex sameness”

or a consistent lack of sex differences.

Results and discussion
Sex differences in gray matter volume: raw data

Sex differences: number and size

Males had larger total intracranial volumes than females

[TIV; t354 = 15.05, p < 1−15; Cohen d = 1.596 (95% CI

1.357, 1.835)]. Statistically significant differences were

also found for each volume of interest (VOI), with males

exhibiting larger gray matter volumes than females in all

cases (see details in Additional file 1: Table S1A). As

Figs. 1 and 2 show, the size of these effects ranged from

0.279 (#77, Thalamus_L) to 1.390 (#42, Amygdala_R),

with an average of 0.811 (95% CI: 0.770, 0.852).

These results are highly similar to those from previous

studies assessing the total gray matter and local volumes

in pre-selected neuroanatomical areas [11–13, 17, 18].

Sex differences: relationship with TIV

Previous studies have shown that the raw volumes of

several brain anatomical structures are directly, but not

uniformly related to TIV [11, 15, 17, 18, 31, 54]. We

replicated and extended these previous findings by quan-

tifying the direct and linear relationship between TIV

and each of the 116 VOIs defined in the AAL atlas.

Thus, as exemplified in Fig. 3a and fully described in

Additional file 1: Table S1B, the strength of the TIV-VOI

relationships was generally high, but not uniform across

brain areas. More specifically, the percent of variance
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accounted for by TIV ranged from 9.60 (#115, Vermis_

9) to 59.82 (#56, Fusiform_R) and averaged 37.10% (95%

CI 34.6, 39.5). The distinct percent of variance explained

by TIV at each VOI was partly explained by the different

sizes of these regions, with TIV accounting for larger

amounts of variance in anatomical regions with larger

average volumes (Pearson’s r = 0.471, p < 1.59− 8).

The slopes of these VOI-TIV linear relationships also

showed wide variation across different brain areas,

ranging from 0.042 (#109, Vermis_1_2) to 11.510 (#8,

Frontal_Mid_R), with an average of 3.228 (95% CI 2.787,

3.669). As predicted (see “Relationship with the TIV be-

fore and after TIV adjustment” section), the steepness of

these TIV-VOI relationships, along with the sex differ-

ences in TIV, fueled sex differences in local gray matter

volumes. Indeed, the TIV-VOI slope values were corre-

lated with both the significance level (Spearman’s rho −

0.414, p < 0.0001) and the size (Spearman’s rho 0.423,

p < 0.0001) of the observed sex differences in local gray

matter volumes. These results verify that the higher the

TIV, the higher the gray matter volume in each VOI.

More importantly, these results also show that the

tighter the TIV-VOI relationship, the larger and more

likely the sex differences, thus revealing that differences

between females and males in raw gray matter volume

are at least partially dependent on TIV scaling effects.

Comparison with criterial subsamples

The large- and small-TIV groups in the only-male sub-

sample differed in their TIV [t146 = 9.962, p < 1−15;

Cohen’s d = 1.653 (95% CI 1.372, 1.934)] and in the 116

VOIs considered in this study (Additional file 1:

Table S9A). In all cases, the large-TIV group had lar-

ger local gray matter volumes than the small-TIV

group (L > S; see Fig. 1), with an average d of 0.701

(95% CI 0.665, 0.736). As expected, both the effect

sizes (Spearman’s rho 0.359, p < 0.0001) and significance

levels (Spearman’s rho − 0.359, p < 0.0001) of these differ-

ences were significantly correlated with the slope of the 116

TIV-VOI regression lines (Additional file 1: Table S9B).

Similarly, the large- and small-TIV groups in the only-

female subsample differed in their TIV [t146 = 9.61,

p < 01−15; Cohen’s d = 1.650 (95% CI 1.370, 1.930)]. As

shown in Fig. 1, local volumetric differences (L > S) with

Fig. 1 Effect sizes of between-group differences in the main sample and in the “only-males” and “only-females” subsamples. Panels left and right
present odd and even numbered brain anatomical regions of the AAL atlas, which (with the exception of the lobules of the cerebellar vermis) are
located in the left and right hemisphere, respectively. Each column of this heatmap displays the Cohen’s d values for statistically significant (p < 0.05,
uncorrected) between-group differences found in each sample (effect sizes of non-significant differences are found in Additional file 1: Tables S1, S9
and S10). Orange and green correspond to effects favoring the groups with larger/smaller TIV (which in the case of the main sample were
males/females), respectively
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p values below 0.05 were observed in 90 brain regions

