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Sex differences have been reported for diseases of the musculoskeletal system
(MSK) as well as the risk for injuries to tissues of theMSK system. For females, some
of these occur prior to the onset of puberty, following the onset of puberty, and
following the onset of menopause. Therefore, they can occur across the lifespan.
While some conditions are related to immune dysfunction, others are associated
with specific tissues of the MSK more directly. Based on this life spectrum of sex
differences in both risk for injury and onset of diseases, a role for sex hormones in
the initiation and progression of this risk is somewhat variable. Sex hormone
receptor expression and functioning can also vary with life events such as the
menstrual cycle in females, with different tissues being affected. Furthermore,
some sex hormone receptors can affect gene expression independent of sex
hormones and some transitional events such as puberty are accompanied by
epigenetic alterations that can further lead to sex differences in MSK gene
regulation. Some of the sex differences in injury risk and the post-menopausal
disease risk may be “imprinted” in the genomes of females and males during
development and sex hormones and their consequences only modulators of such
risks later in life as the sex hormone milieu changes. The purpose of this review is
to discuss some of the relevant conditions associated with sex differences in risks
for loss ofMSK tissue integrity across the lifespan, and further discuss several of the
implications of their variable relationship with sex hormones, their receptors and
life events.
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1 Introduction

A large number of diseases or conditions of the musculoskeletal (MSK) system
exhibit sex differences. Some of these diseases and conditions occur at different stages
across the lifespan, prior to the onset of puberty, after onset of puberty, and in the female
population, in the post-menopausal state. While many of these conditions are idiopathic
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(the causes are unknown), some are related secondarily to
autoimmune diseases and other sex differences are related to
differences in injury risk to MSK tissues.

Sex differences have been noted for risk to injure elements of the
MSK system, for example, injuries to the anterior cruciate ligament
(ACL) of the knee, an injury which is more prevalent in young
females engaged in some sports with the female to male ratio of 5/
1 in some of them (Harmon and Ireland, 2000; Wild et al., 2012;
Edison et al., 2022). Some of the risk for the latter can be traced to
changes in joint laxity across the menstrual cycle (Park et al., 2009),
while others may be related to muscle function issues between
females and males (Hale et al., 2014; Marotta et al., 2019).
However, the basis for all injury-related risks that exhibit sex
differences in incidence have not been characterized.

For a number of other conditions or diseases, MSK involvement
may be secondary to immune dysfunction and subsequent
localization within a joint (generally or involving specific joints).
As many autoimmune diseases affect more females than males, this
means that such conditions that affect joints and other connective
tissues are mainly females. An example of such a scenario is
rheumatoid arthritis (RA) which can be initiated pre-puberty
(i.e., Juvenile Idiopathic Arthritis; Juvenile Inflammatory
Arthritis; JIA) (Glass and Giannini, 1999; Cattalini et al., 2019),
as an adult, or even in post-menopausal females (Serhal et al., 2020;
Shah et al., 2020; Sugihara, 2022). JIA exhibits sex differences in
incidence with a predilection for females compared to males of 3-
6.6/1 (Cattalini et al., 2019). However, sex hormones alone cannot
account for the sex disparities given the early age of onset for many
patients with JIA. Furthermore, some subsets of patients with JIA
exhibit involvement of other tissues that also appear to be associated
with sex. Thus, patients with knee involvement and also chronic
anterior uveitis appear commonly in females with JIA (Angeles-Han
et al., 2013; Cattalini et al., 2019).

A third category of MSK conditions that exhibit sex differences
in incidence/prevalence are those not associated with any overt
linkage to immune dysfunction or obvious injury event. An example
of such a condition is adolescent idiopathic scoliosis, a condition
affecting 1%–4% of adolescents (Penha et al., 2018; Yan et al., 2020),
and a condition resulting in spinal deformities of varying extent,
with onset in the post-puberty environment of growth and
maturation (Chung et al., 2020; Liang et al., 2021). It occurs
mostly in young females (Chung et al., 2020; Yan et al., 2020;
Liang et al., 2021), with a F/M ratio of up to 10/1 for those with
curvatures of more than 30° (Raggio, 2006). While some cases can be
treated with braces, others require surgery to correct alterations that
severely impair both function and quality of life for these young
individuals (Diarbakerti et al., 2018; Burger et al., 2019; Cheung
et al., 2019). While progression of scoliosis may slow after skeletal
maturity, in a subset of individuals it may “re-activate” following
menopause and require surgery latter in life (discussed below).

