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Behavioral/Systems/Cognitive

Sex Differences in �-Opioid Receptor Expression in the Rat
Midbrain Periaqueductal Gray Are Essential for Eliciting Sex
Differences in Morphine Analgesia

Dayna R. Loyd, Xioaya Wang, and Anne Z. Murphy
Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302-4010

Opioid-based narcotics are the most widely prescribed therapeutic agent for the alleviation of persistent pain; however, it is becoming
increasingly clear that morphine is significantly less potent in women compared with men. Morphine primarily binds to �-opioid
receptors (MORs), and the periaqueductal gray (PAG) contains a dense population of MOR-expressing neurons. Via its descending
projections to the rostral ventromedial medulla and the dorsal horn of the spinal cord, the PAG is considered an essential neural substrate
for opioid-based analgesia. We hypothesized that MOR expression in the PAG was sexually dimorphic, and that these sex differences
contribute to the observed sex differences in morphine potency. Using immunohistochemistry, we report that males had a significantly
higher expression of MOR in the ventrolateral PAG compared with cycling females, whereas the lowest level of expression was observed
in proestrus females. CFA-induced inflammatory pain produced thermal hyperalgesia in both males and females that was significantly
reversed in males with a microinjection of morphine into the ventrolateral PAG; this effect was significantly greater than that observed in
proestrus and estrus females. Selective lesions of MOR-expressing neurons in the ventrolateral PAG resulted in a significant reduction in
the effects of systemic morphine in males only, and this reduction was positively correlated with the level of MOR expression in the
ventrolateral PAG. Together, these results provide a mechanism for sex differences in morphine potency.

Key words: dermorphin-saporin; intra-vlPAG; estrous cycle; pain; inflammation; opiate

Introduction
It is becoming increasingly clear that morphine is more potent in
male compared with female rats, with similar, although not un-
equivocal, effects observed in humans (Cepeda et al., 2002; Ce-
peda and Carr, 2003; Miller and Ernst, 2004). Sex differences in
morphine analgesia have been demonstrated in multiple preclin-
ical studies using both acute and persistent orofacial (Okamoto et
al., 2005), visceral (Ji et al., 2006; 2007) and somatic (Bartok and
Craft, 1997; Cicero et al., 1997; Boyer et al., 1998; Kest et al., 1999;
Barrett et al., 2001; Cook and Nickerson, 2005; Wang et al., 2006)
pain models, with ED50 values two times higher in female com-
pared with male rats (Wang et al., 2006; Ji et al., 2007). Impor-
tantly, sex differences in opiate sensitivity are not due to the
pharmacokinetics of morphine because no sex difference has
been reported in serum or brain levels of morphine, and elimi-
nation and metabolic rates are comparable between sexes (Cicero
et al., 1996; Craft et al., 1996; Cicero et al., 1997; Sarton et al.,
2000). Rather, sex differences in morphine analgesia are likely

due to differences in opiate receptor density, binding and local-
ization, as well as sex differences in the anatomy and physiology
of opiate-responsive neural circuits (Loyd and Murphy, 2006,
2008; Loyd et al., 2007, 2008).

The midbrain periaqueductal gray (PAG) and its descending
projections to the rostral ventromedial medulla (RVM) consti-
tute an essential neural circuit for opioid-based analgesia (Bas-
baum et al., 1976, 1978; Fields and Basbaum, 1978; Basbaum and
Fields, 1979; Behbehani and Fields, 1979; Shah and Dostrovsky,
1980; Abols and Basbaum, 1981; Beitz, 1985; Beitz and Shepard,
1985). Administration of �-opioid receptor (MOR) agonists into
the PAG produces potent analgesia that is blocked by central or
systemic administration of the opioid antagonist naloxone (Sa-
toh et al., 1983; Jensen and Yaksh, 1986; Bodnar et al., 1988).
Similarly, direct administration of MOR antagonists into the
PAG blocks the antinociceptive effects of systemic morphine
(Wilcox et al., 1979; Ma and Han, 1991; Zhang et al., 1998) indi-
cating that the PAG is an essential locus for exogenous opioid-
mediated analgesia.

The ventrolateral PAG (vlPAG) contains a high density of
MOR (Mansour et al., 1986, 1987; Kalyuzhny et al., 1996; Guts-
tein et al., 1998; Commons et al., 1999, 2000; Wang and Wessen-
dorf, 2002) and �27–50% of PAG neurons projecting to the
RVM express MOR (Commons et al., 2000; Wang and Wessen-
dorf, 2002). Unfortunately, studies examining the distribution of
MOR within the PAG-RVM circuit were conducted exclusively in
males. The vlPAG is a critical site mediating the analgesic effects
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of morphine, yet despite profound sex differences in morphine
analgesia, surprisingly little is known about the distribution and
function of MOR in females. The present studies tested the hy-
pothesis that sex differences in MOR expression within the

vlPAG provide a mechanism underlying the sexually dimorphic
effects of morphine. This hypothesis was tested in a series of
anatomical and behavioral studies to establish the relationship
between sex, antinociceptive potency of intra-PAG morphine
and the density of MOR in the vlPAG.