[average d = 0.571 (95% CI 0.536, 0.605)], and L > S differ-

ences with p values below 0.1 were observed in 12 more

VOIs (Additional file 1: Table S10A). As expected, the sig-

nificance level (Spearman’s rho − 0.370, p < 0.0001) and size

(Spearman’s rho 0.368, p < 0.0001) of these differences were

correlated with the slope of the 116 TIV-VOI regression

lines (Additional file 1: Table S10B). Taken together, these

results reveal that, in the absence of any effects of sex, a

TIV difference of the same magnitude as the one observed

in the main sample results in widespread and medium-to-

large local volume differences that unfailingly favor the

groups with larger TIVs.

On the other hand, the females and males in the TIV-

matched subsample had virtually identical TIVs [Mfemales

1545.111, SD 77.372; Mmales 1546.191, SD 75.397; t146 =

0.086, p = 0.931; Cohen’s d = 0.01; 95% CI − 0.308, 0.336].

Local volumetric differences attained p values below 0.05

in 15 brain regions (and below 0.1 in 12 more;

Additional file 1: Table S8A). As shown in Fig. 2, males ex-

hibited larger VOIs in 11 (73.33%) anatomical regions

[average d = 0.405 (95% CI 0.351, 0.459)], and females ex-

hibited larger VOIs in 4 cases [average d = − 0.402 (95%

CI − 0.337, − 0.466)]. This striking decrease in the number

of statistically significant sex differences (− 87% compared

to the main sample) could initially be due not only to ef-

fective removal of the TIV effects, but also to a reduction

in statistical power derived from the smaller size of the

TIV-matched subsample. However, several sources of evi-

dence provide support to the former possibility: (1) a simi-

lar reduction (− 80%) in the number of sex differences was

also observed in the TIV-matched subsample of Pintzka et

al. [17], which was almost as large as our main sample

(N = 304 and N = 354, respectively); (2) despite having the

same size and statistical power, more numerous and larger

between-group differences were observed in our only-

male and only-female subsamples; (3) the reduction in

sample size cannot account for the reduction (− 76.68%)

or the change in direction of the effect sizes of more than

half (10 out of 19; 52.63%) of the differences observed in

our TIV-matched subsample. Therefore, the low number,

the reduced size, and the bidirectionality of the sex differ-

ences observed in the TIV-matched subsample is due to

removal of TIV effects and not to its reduced statistical

power. Accordingly, neither the significance levels nor the

effect sizes of the sex differences observed in this

Fig. 2 Effect sizes of sex differences in each dataset. Panels left and right present odd and even numbered brain anatomical regions of the AAL
atlas, which (with the exception of the lobules of the cerebellar vermis) are located in the left and right hemisphere, respectively. Each heatmap
displays the Cohen’s d values for statistically significant (p < 0.05, uncorrected) sex differences found in each dataset (effect sizes of non-significant
differences are found in Additional file 1: Tables S1 and S3-S8). Blue and red correspond to M > F and F >M effects, respectively
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subsample were correlated (Spearman rho 0.046, p = 0.619

and 0.136, p = 0.143, respectively) with their correspond-

ing TIV-VOI slope values (provided in Additional file 1:

Table S8B).

From the results obtained in our criterial subsamples,

it became apparent that “sex differences” in the main

sample were more similar (in number, average size, and

direction) to the differences observed between the large/

small-TIV groups in the only female and only male sub-

samples than to the sex differences observed in the TIV-

matched subsample. This qualitative conclusion was

validated by a correlational analysis. Thus, the p value

ordering of these sex differences was much more corre-

lated with the p value ordering of the differences ob-

served between the large/small TIV groups of the only-

female (rho = 0.547, p < 1−8) and only-male (rho = 0.500,

p < 1−8) subsamples than with those corresponding to

the male-female differences in the TIV-matched sub-

sample (rho = 0.257, p < 0.01). Indeed, the p value order-

ing of the “sex differences” in the main sample

correlated almost as much with those of the only-male

and only-female subsamples as the latter two did with

each other (rho = 0.600, p < 1−12).

These results confirm that raw gray matter volumes of

females and males conflate sex and TIV-scaling effects,

and they suggest that the latter might be quantitatively

more important (a conclusion confirmed by other results

from the present study, see “Covariate regression” section)

. Therefore, most sex differences observed in the raw gray

matter volumes of unselected females and males seem to

result from TIV-scaling effects, making it necessary to re-

move the effects of TIV before evaluating any possible

specific sex differences in gray matter volume.

