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Abstract: Only in recent years, thanks to a precision medicine-based approach, have treatments
tailored to the sex of each patient emerged in clinical trials. In this regard, both striated muscle tissues
present significant differences between the two sexes, which may have important consequences
for diagnosis and therapy in aging and chronic illness. In fact, preservation of muscle mass in
disease conditions correlates with survival; however, sex should be considered when protocols for
the maintenance of muscle mass are designed. One obvious difference is that men have more muscle
than women. Moreover, the two sexes differ in inflammation parameters, particularly in response to
infection and disease. Therefore, unsurprisingly, men and women respond differently to therapies. In
this review, we present an up-to-date overview on what is known about sex differences in skeletal
muscle physiology and disfunction, such as disuse atrophy, age-related sarcopenia, and cachexia. In
addition, we summarize sex differences in inflammation which may underly the aforementioned
conditions because pro-inflammatory cytokines deeply affect muscle homeostasis. The comparison
of these three conditions and their sex-related bases is interesting because different forms of muscle
atrophy share common mechanisms; for instance, those responsible for protein dismantling are similar
although differing in terms of kinetics, severity, and regulatory mechanisms. In pre-clinical research,
exploring sexual dimorphism in disease conditions could highlight new efficacious treatments or
recommend implementation of an existing one. Any protective factors discovered in one sex could
be exploited to achieve lower morbidity, reduce the severity of the disease, or avoid mortality
in the opposite sex. Thus, the understanding of sex-dependent responses to different forms of
muscle atrophy and inflammation is of pivotal importance to design innovative, tailored, and
efficient interventions.
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1. Introduction

In medicine and in clinical practice, sex differences comprise sex-specific and sex-
related diseases, i.e., disease states exclusively or prevalently occurring in people of one
sex. Obvious examples of sex-related diseases are genetic diseases linked to sexual chro-
mosomes [1–3]. In addition, an impressive list of pathologies includes diseases that dis-
play different outcomes in the two sexes, ranging from depression and epilepsy [4,5]
to autoimmune diseases [6], and also ranging from myopathies [7] to organ failure or
dysfunction [8–10]. Many illnesses are characterized by sex-specific differences in sever-
ity [11], natural history [12], or disease mechanisms [13].
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Only in recent years, thanks to a precision medicine approach, have treatments tailored
to the sex of each patient emerged in clinical trials [14]. As an example, the treatment
with the common immunosuppressant rapamycin in mice has sex-specific effects, such as
extending the life-span in female mice more than in male mice, whereas the combination
with the anti-hyperglycemic drug metformin levels these differences [15]. Indeed, finding
sex differences in responses to disease or treatment may lead to implemented or totally new
treatments [16–19]. In this review, we focus on sex differences in skeletal muscle. Indeed,
significant differences between the two sexes concern both sexes’ striated muscle tissues
with important consequences for diagnosis and therapy [20,21]. However, the preference
given to the musculature, which prominently characterizes sexual dimorphism, is based on
the fact that the amount of lean mass is directly associated with survival in both healthy
and disease conditions [22].

In this review we analyze the most significant papers reporting on sex differences in
skeletal muscle physiological conditions as well as in three different pathological states
characterized by marked sarcopenia and muscle dysfunction: disuse atrophy due to im-
mobilization or microgravity [23], age-related sarcopenia [24], and muscle wasting in
cachexia [25,26]. We also discuss sex differences in inflammation which may underly the
conditions above; indeed, pro-inflammatory cytokines deeply affect muscle homeostasis.
The rationale of comparing these three conditions is based on the fact that different forms
of muscle atrophy share common mechanisms—for instance, those responsible for protein
dismantling [27]—although differing in terms of kinetics, severity, and regulatory mecha-
nisms [28,29]. Whether these differences can arise differently on a sex-related basis is of
particular interest for a precision medicine-based approach.

2. Sex Differences in Muscle Homeostasis and Metabolism

Men have a remarkably different muscle phenotype compared to females, besides
having greater muscle mass tout court. The major differences between the two sexes in
muscle metabolism and homeostasis were extensively reviewed by Rosa-Caldwell and
Greene [30]. In both rodents and humans, sex differences are observed in muscle fiber
type, capillarity, and transcriptomes [31]. Indeed, glycolytic fibers are more abundant in
men than in women [32], which has a direct consequence on the glucose metabolism [33]
and respiratory capacity [34] of the musculature. This difference could account for the
differential sensitivity to the diverse forms of muscle atrophy among sexes. Indeed, the fact
that cachexia affects glycolytic fibers to a greater extent than oxidative ones [35], whereas
disuse muscle atrophy affects predominantly oxidative fibers [36], is consistent with the fact
that cachexia is more severe in men than in women [37] and that the opposite is observed
in disuse muscle atrophy [38].