Other examples of this third category are development of
osteoarthritis (OA), osteoporosis (OP), and sarcopenia in post-
menopausal females [reviewed in 21]. In ages prior to
menopause, the incidence of “idiopathic” (no cause known)
osteoarthritis in females and males is ~1:1 but after menopause
the ratio becomes >2:1 [discussed in 21]. While osteoporosis can
occur in younger individuals due to drug treatment and some
surgeries, the vast majority of osteoporosis patients develop their

disease after menopause. In the post-menopausal age bracket,
approximately 70%–75% of OP patients are female and ~25% are
male. However, even within the OP patient population, the rate of
bone loss is quite variable so there is heterogeneity within the disease
as well. Sarcopenia, or loss of muscle and muscle function can also
occur with aging and contribute to loss of “muscle-bone” unit
function (Hart et al., 2021; Hart, 2022a).

From the discussion above there are a number of points that
emerge regarding sex differences andMSK disease risk, and these are
detailed in point form.

1) Sex differences are relative and not absolute, with only a subset of
the total population affected.

2) Sex differences in MSK conditions can be evident during
hormone level changes at their onset (puberty) and loss
(menopause), as well as during development. Thus, MSK
conditions are evident across the lifespan, and often occur
during or as a result of the transition phases such as puberty
and menopause.

3) Heterogeneity within a sex is evident for risk, so factors other
than just sex hormones are likely contributing to risk.

4) Different MSK conditions exhibiting sex differences likely
involve different molecular mechanisms, and not all can be
directly traced to sex hormones.

5) MSK involvement in diseases exhibiting sex differences may be
primary or secondary

The purpose of this review is to discuss in some detail a limited
but representative spectrum of MSK system diseases and conditions
with regard to onset and progression that exhibit sex-dependent
differences. The goal is to attempt to better understand similarities
and differences in the molecular mechanisms involved, and their
potential relationship to sex hormones and sex hormone receptors,
across the lifespan. As the number of MSK diseases and conditions
that exhibit sex differences is quite large, the subset chosen for
discussion represent different tissues, different phases of the life
cycle, and may represent a number of possible mechanisms being
involved. As will be discussed, studies of sex differences and the role
of sex hormones and their receptors is complex, due in part to
human heterogeneity and the circumstances around specific stages
of the life cycle.

2 Sex differences in risk for injury to
MSK tissues during development,
growth and maturation

2.1 Neonatal hip dysplasia: Development

Sex differences in risk forMSK dysfunction can arise during fetal
development. An example of this category is hip dysplasia in babies
when they are born. Many studies have indicated that the incidence
of neonatal hip dysplasia is greater in females than males, with an
Odds Ratio for F/M of 3.8-4 commonly reported (de Hundt et al.,
2012; de Oliveira Barbosa and Albernaz, 2019). Within this
population there are some features that have been raised and risk
factors identified including family history and genetics (Shaw et al.,
2016; Swarup et al., 2018; Harsanyi et al., 2020; Zhang et al., 2020).
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The incidence of unilateral hip dysplasia is greater on the left side
than the right, and only a small subset (~10%) of patients exhibit
bilateral hip dysplasia (Mousavibaygei et al., 2022).

When detected this condition can often be corrected by non-
invasive procedures using braces or a Pavlik harness (Vafaeian et al.,
2019) to maintain the ball of the hip within the socket. Failure to
correct the condition early after birth leads to an inability to treat
conservatively and development of early OA, often requiring
arthroplasty at an early age (Shaw et al., 2016). Thus, to
maintain proper biomechanics for the hip during subsequent
growth and maturation requires proper placement of the two
parts of the joint. Interestingly, whether excessive hip laxity
develops in this population after puberty, when sex hormone
levels rise and cycle during the menstrual cycle, could not be
found in the literature. If tissues of individuals experiencing
developmental hip dysplasia had some intrinsic unique
responsiveness to sex hormones, one might expect a possible
resurgence of the hip laxity leading to altered biomechanics and
risk for early OA.