Sex differences in gray matter volume after TIV

adjustment: number and size

As expected, TIV-adjustment reduced the number and

size of sex differences in gray matter volume. However,

as described below, the number, size, and direction of

these sex differences were strikingly dependent on the

method used to correct for the TIV effects.

VBM8-adjusted dataset

As expected, when using the “affine + non-linear VBM8”

algorithm (which does not correct for TIV variation),

sex differences were observed in each of the 116 brain

areas defined by the AAL atlas. These differences

(Additional file 1: Table S2) were very similar in direc-

tion (all M > F) and size (range 0.215–1.51; average

0.900) to those observed in the raw dataset obtained

with CAT12 preprocessed images.

By contrast, after applying the VBM8 “non-linear only”

modulation algorithm to correct for individual

differences in TIV (VBM8-adjusted dataset), statistically

significant sex differences were found in just 71 VOIs. In

all cases, females exhibited larger VBM8-adjusted gray

matter volumes than males (for a complete statistical

output, see Additional file 1: Table S3A). As depicted in

Fig. 2, the effect sizes of these differences ranged from −

0.210 (#29, Insula_L) to − 0.949 (#113, Vermis_7), with

an average of − 0.383 (95% CI − 0.417, − 0.350).

Proportion adjusted dataset

When using proportion-adjusted data, statistically significant

sex differences were found in 51 adjusted VOIs

(Additional file 1: Table S4A). As Fig. 2 shows, in 48 cases

(92.15%), females exhibited larger proportional volumes than

males, and the effect sizes of these differences ranged from

− 0.785 (#77, Thalamus_L) to − 0.222 (#14, Frontal_Inf_Tri_

L), with an average of − 0.359 (95% CI − 0.393, − 0.323).

Males exhibited larger proportional volumes than females in

only three regions (#42, Amygdala_R; d = 0.296; #56, Fusi-

form_R; d = 0.216; #88, Temporal_Pole_Mid_R; d = 0.244).

Covariate regression

When TIV and sex were simultaneously included in a

multiple linear regression analysis, sex became a relevant

predictor of 31 VOIs (for a complete statistical output,

see Additional file 1: Table S5). As Fig. 2 shows, in 19

cases (61.29%), females exhibited larger VOIs than

males. The effect sizes of these differences ranged from

− 0.213 (#31Cingulum_Ant_L) to − 0.397 (#5, Frontal_

Sup_Orb_L), with an average of − 0.273 (95% CI − 0.249,

− 0.298). In the 12 cases where males had larger VOIs

than females, the effect size of the differences ranged

from 0.201 (#56, Fusiform_R) to 0.439 (#75, Pallidum_L)

and averaged 0.310 (95% CI 0.269, 0.352).

In a different vein, it is worth noting that, whereas sex

was only a relevant predictor of 31 VOIs, TIV was a sig-

nificant predictor in all of the 116 VOIs considered in

this study. Moreover, the standardized regression coeffi-

cients (β) corresponding to the TIV (M 0.600, SD 0.132)

were significantly larger than those for sex (M − 0.003,

SD 0.092; t115 = 33.41; p < 0.0001; Cohen’s d = 5.33; see

Additional file 1: Table S5). Accordingly, the semi-partial

correlations corresponding to TIV (M 0.468, SD 0.103)

were higher (t115 = 53.76, p < 0.0001; Cohen’s d = 5.08)

than those for sex (M − 0.0025; SD 0.072). Once again,

these results indicate that most sex differences in raw

gray matter volumes are actually driven by TIV-scaling

effects, hence confirming the findings and conclusions

of the “Sex differences in gray matter volume: raw data”

section.

PCP adjustment method

The calculated b parameter varied widely across the dif-

ferent regions of interest (range 0.430, 1.155; average
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0.863; see Additional file 1: Table S6A). When these b

values were used to adjust the TIV-based proportions,

significant sex differences were found in 22 VOIs (for a

complete statistical output, see Additional file 1: Table

S6A). In 13 cases (59.09%), females had larger power-

corrected proportion (PCP)-adjusted gray matter vol-

umes than males, with effect sizes ranging from − 0.211

(#7, Frontal_Mid_L) to − 0.351 (#5, Frontal_Sup_Orb_L);

average − 0.247 (95% CI − 0.219, − 0.275). In the other 9

cases (M > F), effect sizes ranged from 0.214 (#88, Tem-

poral_Pole_Mid_R) to 0.301 (#73, Putamen_L), with an

average of 0.257 (95% CI 0.232, 0.283). The anatomical

localization of all these sex differences is shown in detail

in Fig. 2.