Materials and Methods
Subjects
Adult weight-matched (250 –350 g) intact male and cycling female
Sprague Dawley rats were used in these experiments (Zivic-Miller). Rats
were housed in same-sex pairs on a 12:12 h light:dark cycle. Access to
food and water was ad libitum throughout the experiment except during
surgery. These studies were performed in compliance with the Institu-
tional Animal Care and Use Committee at Georgia State University and
the guidelines of the Committee for Research and Ethical Issues of the
International Association for the Study of Pain (IASP) and the National
Institutes of Health. All efforts were made to reduce the number of ani-
mals used in these experiments and to minimize any possible suffering by
the animal.

Vaginal cytology
Vaginal lavages were performed daily beginning 2 weeks before testing to
confirm that all female rats were cycling normally and to keep daily
records on the stages of their cycle in respect to experimental testing.
Proestrus was identified as a predominance of nucleated epithelial cells
and estrus was identified as a predominance of cornified epithelial cells.
Diestrus 1 was differentiated from diestrus 2 by the presence of leuko-

Figure 1. A, B, Photomicrograph depicting �-opioid receptor immunoreactivity in the cau-
dal ventrolateral PAG (bregma �8.00) in a male (A) and a female (B) rat. Arrows denote MOR-
immunoreactive cell bodies. C, Mean densitometry value of �-opioid receptor immunoreactiv-
ity in male (closed bar) and proestrus, estrus, and diestrus females (open bars) averaged across
the caudal PAG (bregma �7.04 to �8.30). *Significant effect.

Figure 2. Photomicrograph of an intra-PAG injection site in the caudal ventrolateral PAG
(bregma �8.00) of a representative male (A) and female (B) rat. aq, Aqueduct; vlPAG, ventro-
lateral periaqueductal gray; DR, dorsal raphe; scp, superior cerebellar pedunculus.
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cytes. However, because there were no significant differences noted in
either the anatomy or behavior of diestrus 1 and diestrus 2 animals, these
data are pooled (diestrus). Rats that appeared between phases were noted
as being in the more advanced stage.

Intra-vlPAG cannula implantation
Intact males (n � 30) and cycling females (n � 34) were deeply anesthe-
tized with a mixture of ketamine/xylazine/acepromazine (50, 3.3, 3.3
mg/kg, i.p.; Henry Shein). Guide cannulas (22 gauge; 5.0 mm; Plastics
One) were lowered bilaterally into the ventrolateral PAG using the fol-
lowing coordinates (in mm): AP: �0.75 lambda; ML: 0.60; DV: �3.5.
Cannula skull screws and dental acrylic were applied to secure placement.
Cannulas were flushed every 48 –72 h with 0.5 �l of saline over a 60 s
period to acclimate the animals to the injection procedure and maintain
cannula patency.

Lesions of �-opioid receptor-expressing PAG neurons
Intact males (n � 11) and cycling females (n � 11) were deeply anesthe-
tized with a mixture of ketamine/xylazine/acepromazine (50, 3.3, 3.3
mg/kg, i.p.; Henry Shein). Dermorphin-saporin (DermSAP; MOR
agonist-saporin cytotoxin conjugate; Advanced Targeting Systems) or
blank-saporin (BlankSAP; nonsense peptide-saporin cytotoxin control
conjugate; Advanced Targeting Systems) were freshly diluted from stock
(DermSap 0.91 �g/�l, 46.9 �M; BlankSAP 1.5 �g/�l, 46.9 �M; 32 kDa)
and stored on ice during experimental procedures. DermSAP (n � 6
males; n � 6 females) or BlankSAP (n � 5 males; n � 5 females) was
injected into the ventrolateral PAG (coordinates in mm): AP: �0.75
lambda; ML: 0.60; DV: �3.5) using a 1 �l Hamilton syringe. DermSAP (3
pmol/400 nl; 7.5 �M) or BlankSAP (3 pmol/400 nl; 7.5 �M) was micro-
injected over 30 s. This procedure was repeated on the contralateral side.
Saporin has been previously shown to have no effect in the absence of
conjugation (Porreca et al., 2001; Burgess et al., 2002; Vera-Portocarrero
et al., 2006). In addition, dermorphin has been shown to have a high
binding affinity selective for the MOR (Ki value of 0.7 mM) and that
conjugation to saporin does not significantly alter its binding affinity (Ki

value of 0.1 nM; Porreca et al., 2001). This technique has been previously
been shown to result in a significant attenuation of MOR expression in
the RVM (Porreca et al., 2001) and the spinal cord (Kline and Wiley,
2008). Loss of MOR containing neurons was confirmed in the present
study using both immunohistochemistry and autoradiography. Lack of
complete cell loss due to the injection procedure was confirmed with
immunocytochemistry for neuronal nuclei.