The mechanisms underpinning sex differences in fiber type composition remain to
be determined: indeed, although the expression levels of several genes related to muscle
fiber type phenotype (such as myosin heavy chain I, MyHC, and peroxisome proliferator-
activated receptor delta, PPARδ) are higher in women compared to men, there are no
significant sex-based differences in the levels of the corresponding proteins [39]. However,
higher mitochondria biogenesis and content was reported in female muscle compared to
male muscle [40], which corelates with the higher number of oxidative fibers in females
and with the prominent role of fat oxidation to produce adenosine triphosphate (ATP) [41].
Although it is recognized that women differ from men in their mitochondria features and
activity, both in health and in disease [42], it is not clear how these differences may affect
overall phenotypic and clinical outcomes [43]. Indeed, no differences in the respiration of
gastrocnemius mitochondria between men and women have been observed [44]. Moreover,
sex does not influence the expression of the creatine transporter or the content of creatine in
the human skeletal muscle [45], which suggests that the major source of ATP for immediate
use is equally available in the muscle tissue of both sexes.

Sex differences were also observed for lipid [46] and protein [47] metabolism and
turnover. Different patterns of proteome regulation, including proteins involved in muscle
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contraction and metabolism as well as in detoxification and antioxidant systems, were
observed in rats between sexes [48]. In addition, human women have a higher protein
turnover rate than men at all ages considered [49]. As expected, these differences in
protein turnover are accounted for by hormones [50], which is reported in detail in this
review. Nonetheless, the mechanisms underlying these differences between female and
male muscles must be brought to light. Indeed, a major player in the balance of protein
synthesis is mTOR (mammalian Target of Rapamycin), which, surprisingly, is similarly
activated in the two sexes in response to well-known anabolic stimuli, such as exercise and
food intake [51,52], with notable exceptions [53].

Satellite cells (SC) are important players in muscle regeneration following acute or
chronic injury [54–58]. In addition to fiber hypertrophy, SC contribute to muscle growth
in early postnatal life and following muscle damage due to exercise [59,60]. Overall, men
have more SC and show greater SC proliferation compared to women [61,62], which is
likely linked to the different availability of humoral factors [63]. Interestingly, sex-based
differences in SC content are specific to type II fibers without any correlation with fiber
size [64]. It is not surprising, then, that skeletal muscle regeneration exhibits sex differences
in mice [65].

Sexually dimorphic growth is attributed to the growth hormone (GH)/insulin-like
growth factor 1 (IGF1) axis. In women, the expressions of growth factor receptor-bound
10 (GRB10), which is inhibitory for IGF-1 signaling, and activin receptor IIB (ActR-IIB),
which mediates a pathway leading to muscle atrophy, are higher than in men [66]. The
expression and activity of some myokines appear to be different among sexes. As an
example, the brain-derived neurotrophic factor (BDNF), a muscle-generated myokine that
controls metabolic reprograming upon fasting in a similar manner as physical exercise,
displays sexual dimorphism [67,68]. In addition, the effects of interleukin 6 (IL-6) and
myostatin, whose expressions are influenced by fasting, are fiber type-dependent and
sex-dependent [69]; IL-6 plays different roles in muscle metabolism in female and male
mice [70], and the effects of myostatin on muscle tissue are dose-, sex-, and muscle type-
dependent [71]. GH regulates the abundance of mature myostatin by acting not only via
the activator of transcription 5B (STAT5B) but also via a non- STAT5B pathway to regulate
myostatin mRNA expression [72]. This double signaling pathway could explain why, in
response to GH, the intracellular signal transducer STAT5B is dispensable, as shown in
STAT5B -/- mice [73]. The expressions of other growth factors, such as FGFs, vary not only
with the type of skeletal muscle fibers but also according to sex in mice [74], extending the
paradigm of sex differences in the autocrine, paracrine, and endocrine control of muscle
growth to other factors. All of these findings also show that humoral factors affect muscle
mass in a complex and interdependent fashion.