Residual adjustment method

When using the residual adjustment method, 19 VOIs

showed statistically significant differences between fe-

males and males (for a complete statistical output, see

Additional file 1: Table S7A). As Fig. 2 shows, in 10

cases (52.63%), females exhibited larger gray matter

residual-adjusted volumes, and the effect sizes of these

differences ranged from − 0.210 (#51, Occipital_Mid_L)

to − 0.343 (#5, Frontal_Sup_Orb_L), with an average of

− 0.248 (95% CI − 0.215, − 0.280). In the 9 cases where

males had larger residual-adjusted VOIs than females,

the effect sizes ranged from 0.226 (#88, Temporal_Pole_

Mid_R) to 0.306 (#73, Putamen_L), and their average

was 0.261 (95% CI 0.239, 0.284).

Evaluation of the adjustment methods

Relationship between TIV and adjusted VOIs

As introduced in the “Relationship with the TIV before

and after TIV adjustment” section, the main goal of the

adjustment methods tested in this study is to remove

any influence of TIV scaling effects. Therefore, in con-

trast to what was observed in raw VOIs (“Sex differ-

ences: relationship with TIV” section), properly adjusted

VOIs should not show any significant linear relationship

with TIV, and the likelihood and size of the sex differ-

ences observed in these adjusted VOIs should be unre-

lated to the slope values obtained when calculating these

regression lines. These predictions were tested in the

VBM8-, the proportion-, the PCP-, and the residuals-

adjusted datasets (but not for the outcomes of the

covariate-regression method because it does not produce

adjusted VOIs; see the “Covariate regression method”

section), but they were only confirmed in the last two.

Thus, applying the VBM8 “non-linear only” modulation

algorithm reduced the strength and, in most cases,

inverted the direction, but it did not eliminate the TIV-

VOIadj relationship (see Fig. 3b and Additional file 1: Table

S3B) or its effects on sex differences. More specifically, we

observed that the slope values of the 116 regression TIV-

VOIadj lines were significantly correlated with the signifi-

cance levels (Spearman’s rho 0.555, p < 0.0001) and effect

sizes (Spearman’s rho 0.574, p < 0.0001) of the sex differ-

ences in these VBM8-adjusted VOIs. These slope values

were significantly different from zero in 52 anatomical re-

gions, and sex differences were more frequently observed

[χ2 (1, N = 116) = 12.35, p = 0.0004] in them (41/52;

78.84%) than in the regions non-significantly related to

TIV (30/64; 46.87%).

Similarly, the proportion adjustment method reduced the

strength and, in most cases, inverted the direction, but it did

not remove all the TIV-VOIadj linear relationships (Fig. 3c

and Additional file 1: Table S4B). A remaining and inverted

relationship between TIV and proportion-adjusted local gray

matter volumes had been previously reported [11, 15, 19,

21], but its relevance for the number and size of sex differ-

ences had not been explored. In this regard, and parallel to

what was observed in the VBM8-adjusted data, the 116

slope values of the TIV-VOIadj regression lines were

significantly correlated with the significance levels

(Spearman’s rho 0.366, p < 0.0001) and effect sizes

(Spearman’s rho 0.541, p < 0.0001) of the sex differ-

ences in these proportion-adjusted VOIs. These slopes

were significantly different from zero in 63

proportion-adjusted VOIs (Fig. 3c and Additional file 1:

Table S3), and most of the sex differences were ob-

served in these anatomical regions [38/63, 60.31% vs.

13/53, 24.52%; χ2 (1, N = 116) = 14.97, p < 0.0001].

Conversely, adjusting the VOIs by means of the PCP

or the residuals methods completely eliminated their re-

lationship with TIV (see Fig. 3d, e and Additional file 1:

Tables S6B and S7B). Thus, none of the regression lines

between TIV and PCP- or residual-adjusted VOIs dif-

fered significantly from zero. Moreover, the slopes of

these regression lines did not show any statistically

significant relationship with the significance levels or the

effect sizes of the sex differences observed in PCP-

(Spearman’s rho − 0.051, p = 0.585; Spearman’s rho

0.168, p = 0.070) and residual- (Spearman’s rho 0.051,

p = 0.585; Spearman’s rho 0.102, p = 0.271) corrected

VOIs, respectively.