Inflammatory hyperalgesia
Persistent inflammation was induced by injection of complete Freund’s
adjuvant (CFA; Mycobacterium tuberculosis; Sigma; 200 �l), suspended
in an oil/saline (1:1) emulsion, into the plantar surface of the right hind-
paw. Paw diameters were determined using calibrated calipers applied
midpoint across the dorsal to plantar surface of both hindpaws before
and after induction of inflammation.

Behavioral testing
Paw withdrawal latencies to a noxious thermal stimulus were determined
using the Paw Thermal Stimulator (Univ. California San Diego) as pre-
viously described (Hargreaves et al., 1988; Wang et al., 2006). Briefly, for
this test, the rat was placed in a clear Plexiglas box resting on an elevated
glass plate maintained at 30°C. After a 1 h acclimation, a radiant beam of
light was positioned under the hindpaw and the time for the rat to re-
move the paw from the thermal stimulus was electronically recorded as
the paw withdrawal latency (PWL). The intensity of the beam was set to

4

Figure 3. A, Percent maximal possible effect of intra-PAG morphine administration of 5 and
10 �g in male (closed symbols) and 5, 10, and 18 �g in female (open symbols) rats. B, Percent
maximal possible effect of intra-PAG morphine administration averaged across the time points
30, 60, and 90 min in male (closed bars) and female (open bars) rats. C, Percent maximal
possible effect averaged over the 12, 15, and 18 �g/0.5 �l doses of intra-PAG morphine in
proestrus, estrus, and diestrus females (open bars) compared with intact male (closed bars) rats.
*Significant difference compared with males and diestrus females.
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produce basal PWLs of �10 s. A maximal PWL of 20 s was used to
prevent excessive tissue damage due to repeated application of a noxious
thermal stimulus.

Perfusion fixation
After experimental manipulations, animals were given a lethal dose of
Nembutal (160 mg/kg, i.p.) and transcardially perfused with 200 –250 ml
of 0.9% sodium chloride containing 2% sodium nitrite as a vasodilator to
remove blood from the brain. Immediately after removal of blood, 300
ml of 4% paraformaldehyde in 0.1M phosphate buffer containing 2.5%
acrolein (Polyscience) was perfused through the brain as a fixative. A
final rinse with 200 –250 ml of the sodium chloride/sodium nitrate solu-
tion was perfused through the brain to remove any residual acrolein.
Brains were placed in a 30% sucrose solution and stored at 4°C.

Immunohistochemistry
Perfusion-fixed brains were sectioned into 25 �m coronal sections with a
Leica 2000R freezing microtome and stored free-floating in
cryoprotectant-antifreeze solution (Watson et al., 1986) at –20°C. A 1:6
series through the rostrocaudal axis of each brain was processed for
MOR1 or neuronal nuclei (NeuN) immunoreactivity using standard im-
munhistochemical techniques as previously described (Murphy and
Hoffman, 2001). Briefly, sections were rinsed extensively in potassium
PBS (KPBS) immediately followed by a 20 min incubation in 1% sodium
borohydride. The tissue was then incubated in primary antibody solution
rabbit anti-MOR1 (donated by Robert Elde, Ph.D., University of Minne-
sota, Minneapolis, MN; 1:70,000) or rabbit anti-MOR1 (Abcam;
1:50,000; lot 317653) or mouse anti-NeuN (Millipore Bioscience Re-
search Reagents; 1:50,000; lot 23112968) in KPBS containing 1.0%
Triton-X for 1 h at room temperature followed by 48 h at 4°C. Both
MOR1 antibodies were prepared against the synthetic peptide
(NHQLENLEAETAPLP) corresponding to amino acids 384 –398 of rat
MOR1 (Arvidsson et al., 1995; Starowicz et al., 2007). After rinsing with
KPBS, the tissue was incubated for 1 h in biotinylated goat anti-rabbit
IgG or anti-mouse (Jackson ImmunoResearch; 1:600), rinsed with KPBS
and incubated for 1 h in an avidin-biotin peroxidase complex (1:10; ABC
Elite Kit, Vector Laboratories). After rinsing in KPBS and sodium acetate
(0.175 M; pH 6.5), MOR1 or NeuN immunoreactivity was visualized as a
black reaction product using nickel sulfate intensified 3,3�-
diaminobenzidine solution (2 mg/10 ml) containing 0.08% hydrogen
peroxide in sodium acetate buffer. After 15–30 min, tissue was rinsed in
sodium acetate buffer followed by KPBS. Sections were then mounted
out of saline onto gelatin-subbed slides, air-dried, and dehydrated in a
series of graded alcohols. Tissue-mounted slides were then cleared in
xylene and glass coverslipped using Permount.