Sex-specific involvement of the neurohypophyseal peptides oxytocin (OXT) and va-
sopressin (AVP) in human behavior is well-established [75]. Less known is the fact that
these two hormones can also be considered myokines [76], as they have profound effects on
muscle homeostasis and development [77–79]. An additional, major endocrine difference
between men and women is the axis from the anterior pituitary gland—via gonadotrophs—
to sex organs, leading to the production of estrogen and progesterone, which are both
associated with muscle growth and health in humans [80–82]. The role of estrogens in
sexual dimorphism was comprehensively reviewed by McMillin et al. [83]. Estrogens
(produced by granulosa and Sertoli cells in female and male individuals, respectively) vary
in their circulating concentrations during the menstrual cycle in humans or the estrous
cycle in mice; therefore, their level and activity should be considered when dealing with
women of reproductive age. A meta-analysis addressing the effects of estradiol-based
hormone replacement therapy on muscle mass clearly indicates that estradiol is beneficial
for muscle maintenance [84]. On the other hand, androgens are chiefly responsible for the
male phenotype [85], and circulating testosterone is one of the major factors responsible for
sex differences in athletic performance due to the well-known dose–response relationship
between its levels and those of muscle mass and strength [86]. Sex hormones appear to
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be responsible for greater fat oxidation in women during endurance exercise compared to
men [87]. Recently, an interplay between female sex hormones and IL18 was reported with
important, sex-specific consequences on glucose intolerance and insulin signaling [88].

Based on all of these findings, skeletal muscle growth, metabolism, and homeostasis
are sexually dimorphic (Figure 1). This suggests that women and men suffer from sar-
copenia to a very different extent, possibly with distinctive mechanisms of disease. In the
following paragraphs, we will highlight the major sexually dimorphic features of muscle
atrophy in various conditions.
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3. Sex Differences in Muscle Atrophy Associated with Disuse and Denervation
3.1. Major Differences in Clinical and Pre-Clinical Phenotypes

Muscle atrophy is associated with disuse, a condition due to prolonged bed rest or
joint immobilization, resulting in the loss of skeletal muscle mass [43,89]. Similar to bed rest,
the unloading condition due to microgravity, as in space flights, has multiple consequences,
including a decrease in muscle mass [90]. Although disuse-induced muscle atrophy occurs
in both men and women, many differences were observed between the sexes in both
humans and animal models. Women suffer from greater muscle loss in intensive care
units [38] and experience a higher risk of mortality compared to men [91]. Interestingly,
a greater loss of knee extensor muscle strength (KES), despite a similar extent of atrophy,
was observed in women compared to men following immobilization-induced disuse [92].
Conversely, following arm suspension, men displayed a significant decrease in the volume
of flexor muscle that was not observed in women [93]. In another study, following hip
fracture, men experienced a higher prevalence of sarcopenia than women [94]. Lastly, the
mean thickness of the rectus femoris, although significantly different between male and
female patients before surgery for femoral fractures, reached the same value in both sexes
after a traction period of a few days [95]. Interestingly, patients of the two sexes may also
differ in recovery capacity: men perform better than women after cast removal, as women
require a more intense rehabilitation program [96]. During space flights, men and women
show sex-specific adaptations with differences in immunity and metabolism, including
compounds important for bone and muscle homeostasis and function [97].

Muscle atrophy is also associated with diseases such as osteoarthritis (OA), which is a
frequent cause of disability due to lack of or poor joint mobility, ultimately resulting in dis-
use/reduced use of the muscle [98]. Sexual dimorphism was observed in OA; male patients
display higher type IIa muscle fiber power and velocity compared to female patients. At
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the molecular level, this can be due to the slower kinetics of myosin–actin cross-bridge in
women compared to men [99]. In addition, the reduction of subsarcolemmal mitochondria
observed in women with OA may also contribute to poorer muscle performance com-
pared to men because mitochondrial fission and remodeling are involved in disuse muscle
atrophy [100].

Taken together, these studies suggest that women are more susceptible to disuse
muscle atrophy than men and display functional alterations different from men upon
atrophying conditions. However, the results can be inconsistent or even entirely different
depending on the conditions. For instance, cast immobilization (limited to a few muscles
of one arm) in a subject capable to move and use other muscles is not comparable with
almost total immobilization due to bed rest for a patient of the same or the opposite sex. A
more correct view is probably that features other than sex (muscle type, immobilization
length and extent, etc.) interact with sex to trigger muscle atrophy upon immobilization or
to unload in various ways and to different extents.