Taken together, these results reveal that VBM8- and

proportion-adjusted data remain related to TIV and,

although their effects operate in an inverse direction to

what was observed in the raw data (“Sex differences in

gray matter volume: raw data” section), they have an in-

fluence on the sex differences observed in these datasets.

However, the sex differences observed in PCP- and

residual-adjusted data (as well as those estimated from

covariate regressions) are free of any influence of TIV.

Agreement across methods

As revealed by the free-marginal multi-rater kappa

concordance index, there was a poor to modest level of
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Fig. 3 TIV-VOI relationships in raw and TIV-adjusted datasets. Scatterplots and outcomes of linear regression analyses of the raw or VBM8-, proportion-,
PCP- or residual-adjusted volumes of the right amygdala (right), or the left thalamus (left) vs. intracranial volume are shown. This regression analysis
was conducted on the 116 regions of the AAL atlas, and its output is fully reported in Additional file 1: Tables S1, S3, S4, S6, S7, and S8
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nominal (statistically significant difference/non-statisti-

cally significant difference) agreement among the

methods (Κ = 0.32; 95% CI 0.23–0.42; estimated overall

agreement 66.21%). Similar results and conclusions were

obtained when concordance was assessed at the ordinal

level through Kendall’s coefficient of concordance (W =

0.408, p < 0.0001). Spearman correlations (Table 2)

revealed that these modest levels of agreement actually

result from merging two separate “clusters” of outcomes.

Thus, the ordering of the p values obtained in the

VBM8-adjusted dataset was similar to the one obtained

in the proportion-adjusted dataset (Spearman’ s rho

0.695, p < 5−18, but unrelated to those obtained when

data were adjusted with any other method (which were

virtually identical among them; Spearman’ s rho values

ranging from 0.980 to 1, p < 1−80). The only exception to

the sharp separation of these two clusters of methods

was a weak (rho = 0.195, p < 0.05) correlation between

the p value ranks of the proportion and the PCP

methods.

Relationship with criterial subsamples

As Table 3 shows, the p value orderings of the sex differ-

ences observed in the VBM8- or proportion-corrected

data were correlated with the between-group differ-

ences observed in the only-male/only-female subsam-

ples and in the raw dataset, but they were only

marginally (r < 0.18, p ≈ 0.06) correlated with the sex

differences found in the TIV-matched subsample.

Conversely, the p value orderings of the sex differences

observed in the covariate regression-, the PCP- or

residual-adjusted datasets were highly and exclusively

correlated with those observed in the TIV-matched

subsample (r > 0.64, p < 1-8in all cases). These results

confirm and extend the results of the “Relationship

between TIV and adjusted VOIs” section by indicating

that the sex differences observed in VBM8- and

proportion-adjusted datasets are probably more related

to TIV-scaling than to sex effects. Therefore, it might

be concluded that, only in the covariate regression-,

PCP and residual-corrected datasets, and unbiased esti-

mates of sex effects might be obtained.

A more detailed comparison of the results obtained in

each adjusted dataset and those obtained in the TIV-

matched subsample was conducted using the Cohen’s

kappa concordance index (Fig. 4). Interestingly, the level

of agreement in the outcomes of the TIV-matched and

VBM8-adjusted datasets was not different from what

would be expected by chance (κ = − 0.035; 95% CI − 0.095,

0.025; p = 0.270), and similar results were observed when

considering the proportion-adjusted dataset (κ = 0.095;

95% CI − 0.020, 0.210; p = 0.030). However, the outcome

of the covariate regression method (κ = 0.502, 95% CI

0.324, 0.680; p = 1−15) showed levels of agreement with the

TIV-matched subsample that might be considered moder-

ate. Moderate but very close to the boundary of “substan-

tial” (κ = 0.61) agreement was observed in the PCP-

adjusted dataset (κ = 0.604; 95% CI 0.413, 0.795, p = 1−18),

whereas the residuals-adjusted dataset ( κ = 0.670; 95%

CI 0.483, 0.857; p = 1−20) surpassed this threshold and

showed the highest degree of agreement with the TIV-

matched subsample.

Reliability of the differences

Replication of differences across methods

As described in the “Relationship with the TIV before

and after TIV adjustment” section, to identify the most

consistent sex differences and sex similarities, a replica-

tion score was calculated. This score only took into

account the outcomes of datasets adjusted with methods

that are free of TIV effects (the covariate regression-, the

PCP-, and the residuals-adjusted datasets).