Receptor autoradiography
Dermorphin-saporin- (n � 4 males; n � 4 females) and blank-saporin-
(n � 4 males; n � 4 females) treated animals were rapidly decapitated.
Brains were removed rapidly, flash frozen in 2-methylbutane and stored
at �80°C. Fresh frozen tissue was cut in a 1:4 series of 20 �m coronal
sections at �20°C with a Leica CM3050S cryostat, immediately mounted
onto glass slides and stored at �80°C. Slides were dried and fixed in 4%
paraformaldehyde followed by rinses in 50 mM Tris buffer, pH 7.4, con-
taining 100 nM NaCl. Slides were then placed in a tracer buffer containing
tritiated DAMGO (1 nM; GE Healthcare) for 60 min followed by a series
of rinses in 50 mM Tris buffer, pH 7.4, containing MgCl2. Tissue was
allowed to try and placed on autoradiographic film for 5 weeks at which
point films were developed with a FujiFilm BAS 5000.

Densitometry
For immunohistochemistry data, 12-bit grayscale images were captured
using a QImaging Retiga EXi CCD camera and IPLab Image Analysis

4

Figure 4. A, Mean paw withdrawal latency in seconds to a thermal stimulus in proestrus,
estrus, and diestrus female (open bars) compared with male (closed bars) rats. B, Mean paw
withdrawal latency in seconds to a thermal stimulus after 24 h of CFA-induced inflammation in
proestrus, estrus, and diestrus female (open bars) compared with male (closed bars) rats. C,
Percent change in paw diameter after 24 h of CFA-induced inflammation.
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Software (BD Biosciences). The vlPAG was bilaterally sampled (35 mm 2

at 10� magnification) between bregma �7.04 and �8.30 (Paxinos and
Watson, 1997) three times per section (6 – 8 sections per brain) and the
average grayscale pixel value was recorded. Measures were corrected for
nonspecific immunoreactivity background by subtraction of measures
taken from areas of equal size lacking specific immunoreactivity adjacent
to the vlPAG in the same section. For autoradiography data, color images
were captured and the brightness/contrast was adjusted using Fujifilm
Multigauge software. The injection site area in the vlPAG (bregma �7.04
to �8.30) was sampled three times per section (6 – 8 sections per brain),
averaged and the photostimulated luminescence per mm 2 (PSL/mm 2)
was recorded. Measures were corrected for nonspecific binding by sub-
traction of measures taken from a same section area adjacent to the
vlPAG of equal size.

Statistical analysis
For behavioral data analysis, data are expressed as either raw PWLs or
percent maximal possible effect (%MPE), defined as [(PWL – CFA base-
line)/(maximal PWL – CFA baseline)] � 100 (Jensen and Yaksh, 1986).
PWL data were analyzed for significant main effects of sex and estrous
cycle using ANOVA. Percentile data were transformed into standard

scores. Unpaired t tests were used to determine
significant differences in baseline data. Because
no significant differences in %MPE were noted
for the 30, 45, and 60 min time points, these
values were averaged for derivation of ED50, de-
fined as the dose of morphine that produced
50% of the maximum possible increase in PWL,
using Prism software and analyzed for signifi-
cant reductions in values using ANOVA. p �
0.05 was considered statistically significant.
Fisher’s post hoc tests were used to determine
specific group differences when a main effect or
interaction was observed.

Specific experiments
Experiment 1. Do sex or estrous cycle influence
MOR expression in the vlPAG? Male and female
rats with an established 4 d estrous cycle were
perfused transcardially with fixative on the
morning of a specific stage of the estrous cycle
(diestrus 1, n � 12; diestrus 2, n � 12;
proestrus, n � 12; estrus, n � 12). Males (n �
12) and females were killed at the same time.
Tissue sections were processed immunohisto-
chemically for MOR1 immunoreactivity
(Arvidsson et al., 1995; Kalyuzhny et al., 1996;
Kalyuzhny and Wessendorf, 1997; 1998; Wang
and Wessendorf, 1999; Kalyuzhny et al., 2000;
Wang and Wessendorf, 2002) and densitome-
try values were recorded across vlPAG.

Experiment 2. Do sex- and estrous-cycle-
induced changes in PAG MOR expression influ-
ence the analgesic effects of morphine adminis-
tered into the vlPAG? Intact male and cycling
female rats were implanted with cannulas di-
rected at the ventrolateral PAG. One week later,
baseline PWLs and paw diameters were deter-
mined followed by induction of CFA-induced
inflammation. Twenty-four hours later, PWL
and paw diameters were re-determined to en-
sure the presence of hyperalgesia. Saline or
morphine sulfate prepared fresh on the day of
experiment (obtained from the National Insti-
tute on Drug Abuse, Rockville, MD) was in-
jected into the PAG using a syringe pump at-
tached to a 33-gauge injector (7 mm; Plastics
One). Separate groups of animals received mor-
phine (1.75, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 18.0
�g) or saline in a total volume of 0.5 �l over

60 s. PWLs for the inflamed paw were determined at 15, 30, 45, 60, 90 and
120 min post injection to assess morphine analgesia. At the end of the exper-
iment, Chicago Sky Blue dye (Sigma) was injected through the guide cannu-
las for injection site verification. Analysis was limited to those animals with
injections into the caudal vlPAG (bregma �7.04 to �8.30).