It is worth noting that denervation [18,29,101] achieved by various means differs
from casting [102], hindlimb suspension [103], or tenotomy [104] insomuch as muscle
atrophy occurs in the absence of the neurotrophic affects deriving from innervation (i.e., the
maintenance of neuromuscular junctions). Nonetheless, we report here the few studies on
sex differences in this condition due to its clinical relevance. By exploiting a novel murine
model of mild spinal muscular atrophy, Kothari and coworkers demonstrated that men
are slightly more susceptible than women to neuromuscular junction (NMJ) transmission
defects and muscle fiber atrophy [105]; similarly, sex differences were observed in a mouse
model of amyotrophic lateral sclerosis [106] and in humans with milder types of spinal
muscular atrophy [107]. In xenopus, denervation induces muscle fiber atrophy in the
muscles of the larynx, whereas androgen treatment induces muscle fiber hypertrophy; no
sex differences were observed in fiber size modification due to innervation or androgen
treatment but in the control of the number of muscle fibers [108]. Consistently, crush-
induced nerve injury negatively affected the isometric contractile capacity of muscle EDL in
mice regardless of sex [109]. These interesting, albeit sparse, findings are relevant because,
taken together, they suggest that men could be more heavily affected than women following
nerve rescission or damages of motor neurons, whereas muscle atrophy is aggravated in
women in innervated, unloaded muscles. Because age-related sarcopenia is partially due to
a progressive and selective denervation of the fast-twitch fibers, denervation will be further
discussed in Section 4, which is dedicated to aging.

3.2. Molecular Mechanisms and Sex Differences in Disuse Muscle Atrophy

To address the molecular mechanisms underlying disuse-induced atrophy, several ani-
mal models are available, which were reviewed by Musacchia [110]. Disuse muscle atrophy
generally encompasses categories such as tenotomy, unloading, immobilization, and dener-
vation. However, all of them are fundamentally unique. Rotator cuff tenotomy-induced
muscle atrophy is sex-specific (exacerbated in male mice) and regulated by autophagy
independently of Nuclear factor-κB (NF-κB) [104], which we and others have shown con-
trols muscle wasting in other conditions [111,112]. In rats subjected to hindlimb unloading,
there is a greater reduction in soleus muscle mass and fiber cross-sectional area (CSA) in
women than in men due to a different activation of the FoxO3a/ubiquitin-proteasome
pathway [113]. These results were confirmed in mice: upregulation of ubiquitin-ligases
expression was observed in women, but not in men, as early as 24–48 h after hindlimb
unloading together with the upregulation of Deptor and Redd1, two inhibitors of mTOR
Complex 1 (mTORC1) [43]. In a model of hindlimb unloading, damage to mitochondrial
functions were also investigated [114,115]: whereas mitochondrial degeneration was ev-
ident in male mice before the onset of muscle atrophy, the opposite occurred in women
despite massive ROS production followed by degradative pathways and mitophagy [116].
Thus, oxidative stress may play a pivotal role in disuse-induced muscle atrophy [117].
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4. Sex Differences in Aging-Associated Sarcopenia
4.1. Major Differences in Clinical and Pre-Clinical Phenotypes

Age-related sarcopenia is a condition characterized by a reduction in muscle mass,
strength, and function with increasing age, with a relevant burden on global health and
the management of elderly people [118]. The definition of sarcopenia evolved over the last
25 years thanks to discussion groups, such as EWGSOP, giving rising importance to the func-
tional deficit, which is characteristic of sarcopenic muscle, in the diagnosis and management
of sarcopenia [119–122]. Currently, recommendations exist for the treatment of sarcopenia,
which include exercise and nutritional supplementation, e.g., vitamin D [25,123]; nonethe-
less, sex differences remain a neglected aspect for both primary (age-related) and secondary
(disease-related) sarcopenia [118]. Indeed, sex differences can influence how men and
women respond to aging, as discussed by Anderson et al. [124]. The risk factors for the
development of age-related sarcopenia are different for men and women, and they were
identified by Hwang and Park [125]. Both men and women manifest loss of skeletal muscle
mass and function with increasing age, but men have a greater loss than women, even
though this gross difference can be partly explained by the greater initial muscle mass that
men have compared to women [126]. However, a different study showed that the quadri-
ceps muscle cross-sectional area decreases with age, especially in women [127]. When
assessing age-related strength loss, the abrupt age-related decline measured (KES) occurs
earlier in women than men, whereas the corresponding isometric strength loss is similar
between sexes [128]. Indeed, the differences in KES are accounted for by sex differences
in the kinetics of the muscles contributing to this measurement, i.e., the rectus femoris,
quadriceps, etc. [129]. Consistently, single fibers show sex-dependent alterations in size
and a decrease in intermyofibrillar mitochondrial size with age, primarily in women [34].
Consistently, the typical slowing of myosin cross-bridge kinetics is particularly evident
in elderly women, and this may account for the increased disability and contractile dys-
function of skeletal muscle [130]. Aging is also associated with progressive denervation, a
phenomenon that can be reversed by exercise [131]. The effects of aging on the regulation
of muscle contraction by neurons were studied [132], but, to our knowledge, most studies
have not examined denervation in a sex-stratified manner or addressed the sex-dependent
mechanisms underlying this phenomenon.