A consistent lack of sex differences (replication

score = 0) was observed in 83 of the 116 VOIs

(71.55% of total; see Additional file 1: Table S11).

However, as Table 4 shows, consistent sex differences

(replication scores ≥ 3) were identified in 19 VOIs

(10 F >M; 9M > F; 16.4% of total). The d values for

these differences ranged between |0.2–0.6| depending

on the VOI and adjustment method considered. The

confidence intervals of the estimated effect sizes were

relatively broad, thus indicating that the precision of

these estimates is suboptimal. Moreover, in some

cases, confidence intervals included the zero value,

which introduces some uncertainty about the

Table 2 Concordance between the sex differences obtained in each adjusted dataset

VBM8 Proportion Covariate regression PCP Residuals

VBM8 – 0.695** 0.047 0.091 0.047

Proportion 0.695** – 0.110 0.195* 0.110

Covariate regression 0.047 0.110 – 0.981*** 1.000***

PCP 0.091 0.195* 0.981*** – 0.981***

Residuals 0.047 0.110 1.000*** 0.981*** –

Spearman’s rho rank correlations were calculated using the p value ordering for each pair of adjustment methods (*p < 0.05, **p < 5−18, ***p < 1−80). The p values used in

these calculations were obtained in the male-female VOI comparisons in each TIV-adjusted dataset
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reliability of these differences. On the other hand,

when the d values for each VOI were averaged across

methods, these effect sizes became smaller and varied

within a narrower range (d = |0.22–0.38|).

Effects of multiple comparison correction

Up to this point, all the effects presented in this study

assumed a significance threshold (p < 0.05) that did not

account for a large number of comparisons performed.

This methodological decision was made to maximize

statistical power and reduce type II errors, but it

increases the probability of type I errors (see “Sex differ-

ences” section). Therefore, we sought to investigate how

several procedures to correct for multiple comparisons

affected the number of statistically significant sex effects

in each TIV-adjusted dataset, as well as in the raw

volumetric data.

As Fig. 5 shows, correcting for multiple comparisons

resulted in a reduction in the number of statistically

significant differences. This effect was more pronounced

in the PCP- and residuals-adjusted datasets, in which

even the most liberal correction procedures resulted in

levels of significance above 0.05 for each VOI. A similar

decrease was observed in the TIV-matched subsample,

although the sex difference observed in the right amyg-

dala retained statistical significance across all the correc-

tion procedures. On the other hand, the decline in the

number of statistically significant differences was less

sharp in the covariate regression—and even less so in

the proportion and the VBM8-adjusted datasets. More-

over, in the VBM8-adjusted dataset, adopting Benjamini-

Krieger-Yekeuteli-corrected p values resulted in a larger

number of statistically significant differences than when

using uncorrected p values (a paradoxical effect that is

not uncommon in studies involving between-group

comparisons of brain structure measures [55]). Finally,

the number of differences observed in the raw dataset

was mostly unchanged, and only when using the

Table 3 Correlations between sex differences in each adjusted dataset and the between-group differences in the criterial
subsamples

VBM8 Proportion Covariate regression PCP Residuals

TIV-matched (sex effect) − 0.177$ − 0.179$ 0.722*** 0.648*** 0.722***

Only males (TIV effect) − 0.211* − 0.205* 0.085 0.103 0.085

Only females (TIV effect) − 0.250** − 0.241** 0.059 0.070 0.059

Raw (TIV and sex effects) − 0.529*** − 0.640*** − 0.022 − 0.064 − 0.022

Correlations between the p values of the sex differences obtained in each adjusted dataset and the p values of the between-group differences observed in the

three criterial subsamples. Spearman’s rho rank correlations were calculated using the ordering of the p values of the sex differences obtained in each

adjusted dataset and the group effects observed in criterial subsamples, providing unbiased estimations of sex (TIV-matched subsample) and TIV

(only-males and only-females subsamples) effects. For comparison purposes, the correlations with the p values of the sex differences observed in raw

gray matter volumes are also provided ($p < 0.06, *p < 0.05, **p < 0.01, ***p < 0.1−8)

Fig. 4 Comparison with the TIV-matched sub-sample. This Figure summarizes the relative (%, Y axis) and absolute frequencies (numbers within
the bars) of coincident (hits, green) and non-coincident (“false negatives,” white; “false positives,” orange and “reversed” differences, yellow) results
of each adjusted dataset and those observed in the TIV-matched subsample
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Bonferroni-Dunn correction, two (out of 116) compari-

sons failed to reach statistical significance.