Experiment 3. Do lesions of MOR-expressing neurons in the vlPAG at-
tenuate the analgesic effects of morphine? After determination of baseline
PWLs, animals were administered either DermSAP or BlankSAP bilater-
ally into the vlPAG. Twenty-eight days later, PWLs were determined
(baseline preinflamed PWL). CFA was then injected intraplantar to in-
duce persistent inflammatory pain. Twenty-four hours later, PWLs were
determined to ensure that DermSAP had no effect on baseline hyperal-
gesia. Animals then received cumulative doses of morphine every 20 min
(1.8, 3.2, 5.6, 8.0, 10.0, 18.0 mg/kg), and PWLs were determined 5 min
after administration. At the end of the experiment, animals were per-
fused and lesion sites verified immunohistochemically with antibodies
directed against MOR1 and NeuN. An additional group of animals re-
ceived either DermSAP or BlankSAP and were decapitated 28 d later for
receptor autoradiography to examine the effectiveness of MOR
lesioning.

Figure 5. Illustration depicting localization of DermSAP (closed symbols) versus BlankSAP (open symbols) bilateral injection
sites within the caudal ventrolateral PAG (bregma �7.04 to �8.30) of male (triangles) versus female (circles) rats.
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Results
Sex differences in �-opioid receptor
expression in the ventrolateral PAG
Expression of �-opioid receptor protein in
the PAG of intact male and cycling female
rats was examined immunohistochemi-
cally. Within the rostral PAG, MOR im-
munoreactivity was localized primarily
within the dorsomedial and dorsolateral
subdivisions of the PAG and was compa-
rable between the sexes. Minimal labeling
was observed in the lateral PAG. Moving
caudally, MOR immunoreactivity shifted
and was densely localized within the lateral
and vlPAG, primarily at the level of the
dorsal raphe (bregma �7.04 to �8.30).
Very little to no labeling was observed in the
dorsomedial and dorsolateral PAG. Overall,
females had significantly less MOR immu-
noreactivity in the caudal vlPAG compared
with males [t(58) � 2.18; p � 0.0333] (Fig.
1A,B). As shown in Figure 1C, MOR expres-
sion fluctuated across the estrous cycle, with
reduced MOR immunoreactivity noted in
proestrus females when compared with both
diestrus females ( p � 0.0528) and males
( p � 0.0068).

Intra-vlPAG morphine produces greater
analgesia in males
We have previously reported that mor-
phine is significantly more potent in male
versus female rats (Wang et al., 2006; Ji et
al., 2007). Therefore, we sought to deter-
mine whether sex- and estrous cycle-
induced differences in PAG MOR expres-
sion underlie behavioral differences in
morphine potency. Intra-PAG cannulas
were localized within the caudal vlPAG at
the level of the dorsal raphe (bregma
�7.04 to �8.30). Figure 2 shows a repre-
sentative photomicrograph of the intra-
vlPAG injection site in a male (A) and fe-
male (B) rat. Overall, morphine was significantly more potent in
the reversal of hyperalgesia in males compared with females
[F(1,21) � 188.78; p � 0.0001], with a significant dose by sex
interaction [F(1,21) � 21.81; p � 0.0001]. In male rats, intra-
vlPAG morphine produced significant analgesia with adminis-
tration of 10 �g resulting in 100%MPE at 30, 45, and 60 min after
injection (Fig. 3A). No significant effect of morphine was ob-
served in females at this dose. Because there were no significant
differences in the %MPE observed for the 30, 45, and 60 min time
points, these data are collapsed and presented for all doses (Fig.
3B). Intra-vlPAG morphine (1.75–10 �g) resulted in a dose-
dependent analgesic response in males. The 12.5 �g dose of mor-
phine produced a 30%MPE in females, and increasing the dose of
morphine from 15 to 18 �g did not result in a significant increase
in %MPE in females (�55% to 40%). A small group of females
were administered 20 �g, however this dose was lethal in most
animals so additional testing at this dose was terminated. Simi-
larly, administration of the 12.5 and 15 �g doses were lethal to all
males so testing at this dose was terminated.

Because there was no significant difference in the %MPE between
the 12, 15, and 18 �g/0.5 �l doses of morphine in females, these data
were collapsed and examined for a main effect of the estrous cycle on
morphine analgesia. There was a significant main effect of estrous
stage [F(2,17) � 15.35; p � 0.0002]; such that proestrus ( p � 0.0001)
and estrus ( p � 0.0005) females had significantly lower levels of
morphine analgesia (20–25%MPE), whereas diestrus females had
the greatest levels of morphine analgesia (70%MPE) (Fig. 3C). Our
observed sex differences in intra-vlPAG morphine analgesia are not
due to sex or estrous cycle differences in baseline thermal sensitivity
[F(3,60) � 1.027; p � 0.3870] (Fig. 4A) or in CFA-induced hyperal-
gesia [F(3,60) � 1.244; p � 0.3017 (Fig. 4B) and there was no differ-
ence in the degree of edema produced by intraplantar CFA [F(3,60) �
1.842; p � 0.1492] (Fig. 4C).