Mechanistically, the basis for sex-dependent differences in
development of hip dysplasia is not well defined. As the non-
invasive treatment of the condition is usually a temporary and
short-term intervention to keep the hip in the hip socket, the hip
dysplasia is not a permanent developmental problem and once
removed from the intrauterine environment, the neonate can
“correct” the deficiency. As ligaments support the stability of the
head of the femur in the hip socket, it was once thought that the
ligamentum teres was relevant to the developmental problem.
However, the gross characteristics of this ligament were not
found to be significantly different in patients and controls
(Walker, 1980). Such studies did not characterize the functioning
of such ligaments so perhaps the laxity of connective tissues
contributing to the integrity of hip development were unduly
affected by maternal hormones, a situation that self corrected
after birth under conditions counteracting the pre-birth structural
influence. Of note and potentially relevant to this point, elevated
levels of estrogen receptors have been detected in hip tissues from
babies with developmental dysplasia of the hip (Desteli et al., 2013),
as well as higher levels of receptors for relaxin (an IGF-1 related
protein) elevated late in pregnancy and in milk in some species
(Steinmetz et al., 1987; Goldsmith et al., 1994) including humans
(Schauberger et al., 1996), and in hip tissues from babies with this
dysplasia (Ayanoglu et al., 2021). However, this interpretation would
not however explain any left-right hip differences! As the hip
dysplasia can vary in extent (i.e., severity), there must also be
factors other than hormone levels involved, possibly at the level
of cells within the tissues, at the level of sex-hormone receptors, or
possibly genetic factors (Harsanyi et al., 2020). Thus, any left-right
differences within a sex may have other variables involved in the
outcomes. This conclusion would also be supported by results from
pregnant humans where joint laxity occurs but does not correlate
with serum relaxin levels (Schauberger et al., 1996).

Of note, there has been continual improvement in the detection
of hip dysplasia using imaging modalities (Barrera et al., 2019;
Ghasseminia et al., 2021; Kilsdonk et al., 2021) so detection of
cases has experienced increased sensitivity (Zonobi et al., 2018).
Such approaches may also shed light on sex differences in patients
with borderline dysplasia (Saks et al., 2021). Further improvements

may be possible with enhanced technology using machine learning
and artificial intelligence approaches and improved training
(Ghasseminia et al., 2022). Further, some reports also indicate it
may be possible to detect the condition in the prenatal period
(Komut and Zehir, 2021). These will be important advances to
continue as even the more subtle variants of hip dysplasia could have
impact for development of hip osteoarthritis later in life and
potentially explain the female preponderance of osteoarthritis in
the post-menopausal phase of the lifespan (Hart et al., 2021). This is
relevant as even if detected in childhood and treated, many patients
still exhibit altered gait patterns (Lee et al., 2022a).

Interesting, the concept of ligament laxity playing a role in
developmental hip dysplasia perhaps should not be dismissed as
ligament laxity may also play a role in risk for knee injuries during
adolescence and beyond as discussed below. It is also of interest to
determine whether females with neonatal hip dysfunction would
also predispose for development of hip issues following pregnancies
where laxity again occurs and could again impact the integrity of the
hip biomechanics (discussed below).

Some individuals, mainly females again, are diagnosed with
acetabular dysplasia as adolescents or adults (Lee et al., 2013a).
Such dysplasia also shows a left hip susceptibility and can lead to
osteoarthritis. While very young babies with hip instability can have
acetabular dysplasia (Wenger et al., 2013), some authors suggest that
acetabular dysplasia is a separate disease from development
dysplasia (Lee et al., 2013a). Such suggestions will require further
investigation as to the underlying mechanisms, but both conditions
appear to exhibit some sex differences.

2.2 Sex differences in risk for Juvenile
Idiopathic Arthritis

Juvenile idiopathic arthritis (JIA) can develop in very young
children through to skeletal maturity. Thus, this autoimmune
disease affecting the joints of growing individuals can occur prior
to onset of puberty as well as after puberty (Barnes et al., 2010;
Hollenbach et al., 2010; Ahmed et al., 2014; Cattalini et al., 2019). JIA
exhibits a sex bias of F/M = 3-6.6/1 (Cattalini et al., 2019) although
this ratio may be dependent on race and ethnicity variables (Ringold
et al., 2013; Ahmed et al., 2014). In addition, the sex bias cannot be
explained by sex hormones alone (Chiaroni-Clarke et al., 2016).
Some JIA patients also develop psoriatic arthritis (~5%) (Brunello
et al., 2022), while others develop uveitis (inflammation of the
anterior chamber of the eye) which can lead to blindness if not
treated (Rosenberg, 1987; Rosenberg, 2002; Quartier, 2021). A
subset of females with JIA are at particular risk to develop uveitis
(Haasnoot et al., 2019; Lee et al., 2019). Interestingly HLA-B27 is
reported to be a predictor of some disease characteristics in boys
(Berntson et al., 2008). Therefore, JIA is likely an umbrella term for a
heterogeneous disease with different variables influencing the sex
differences in the disease and its sequalae.