These results reinforce the concerns about the reliability

of some of the sex differences arising from the inspection

of confidence intervals (“Replication of differences across

methods” section). The possible causes and interpretations

of these findings are further discussed in the “Discussion

and conclusions” section.

Discussion and conclusions

The results of the present study allow us to draw three

main conclusions. First, most male-female differences in

regional gray matter volumes are due to sex-independent

TIV-scaling effects. Therefore, these female-male differ-

ences are not “sex differences,” but rather “size differ-

ences.” Consequently, it is necessary to remove the effects

of TIV when trying to evaluate any possible sex effects on

local gray matter volumes.

Second, not all methods currently used to remove TIV

variation are equally effective and valid. Thus, choosing an

appropriate adjustment procedure becomes a critical

methodological decision that should be reported in detail

and carefully considered when summarizing the results of

different studies. In this regard, although none of these

methods can be designated as “the correct one” [29], our

results indicate that the proportion- and the VBM8 (“non-

linear only modulation”) adjustment methods invert, but

do not remove, the effects of TIV, hence producing

patterns of sex differences that are opposite to, but just as

misleading, as the ones provided by raw data. As a result,

these two adjustment methods should probably be aban-

doned (for similar conclusions, see [16, 17, 20, 29, 54]).

However, the other three methods evaluated here effect-

ively remove TIV effects (“Relationship between TIV and

adjusted VOIs” section; Table 3). Although the outcomes

of these methods are very similar (Table 2), the ones ob-

tained from the residuals- and PCP-adjusted datasets

showed a slightly higher degree of concordance with those

from the TIV-matched subsample than the outcomes ob-

tained with the covariate regression method (Fig. 4).

Nevertheless, the higher flexibility of this method might

recommend its use in particular circumstances (e.g., when

it is necessary to incorporate additional covariates; see

[29]). Therefore, choosing one of these three valid

methods should be guided more by the sample character-

istics, the measures that are available, and the experimen-

tal design than by any a priori recommendation (for a

more comprehensive discussion, see [16, 29, 30].

Third, when TIV effects are properly controlled, sex

differences in gray matter volumes seem to be relatively

infrequent and small. However, a precise and definitive

answer to the question of how many and how large the

sex differences in gray matter volume are cannot be

provided.

In any case, the question of how many sex differences

there are might be considered spurious because

Table 4 Summary of sex differences

Cohen’s d values and the lower and upper limits of the 95%confidence intervals of the sex differences with replication scores > 3(see details in the “Replication

score” section) are provided. d values in red/blue correspond to sex differences favoring females/males with uncorrected p < 0.05 (values in black correspond to

differences with p > 0.05). The average d was calculated by incorporating all these d scores (p < 0.05 and p > 0.05), and this value was used to compute the

percentage of overlap of females and males and the percent of superiority

Sanchis-Segura et al. Biology of Sex Differences           (2019) 10:32 Page 15 of 19



statistical significance (whether or not a consensual but

arbitrary probability threshold is surpassed) does not

equate to scientific relevance, and because statistical sig-

nificance (and, thereby, the number of differences found)

is critically dependent on sample size. Plainly speaking,

with a large enough sample, any discrepancy becomes a

“statistically significant difference” [56], but such a find-

ing might be more informative about the sample than

about the difference itself [10, 57, 58]. Indeed, as

recently mentioned in a statement by the American Stat-

istical Association [36], p values have no inferential con-

tent, and they do not measure the size or the

importance of a result. Therefore, following the recom-

mendations of the ASA and other similar claims [10,

59–62], the emphasis should be on estimation rather

than testing, and effect size information should replace

“bright-line” interpretations of p values. For the present

study and other similar studies, this means focusing

more on the size than on the number of sex differences.

Nevertheless, it is worth mentioning that not only in this

study, but also in others with larger sample sizes [11, 17,

19], the number of statistically significant sex differences

is much lower than the number of sex similarities, espe-

cially when adopting a significance level corrected for

multiple comparisons (Fig. 5).

According to Cohen’s cut-offs [34], the estimated

effect sizes of the sex differences found in our study

were “small” (Fig. 3). However, these effects exhibited

relatively wide 95% confidence intervals (Table 4,

Additional file 1: Tables S3–S7), especially in the TIV-

matched subsample (Additional file 1: Table S8). This is

the case because, although effect size measurements are

independent from the sample size, the sample size

affects the precision of their estimation [63]. Therefore,

it might be argued that the actual effect sizes of the sex

differences in cerebral gray matter volumes could be

larger than those reported in our study. However, this

seems unlikely because reduced sample size tends to

overestimate, not to underestimate, the size of statisti-

cally significant effects (“the winner’s curse effect” [64];).