The lower appendicular mass of the skeletal muscle is associated with the increased
risk of falls observed among elderly women compared to men [133,134], suggesting that
differences in sarcopenia between the two sexes account for additional issues associated
with aging, such as risk of morbidities and incidents. Certainly, frailty as a clinical condition,
defined as an increased susceptibility to unfavorable health outcomes [135], contributes to
aging-associated sarcopenia. Indeed, in the elderly, frailty represents the link between a
healthy status and a poor outcome, including death, in people of the same chronological
age. Some conflicting data were collected in the last 20 years regarding the sex differences
in frailty [136], mainly because of the lack of a consensus in its definition and assessment
or due to discrepancies in the study samples’ characteristics or ethnicities. However, by
using phenotypic and accumulated deficits as a frailty index, two systematic reviews found
the prevalence of frailty to be higher in older women than men [137,138], which was also
confirmed in a recent metanalysis [136]. These conclusions are in alignment with, and may
contribute to, an overall aging-associated sarcopenia that is particularly evident in elderly
women compared to men.

4.2. Possible Mechanisms Accounting Sex Differences in Aging-Associated Sarcopenia

During aging, several factors underpinning muscle quality come into play, including
muscle composition, aerobic capacity and metabolism, fatty infiltration, insulin resistance,
fibrosis, and neural activation [139]. Looking for mechanisms responsible for sarcopenia
in a sex-dependent fashion, it was proposed that a decrease in IGF1 contributes to the
development of sarcopenia only in women [140]. In rats, soleus and extensor digitorum
longus (EDL) muscle to body weight ratios steadily decrease with age in men but not in
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women up to 26 months of age; these sex-dependent differences were associated with
differences in the regulation of IGF-1 downstream effectors, such as protein kinase B
(Akt), mTOR, and p70s6k, in the slow-twitch soleus and with the regulation of AMP
activated protein kinase (AMPK), Eukaryotic translation initiation factor 4E-binding protein
1 (4EBP1), p70s6k, and rpS6 in the fast-twitch EDL [141].

By contrast, sex-related differences in the serum levels of the other major regulator
of muscle mass, myostatin, with aging is unclear, and further investigations are needed.
In men, serum levels of myostatin slightly increase with age up to around 57 years and
then decrease [142], and low serum levels of myostatin were associated with low skeletal
muscle mass in older adult men, but not in women. According to these findings, serum
levels of myostatin cannot be used to diagnose sarcopenia or to monitor how sarcopenic
muscles respond to treatments [143]. On the other hand, a different study showed that
serum concentrations of myostatin and myostatin-interacting proteins do not differ be-
tween young and sarcopenic elderly men [144]. In addition, a strong negative association
between circulating myostatin, follistatin, and muscle power in women but not in men
was described [145]. The decrease of sex hormones that occurs with increasing age was
also proposed to be responsible for sarcopenia. Indeed, the loss of skeletal muscle asso-
ciated with the perimenopausal stage may be potentially related to increased levels in
FSH [146]. In parallel, the deficit of hormones, such as testosterone and 17 β estradiol,
associated with aging would be the cause of the altered activation of SC, which are critical
for muscle repair and regeneration processes [147]. Malnutrition also plays an important
role in muscle homeostasis, and because it is often associated with aging [148], it might
be responsible for age-related sarcopenia [149]. Malnutrition leads to an increased risk of
sarcopenia in women [140]. In addition, low levels of vitamin D are associated with muscle
loss in elderly Chinese individuals [150] and lower appendicular skeletal muscle mass
index scores in Korean women, for whom it is also associated with a greater proportion
of hypovitaminosis [151] that, again, highlights the importance of vitamin D balance to
counteract sarcopenia associated with aging.