Lesions of MOR-expressing neurons in the vlPAG attenuate
morphine antihyperalgesia in males only
To test the role of vlPAG MOR in driving sex differences in mor-
phine analgesia, we injected DermSAP into the vlPAG to site-
specifically lesion MOR-expressing neurons. Lesions that were

Figure 6. A, B, Photomicrograph depicting �-opioid receptor density in the vlPAG (bregma �8.00) after BlankSAP (A) versus
DermSAP (B) treatment. C, D, Photomicrograph depicting NeuN density in the vlPAG (bregma �8.00) after BlankSAP (C) versus
DermSAP (D) treatment. E, F, Photomicrograph depicting tritiated DAMGO binding in the vlPAG (bregma �8.00) after BlankSAP
(E) versus DermSAP (F ) treatment.
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used for analysis were limited to localization within the vlPAG
between bregma �7.04 and �8.30 (Fig. 5). The effectiveness of
the lesions were confirmed in three ways: (1) a significant reduc-
tion in MOR immunoreactivity (Fig. 6A,B), (2) reduced neuro-
nal nuclei immunoreactivity without complete cell loss (Fig.
6C,D), and a significant reduction in tritiated DAMGO binding
(Fig. 6E,F). DermSAP treatment significantly reduced MOR ex-
pression [F(1,19) � 8.951; p � 0.0075] and MOR agonist binding
[F(1,12) � 115.468; p � 0.0001] in the vlPAG compared with
BlankSAP controls. There was no evidence of cell necrosis due to
the injection procedure in any of the animals used for analysis,
similar to previous reports (Porreca et al., 2001). Lesioning
MOR-expressing neurons in the vlPAG had no effect on baseline
sensitivity to either a thermal [F(1,13)� 0.193; p � 0.6677] (Fig.
7A) or mechanical [F(1,15) � 2.833; p � 0.1130] (Fig. 7B) noxious
stimulus in either sex. After 24 h of CFA-induced inflammation,
there was no effect of lesions on thermal [F(1,16)� 0.283; p �
0.6018] (Fig. 7A) or mechanical [F(1,16)� 0.147; p � 0.7064] (Fig.
7B) hyperalgesia in either sex.

Twenty-four hours after the injection of CFA, the analgesic
effects of morphine were assessed using a cumulative dosing par-
adigm. BlankSAP control male and female rats showed normal
levels of morphine analgesia to cumulative doses of morphine
(Fig. 8), with a mean average ED50 value of 4.07 mg/kg in males
versus 10.39 mg/kg in females. There was a significant main effect
of treatment [F(3,130) � 4.750; p � 0.0001], such that DermSAP
treated males displayed a significant rightward shift in ED50 from

4.07 mg/kg in controls to 12.55 mg/kg; no significant change in
ED50 was noted in females (10.39 –9.21 mg/kg).

Positive correlation between morphine analgesia and vlPAG
MOR expression levels in males only
DermSAP treatment resulted in a differential loss of MOR pro-
tein across the caudal vlPAG with levels ranging from abnormally
low to normal or high levels. To further examine the effect of
lesioning vlPAG MOR on morphine analgesia, DermSAP and
BlankSAP animals were pooled and grouped into the following
three categories based on the extent of lesions: (1) abnormally
low level of MOR immunoreactivity (densitometry value 49.80 –
91.82; n � 3 males, n � 4 females), (2) moderate reduction of
MOR immunoreactivity (93.57–121.78; n � 3 males, n � 4 fe-
males) and (3) normal or high levels of MOR immunoreactivity
(126.48 –181.33; n � 4 males, n � 3 females). Normal density of
MOR expression was over two-fold higher than that of abnormal
levels of expression (Fig. 9A). In males, there was a positive cor-
relation between the density of vlPAG MOR-expressing neurons
and the level of morphine analgesia (Fig. 9B). Reducing the ex-
pression of MOR in the vlPAG caused a significant reduction in
ED50 in males: the ED50 was reduced from 3.46 in males with a
high expression (group 3; CI � 1.7– 6.9) to 11.85 (group 1; CI �
7.04 –13.9) in males with abnormally low levels of expression.
There was no significant difference observed in females with a
low density (ED50 9.46; CI � 7.8 –11.6) versus a normal ‘high’
density (ED50 � 8.77; CI � 7.5–10.3) of MOR in the vlPAG (Fig.
9C).