Fig. 5 Effect of different procedures to correct for multiple comparisons on the number of sex differences in raw and TIV-adjusted datasets. FDR,
false discovery rate; FWR, family-wise error rate; BKY, Benjamini, Krieger, and Yekutieli; B-H, Benjamini and Hochberg
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Indeed, several studies [11, 17, 19, 65] using valid TIV-

adjustment methods in samples larger than ours, esti-

mated effect sizes that were similar, but smaller, than

those provided here. This might be illustrated by using

the amygdala volume as an example. Thus, our esti-

mated average d values for the right and left amygdala

(0.373 and 0.281, respectively; Table 4) were higher than

the bilateral amygdala volumes estimated in other large

residuals—or ANCOVA—TIV adjusted datasets ([65]

N = 883, d = 0.25 [11]; N = 856, η2 = 0.011 ≈ d = 0.21 [17];

N = 998, d = 0.18 [19]; N = 2400, d = 0.18) and those esti-

mated in a recent meta-analysis ( [66] right amygdala;

Hedges g ≈ d = 0.171; left amygdala, Hedges g ≈ d =

0.233). Therefore, it might safely be concluded that the

actual sizes of the sex differences in gray matter volumes

should be similar to or smaller than those reported in

our study, and that they are “small.”

Although initially appealing, Cohen’s “size-labels” for effect

sizes (“small,” “moderate,” and “large”) are ambiguous in

their meaning. Effect size meaning is better conveyed by d-

derived indexes, such as the percent of overlap and the per-

cent of superiority displayed in Table 4. These results clearly

show that, even in the anatomical regions at which the lar-

gest sex differences were found, gray matter volumes

present an impressive degree of overlap (ranging between

84.97 and 91.20%). Accordingly, the probability that a ran-

domly sampled person from one sex will have a larger gray

matter volume than a randomly sampled person from the

other sex never exceeded the 60.56% (that is, just 10.56%

more than what would be expected by chance). The mean-

ing of this observation is better appreciated by comparing it

to the size of the somatic male-female differences such those

observed in as height, at which overlap is reduced to 31.66%

and the percent superiority (in this case, M> F) raises up to

the 92% [45]. Therefore, the effect sizes observed in this

study clearly reinforce the notion that local gray matter vol-

umes of females and males are more alike than different,

and that none of their differences can be described as an ex-

ample of “sexual dimorphism” (literally, “two forms”). None-

theless, labeling the observed effects as “small” is not the

same as saying that they are trivial. Small effects might be

meaningful [42, 67]. Moreover, effect size interpretation is

always dependent on the research context [68]. Thus,

small sex differences such as those observed in the present

study might become relevant in the context of psychiatric

or neurological disorders, whereas they might be far less

relevant in many other research contexts [69, 70]. How-

ever, whether or not this is the case remains to be demon-

strated in future studies.

Limitations

The present study has some limitations that reduce the

generalizability of its results.

First, it should be noted that we used a convenience

sample (rather than sampling epidemiological tech-

niques) that covered a relatively narrow age range and

was mainly composed of university students. Although

these characteristics are typical of most volumetric stud-

ies in non-clinical populations, they may reduce

generalizability to other populations.

Second, in this study, we employed a VOI-based

approach using the AAL atlas. Although this approach

has less anatomical precision than voxel-based analyses,

it was chosen because (1) it defines the VOIs before con-

ducting any data analysis, hence avoiding circularity and

SHARKing and contributing to the accurate estimation

of effect sizes [71, 72]; 2) It reduces the number of

between-group comparisons, thus contributing to

obtaining an adequate balance between sensitivity and

statistical power. More specifically, after setting the

power at 0.8 and assuming the conventional significance

threshold of 0.05, the minimum detectable effect in this

study was estimated as d ≥ 0.29. In this way, restricting

the number of between-group comparisons to 116 pre-

defined VOIs allowed us to detect even small effects

while maintaining statistical power at much higher levels

than those ordinarily observed in neuroimaging studies

[64, 73]. However, it should be noted that, although the

AAL is probably the most commonly used atlas in MRI

studies, this atlas was constructed based on the neuro-

anatomical characteristics of a single brain [33], and it

also presents other limitations inherent to the use of any

predefined template [74].
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