5. Sex Differences in Cancer Cachexia
5.1. Major Differences in Clinical and Pre-Clinical Phenotypes

Cachexia is a wasting syndrome associated with chronic illnesses, including cancer,
and characterized by weight loss and skeletal muscle wasting [152]. The consensus defi-
nition of cancer cachexia [153] boosted the recognition of its clinical relevance [154]. The
prevalence of cachexia is very high (50–80%) in advanced malignant cancer [155]. Due to
severe muscle wasting, cancer patients experience weakness and fatigue, which signifi-
cantly lower their quality of life [26]. The onset of cachexia has a predictive value of poor
survival and response to therapy [156], and it affects 20% of cancer patients [157].

Although the mechanisms of cachexia receive increasing attention, sex differences in
this syndrome are far less appreciated. Biological differences between men and women may
account for different responses to cachexia at multiple levels: susceptibility, progression,
and response to treatment [158]. The diagnostic and prognostic assessment of cachexia
relies on both the body mass index (BMI) and the rate of ongoing weight loss [153,159]. The
fact that men and women have different BMI immediately suggests that the susceptibility
to cachexia and its severity are different between the two sexes. Moreover, men and women
differ in the relative amount of fiber types, with women generally having mitochondria-
enriched, more oxidative muscles. This fact results in an intrinsic higher respiratory
capacity in mitochondria from women with respect to men [42,160] as well as differences
in the metabolism of malonyl-CoA [161], which may account for the sex differences in
cancer cachexia. Two studies on hundreds of cancer patients revealed that men showed
muscle wasting two times more frequently than women [162,163]. Quite consistently,
sexual dimorphism was observed in cachexia, including different decreases of muscle fiber
cross-sectional area, expressions of atrogenes (Foxo, Ub-ligases, etc.), or expressions of genes
responsible for muscle growth (AKT1, MSTN, etc.), apoptosis (CASP9), and inflammation
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(TNF and STAT3) [164]. All of these findings result in a greater reduction of force in men
than women [37]. Among patients with lymphoma, both progression-free survival and
overall survival were decreased in men with sarcopenia and not significantly affected in
sarcopenic women [165], confirming the importance of muscle wasting for prognosis.

5.2. Sex Differences in the Mechanisms Leading to Cachexia

Consistent with the clinical observations described previously, the mechanisms un-
derlying cachexia appear to be different for the two sexes. As a caveat, it is worth noting
that, although they confirm the existence of sex differences, animal models do not always
mirror the prevalent human condition in cancer cachexia. Indeed, in a tumor-bearing
mouse model, female mice developed body and limb muscle weight loss at early stages of
cachexia but maintained their protein amounts and specific force, whereas the opposite was
observed in male mice [166]. Alterations of mitochondria were widely reported in cachexia,
suggesting a new avenue of investigation [167,168]. Nonetheless, no studies so far have
been dedicated to identifying sex differences regarding mitochondria’s role in cachexia.

Similarly, the role of microRNAs in cachexia is a growing field of investigation [169];
however, the characterization of their differential modulation in the two sexes during
cachexia is still missing today.

More significant progress was done on sexual dimorphism related to humoral factors
as triggers of muscle atrophy in cachexia. The ligands of the activin receptor IIB (ActR-IIB),
such as myostatin, activin, and other members of the TGFβ superfamily, were identified
as major players in muscle wasting and proposed as therapeutic targets [170]. In pancre-
atic ductal adenocarcinoma patients, activin is a preferential driver of muscle wasting in
men [171]. Altered levels of GDF15 associated with aging in humans—higher in older men
than in age-matching women [172]—were proposed as causative of both sarcopenia and
the low physical performance of the muscle [173,174]. Therefore, GDF15 is now heavily
investigated in cachexia because blocking GDF15 signaling may have the potential to
counteract cachexia [175]. However, to the best of our knowledge, the impact of sex on
GDF15’s effects have not been carefully investigated yet. Whereas IL-6 levels inversely
correlate with BMI in cancer patients [176], the samples were not stratified according to
the sex of the patient. However, in animal models, female animals are more resistant to
high levels of pro-inflammatory cytokines, such as IL-6 [177], which is probably due to
a reduced catabolic response in muscle tissue [178]; in addition, a sex-dependent genetic
predisposition to produce high levels of IL-6 exists due to polymorphism in the promoter
of this gene [179]. The role of sex hormones was addressed in animal models of cancer,
revealing that cachexia is associated with the cessation of estrous cycling [180]. The expres-
sion of estrogen receptors in muscle cells is not clear due to conflicting results [83], and
additional research is required to fully elucidate the cellular and molecular mechanisms
underlying 17-β estradiol-mediated effects. However, the effort will be rewarding because
17-β estradiol deficiency is shared by several conditions of skeletal muscle wasting, such
as disuse, injury, cachexia, and sarcopenia, and any progress in this query will lead to
applications for multiple conditions.