Discussion
Many factors limit the potency of opiates, including tolerance
(Christie et al., 1987; Morgan et al., 2003; Bagley et al., 2005; Lane
et al., 2005; Loyd et al., 2008), negative side effects (Cepeda and
Carr, 2003; Cepeda et al., 2003; Fillingim et al., 2005; Panchal et
al., 2007) and more recently recognized, “gender” or “sex” (Wang
et al., 2006). It is now well known that morphine is more potent in
males compared with females; however, the mechanism(s) driv-
ing this phenomenon is unknown. The present experiments were
designed to test the hypothesis that the expression of MOR in the
vlPAG was sexually dimorphic and essential for eliciting sex dif-
ferences in morphine potency. Here we report that (1) males have
significantly higher levels of MOR protein in the vlPAG com-
pared with females; (2) intra-vlPAG administration of morphine
produces significantly greater analgesia in males; (3) lesions of

Figure 7. Paw withdrawal latencies to a thermal (A) or mechanical (B) painful stimulus
before surgical manipulation (Pre-Lesion), after DermSAP or BlankSAP treatment (Pre-
Inflamed), and after 24 h of CFA-induced hyperalgesia (Inflamed) in male (closed) versus female
(open) rats.

Figure 8. Percent maximal possible effect of cumulative doses of systemic morphine (0, 1.8,
3.2, 5.6, 8, 10, 18 mg/kg) in inflamed male (triangles) and female (circles) rats after DermSAP
(closed symbols) or BlankSAP (open symbols).
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MOR-expressing vlPAG neurons attenuate systemic morphine
analgesia in males only; and (4) the degree of morphine analgesia
is positively correlated with the density of MOR immunoreactiv-
ity in the vlPAG.

Sex differences in �-opioid receptor expression in the
ventrolateral PAG
In male rats, the PAG contains a high density of MOR (Mansour
et al., 1986; Mansour et al., 1987; Arvidsson et al., 1995; Kaly-
uzhny et al., 1996; Gutstein et al., 1998; Commons et al., 1999;
Commons et al., 2000; Wang and Wessendorf, 2002). Although
Western blots would have provided a more quantitative ap-
proach, the present study used immunohistochemistry so that
both qualitative and semiquantitative sex differences in MOR
expression could be examined simultaneously within function-
ally distinct regions of the PAG. Here we report that the highest
density of MOR immunoreactivity was observed in the caudal
vlPAG, similar to previous reports (Kalyuzhny et al., 1996; Com-
mons et al., 2000). Overall, females rats had significantly less
MOR immunoreactivity in the vlPAG, with the greatest differ-
ence observed in proestrus females with approximately one-third
less labeling compared with males. Interestingly, females in
diestrus, the stage in which estrogen and progesterone are the
lowest, had comparable levels of MOR immunoreactivity com-
pared with males. Overall, these results are consistent with a re-
cent Western blot study that reported twofold lower MOR pro-
tein expression in the female rat midbrain compared with males
(Kren et al., 2008). These findings indicate that steroid hormones
may play a role in MOR expression in the region of the PAG that
is essential for analgesia and further suggests that the actions of
morphine are estrous stage dependent.

Intra-vlPAG morphine produces greater analgesia in males
compared with estrus and proestrus females
The antinociceptive effects of morphine are mediated primarily
by the MOR, which is expressed in several supraspinal sites in-
cluding the habenula, striatum, hippocampus, locus ceruleus,
RVM and PAG (Arvidsson et al., 1995). Given that (1) up to 50%
of PAG-RVM projection neurons contain MOR (Commons et
al., 2000; Wang and Wessendorf, 2002) and (2) female rats have
reduced levels of MOR in the vlPAG, we hypothesized that dif-
ferences in MOR within the PAG were sufficient to account for
the sex differences in morphine analgesia. Microinjection of
morphine directly into the vlPAG produced a significantly
greater degree of analgesia in males compared with females at all
doses tested. These results are consistent with our previous stud-
ies using systemic morphine in which ED50 values were twofold
higher in female compared with male rats (Ji et al., 2006; Wang et
al., 2006).

In the present study, morphine analgesia was reduced during
both proestrus and estrus in comparison to diestrus and is con-
sistent with previous studies (Kepler et al., 1989; Islam et al., 1993;
Krzanowska and Bodnar, 1999; Krzanowska et al., 2002). In par-
ticular, increased levels of morphine analgesia were observed
during diestrus when estrogen and progesterone are lowest. In
fact, morphine analgesia during diestrus was not significantly
different from males. These results parallel our findings of re-
duced MOR protein levels during proestrus compared with
diestrus, and provide further support that the amount of avail-
able MOR is positively related to the degree of analgesia produced
by morphine although other variables likely contribute. For ex-
ample, while there was no significant difference in MOR expres-
sion between estrus females and males, estrus females displayed
significantly less analgesia compared with males after intra-PAG
morphine. This suggests that additional factors such as the acti-
vational state of the receptor also impact the ability of morphine
to induce analgesia. In the present study, MOR was detected
immunohistochemically, which would identify all receptors, re-

Figure 9. A, Densitometry value of MOR in the vlPAG of each individual male and female rat
(open circle) after DermSAP or BlankSAP treatment within each group based on �-opioid
receptor density. B, C, Percent maximal possible effect of cumulative doses of systemic mor-
phine (0, 1.8, 3.2, 5.6, 8, 10, 18 mg/kg) in inflamed male (B) and female (C) rats expressing low
(1), moderate (2), and high (3) �-opioid receptor density.
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gardless of their ability to respond to exogenous opiates. Future
studies comparing the functional state of the receptor between
males and females are clearly warranted.