6. Sex Differences in Immune Responses and Inflammation
6.1. Major Differences in the Inflammatory Response

There is now ample evidence that sex is an important determinant of the immune
response in the context of inflammation in various disease settings, including infection,
autoimmunity, and cancer, and that sex differences strongly influence disease symptoms’
severity and mortality. Existing epidemiological data reveal a critical role for sex differences
in the immune response against viral, self, and tumor antigens, with women generally
showing more robust innate and adaptive immune responses [181–183]. These differences
are largely driven by differences in sex chromosome gene expression and in circulating
levels of sex hormones including estrogens, progesterone, and androgens [181–185]. Estro-
gen and progesterone receptors are expressed by most immune cells, and 17-β estradiol
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boosts both cell-mediated and humoral immune responses [184,185], whereas progesterone
has anti-inflammatory effects [186]. By contrast, androgens generally dampen the immune
response [181,183]. Moreover, a number of genes on the X chromosome code for immune
response-related proteins such as Toll-like receptors (TLRs) (in particular TLR7 and TLR8),
interleukin 2 receptors (IL2R), and transcriptional factors (such as FOXP3), which regu-
late the immune response, and therefore, they contribute towards sex differences in the
development of inflammatory diseases [187].

Circulating levels of estrogen were associated with more severe symptoms in a mouse
model of systemic lupus erythematosus (SLE), and the removal of estrogen improves dis-
ease prognosis [188]. On the other hand, lower serum levels of androgens in elderly men is
associated with an increased incidence of rheumatoid arthritis (RA) [189]. Although ele-
vated innate and adaptive immunity in women may drive the progression of autoimmune
diseases, such as Systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), it is
advantageous in anti-tumor responses.

6.2. Inflammation throughout Different Conditions of Muscle Atrophy

Aging is typically associated with a moderately, albeit relevant, increased level of
inflammation, even though it is not clear whether the so-called “inflammaging” is a cause
or an effect of aging [190]. Some chronic conditions that present as age-associated comor-
bidities can definitely accelerate aging due to increased inflammation mediated by immune
dysfunction [191]. Bed rest induces a small rise in pro-inflammatory cytokines, which can
reach a statistically significant increase for specific ones, such as IL-6 [192,193]. Micrograv-
ity determines aging-like phenomena mediated by chronic low-grade inflammation as
well [194]. On the contrary, systemic inflammation accompanied by increased circulation of
proinflammatory cytokines is an important feature of cancer and contributes significantly
to loss of muscle mass and the development of cancer cachexia [195].

Based on all of these findings, the changes in levels of pro-inflammatory cytokines
seem to be abrupt and much more pronounced in cancer cachexia compared to other forms
of muscle atrophy, such as those following unloading/disuse or associated with aging.
Interestingly, men respond differently than women to these forms of muscle atrophy.

All of the information about the differences between the two sexes and the correspond-
ing references cited in this review are summarized in Table 1.

Table 1. Sex-related differences in muscle phenotype under physiological or pathological conditions.

Muscle Conditions Sex-Related Differences in Muscle Traits Reference(s)

Physiological

Mass [30]
Energy metabolism [32–34]

Mitochondrial content [42]
Protein turnover [47,50]

Insulin sensitivity [66,88]
Muscle regeneration [61,62,65]

Disuse

Muscle weight [38,93]
Muscle force [92,98]

Myofilament cross bridge kinetics [99]
Recovery [96]

Aging

Muscle weight [126,127]
Muscle force [128,129]

Myofilament cross bridge kinetics [130]
Frailty [136–138]

Cancer Cachexia
Muscle weight [162,163]
Muscle force [37,162,163]

Overall survival [158,165]
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7. Conclusions
7.1. Inflammation-Driven Muscle Atrophy: Are Cytokines the Culprit?