Between 20 –50% of PAG-RVM neurons retrogradely labeled
from the RVM contain receptors for the steroid hormones estro-
gen and androgen (Loyd and Murphy, 2008), whereas 27–50%
express MOR (Commons et al., 2000; Wang and Wessendorf,
2002); therefore it is likely that a proportion of PAG-RVM pro-
jection neurons express both receptor types. There are several
mechanisms whereby changes in gonadal steroid levels could in-
fluence MOR expression and ultimately, morphine analgesia. In-
creased levels of estradiol result in MOR internalization (Eck-
ersell et al., 1998; Micevych et al., 2003) and administration of
estradiol results in the rapid uncoupling of MOR from
G-protein-gated inwardly rectifying potassium channels (Kelly et
al., 2003). Obviously, further research on the mechanism(s)
whereby estradiol alters MOR expression and function is
warranted.

�-Opioid-expressing neurons in the ventrolateral PAG are
necessary for sex differences in morphine analgesia
Using site-specific lesioning techniques to test the necessity of
MOR-expressing neurons in eliciting sex differences in morphine
analgesia, we found that reducing the density of MOR in the
caudal vlPAG significantly attenuated morphine analgesia to sys-
temic morphine in male but not female rats. The ED50 in males
shifted from 4.07 mg/kg in controls to 12.55 mg/kg, whereas no
significant shift was noted in the ED50 in females. These data
provide evidence that MOR-expressing neurons in the vlPAG are
necessary for eliciting sexually dimorphic morphine potency. Re-
moval of MOR in the vlPAG of females had no impact on
morphine-induced analgesia; however, at high doses of systemic
administration, morphine still produces analgesia. This suggests
that in females, the PAG is not the primary anatomical substrate
for the analgesic effects of morphine. Both the RVM (Porreca et
al., 2001; Burgess et al., 2002) and the dorsal horn of the spinal
cord (Kline and Wiley, 2008) contribute to morphine antihyper-
algesia and perhaps these sites are more critical in females. In
support, we have recently reported no differences in MOR ex-
pression within the lumbosacral spinal cord and similarly, no
differences in ED50 values for morphine when administered in-
trathecally (Ji et al., 2006).

In addition, we found that the density of vlPAG MOR immu-
noreactivity was positively correlated with morphine analgesia in
male, but not female rats. Males with normal levels of MOR
immunoreactivity in the vlPAG had significantly lower ED50 val-
ues compared with males with two-fold less MOR immunoreac-
tivity. These results further indicate that MOR-expressing neu-
rons in the PAG are essential for morphine analgesia in male but
not female rats.

Our observed sex difference in the actions of morphine is not
to due sex differences in nociceptive threshold or inflammatory
hyperalgesia. Interestingly, removal of vlPAG MOR with Derm-
SAP had no effect on baseline PWL or inflammatory hyperalgesia
to either a noxious thermal or mechanical stimulus. Thus, al-
though vlPAG MOR obviously contributes to the effects of exog-
enous morphine, its reduction does not appear to alter endoge-
nous pain modulation during inflammatory hyperalgesia
suggesting that other pain inhibiting regions, including the RVM
and spinal cord are involved. In support, previous studies have
reported that DermSAP lesions of MOR-expressing neurons in
the RVM (Porreca et al., 2001; Burgess et al., 2002) and dorsal
horn neurons (Kline and Wiley, 2008) attenuate hyperalgesia in

male rats. Together, these data indicate that the RVM and the
dorsal horn of the spinal cord, but not the PAG, are essential for
driving descending facilitation (Terayama et al., 2000; Ren and
Dubner, 2002; Dubner and Ren, 2004; Wei et al., 2008).

Overall, our results indicate that morphine is a remarkably
ineffective opiate for the alleviation of persistent pain in female
rats. Sex differences in morphine potency are well known in an-
imal research, and have also been widely reported in humans
(Kest et al., 2000; Sarton et al., 2000; Zacny, 2001; Cepeda et al.,
2002; Cepeda and Carr, 2003; Miller and Ernst, 2004). Interest-
ingly, sex is not the only factor that has been shown to affect the
potency of various pharmacological agents. Recent studies have
reported an influence of age (Smith and Gray, 2001; Aubrun and
Marmion, 2007; Gagliese et al., 2008; Hanberry and Murphy,
2008) and ethnicity (Kaiko et al., 1983), and further argue for the
inclusion of a wide range of study subjects in pain management
research. In addition, despite the rapidly mounting evidence of
limitations of opiates in treating persistent pain in females,
opioid-based drugs remain the primary pharmacological tool for
pain management. Clearly additional research with the inclusion
of female subjects needs to be devoted to determining a more
potent treatment for persistent pain in women.
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