Here we have presented, in a comparative way, sex differences in three forms of
sarcopenia (Figure 2). Aging seems to affect men more severely in terms of muscle
mass loss, but it affects women more insofar as muscle function is preferably consid-
ered. Disuse affects muscle atrophy in women more than men [38], whereas cancer
cachexia is the opposite [98,162]. One difference between disuse and cachexia is the
absence or presence of a significant degree of inflammation due, in the latter, to tumor–host
interactions [196,197]. Inflammatory cells deeply affect SC behavior and muscle homeosta-
sis [198,199] and are promising new targets to treat muscle diseases [200]. Even though
inflammation does not necessarily correspond to an increased presence of inflammatory
cells in muscle infiltrates [201], pro-inflammatory cytokines directly target striated muscles,
triggering muscle wasting [202] and inhibiting muscle regeneration [60,203]. In addition
to the cytokines released by the immune system, the levels of circulating myokines are
strongly dependent on the amount of muscle mass present, which is overtly different
between sexes. Based on the above, we propose that, in addition to obvious differences in
hormone and growth factors, differences in myokines and cytokines must be taken into
account when considering the mechanisms of differential muscle atrophy observed in the
two sexes in different forms of muscle atrophy.
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7.2. Which Direction Shall We Go?

The US NIH already requires taking into account sex as a biological variable in
preclinical studies [204]. However, we propose a step forward in this direction: comparisons
based on the sex of the organism should be systematically planned in both clinical and
experimental studies dealing with muscle atrophy from now on. Remarkably, there is an
issue even with studies addressing sex differences in a variety of biological disciplines; as
beautifully demonstrated by Garcia-Sifuentes and Maney, often when a sex-specific effect
is claimed based on experimental data, the authors do not actually statistically test the
differences [204]. This often makes it difficult to actually state if and to what extent sex
differences exist, and it calls for further investigation on this important aspect of biology.

In clinical trials, the study groups are not systemically stratified by the sex of the
patients, which is often due to the small size of the cohort studied. Nonetheless, it was
already reported that the results may change significantly depending on the sex of the
patient. For instance, the treatment with the common immunosuppressant rapamycin has
sex-specific effects [15], highlighting the importance of taking into account sex differences
for precision medicine. The same is true for physical exercise [205] as an intervention
against cancer. The conclusion of a ponderous survey on the effectiveness, acceptability,
and safety of exercise for cancer cachexia in adults is that “further high-quality randomized
controlled trials are still required to test exercise alone or as part of a multimodal inter-
vention to improve people’s well-being throughout all phases of cancer care”, suggesting
that additional clinical and basic studies are needed to implement exercise efficacy [206].
Because men and women respond differently to both endurance and resistance exercise
training [207,208]—which seems obvious based on the profound differences in their mus-
culature, which are summarized in the first section of this review—the sex of the patient
represents a major variable to be taken into account for future studies. The challenges and
opportunities for future research on sex differences have been discussed [209]. In addition,
guidelines and methods to test sex differences were recently published [210].

Furthermore, an effort should be made to clarify the role of inflammation in different
conditions as opposed to that of reduced mechanical, contraction-mediated stimuli. Indeed,
depending on the specific condition, muscle wasting may be due to the inflammatory
factors present at high levels in a given disease state plus the secondary sarcopenia due to
other factors, likely leading to a positive feedback loop [211]. For instance, in intensive care
units (ICU), patients experience high inflammation typical of critical illness combined with
bed rest, both contributing to inflammatory disequilibrium; similarly, the elderly may show
chronic inflammation combined with reduced activity due to poor muscle performance. To
better address the relative contribution of each of these factors to muscle wasting, it will be
interesting to compare similar conditions, ideally differing in one variable. For instance, is
the amount of muscle wasting in space flights (i.e., a “purely” microgravity condition) the
same as in bed rest in an ICU (which is characterized by inflammation induced by injury or
a severe disease)?

7.3. Final Remarks

Only in recent years has the importance of personalized medicine, also known as
precision medicine, gained momentum [212], and tailored treatments have emerged in
clinical trials [14]. In pre-clinical research, exploring sex differences in various disease
conditions may be the gateway to successful treatments [16]. For example, any protective
factors discovered in one sex could be exploited to lower disease morbidity and severity or
avoid mortality in the opposite sex [158]. In particular, the understanding of sex-dependent
responses to different forms of muscle atrophy and inflammation is of pivotal importance
for the design of innovative, tailored, and efficient interventions.
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