While much of the research on JIA has focused on immune
aspects of the disease or characterization of clinical presentation
differences (Hinks et al., 2018; Eng et al., 2019; Gohar et al., 2019;
Nigrovic et al., 2021; Onel et al., 2021), details regarding why certain
joints are involved in the disease process and not others, why the eye
is involved in some patients, and how the sex differences are
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manifested in pre-puberty versus post-puberty cases remains to be
elucidated. As reported by Kuntze et al. (2020), the presence of JIA
affecting the knees can impact gait during growth and development
which may have long-lasting implications. While in a preclinical
model, it has been reported by Kydd et al. (2007) that induction of an
inflammatory arthritis in the female rabbit knee can lead to
molecular changes in the eye. Additional unpublished results
indicate that induction of unilateral knee arthritis in this model
leads to changes in the cornea and vitreous humor of both eyes
[Kydd, Hewitt and Hart, unpublished observations]. This led to the
concept that there may be a “knee-eye-brain axis” of regulation that
is mediated either by humoral factors or neural mechanisms, and
this may be relevant to the JIA-uveitis link (Hart, 2018). However,
such an axis would not explain the relative rarity of uveitis in adult
rheumatoid arthritis patients, but the relatively common occurrence
of non-infectious uveitis in adults with spondyloarthritis, as mainly
unilateral uveitis (Seve et al., 2015).

2.3 Adaptations during growth and
maturation: Puberty

2.3.1 Sex differences in lower extremity maturation
characteristics during the puberty transition: Gait

During the early growth phase, the lower extremity motion
segments appear to grow in a patterned manner, but considerable
individual variation in rate can occur as well as parameters such as
varus-valgus features, alignment, and integration of the various
components that may grow at different rates (Weir, 1991; Hart
et al., 2002). At the onset of puberty additional growth rate variation
can occur as well as the appearance of sex-dependent features. Males
appear to develop more muscles and their growth rates can vary, but
a rapid growth rate can lead to development of dysregulated growth
and such dysregulation can lead to conditions such as Osgood-
Schlatter disease which mainly affects males (Monasterio et al., 2021;
Neuhaus et al., 2021; Gaulrapp and Nuhrenborger, 2022). In a recent
clinical series with 126 participants, 101 were males (Gaulrapp and
Nuhrenborger, 2022). While some cases of Osgood-Schlatter disease
in the knee can occur as a result of overuse via participation in sport,
it is not always the case (Gaulrapp and Nuhrenborger, 2022). The
condition is usually self-limiting and resolves naturally (Monasterio
et al., 2021; Neuhaus et al., 2021; Gaulrapp and Nuhrenborger,
2022).

As assessed by walking, aspects of gait appear to be influenced by
puberty, likely influenced by puberty-associated alterations in use of
particular muscles (Di Nardo et al., 2017) in the context of the
integrated functioning of the lower extremity motion segments
comprised of the bones, muscles and joints (hip, knee and ankle.
Interestingly, these effects are most prominent in females, and the
changes are finally set at the time of skeletal maturity when growth
and maturation are complete (Di Nardo et al., 2017).

In addition, both males and females land after a jump similarly
prior to the onset of puberty, but land quite differently post-puberty
(Quatman et al., 2006; Hewett et al., 2015a), and this can pose risks
for knee injury (Hewett et al., 2015b). At skeletal maturity, the set
points for the joints of a lower extremity motion segment are fairly
well established and such set points may provide functioning during
adult life. However, some of the variation in how this set point

derived from the functional integration of contributing tissues is
established may pose risk during the aging process when the
integrative nature becomes less functional, such as loss of muscle
integrity resulting from less physical activity by 60 years of age or
following the onset of sarcopenia (Kaji, 2013). Some of the variation,
such as malalignment, could exert more potential risk than some
other configurations (Nam et al., 2020; Springer et al., 2020; Black
and Clark, 2022). Thus, some sex-dependent developmental changes
occurring after onset of puberty could contribute to joint disease
development later in life, particularly after menopause in females.

2.3.2 Joint laxity and the menstrual cycle
With the onset of puberty, females begin to cycle and after a

period of time, suchmenstrual cycles become fairly regular in length.
Accompanying those cycles are changes in joint laxity such as for the
knee (Somerson et al., 2019; Maruyama et al., 2021; Maruyama et al.,
2022). However, such findings have not been consistent across
studies, potentially due to the finding that ~20% of young
skeletally mature females do not experience changes to joint
laxity at different stages of the menstrual cycle (Park et al., 2009).
Why this 20% of females do not exhibit joint laxity is not clear as
their hormone levels across the menstrual cycle do not differ from
those individuals who do experience changes in joint laxity (Park
et al., 2009). As changes in joint laxity are reported to be associated
with risk for knee injury, specifically ACL ruptures (Somerson et al.,
2019), it is still unknown whether this non-responsive subset of
females is at less risk for such injuries. However, one can conclude
that heterogeneity in the regulation of joint biomechanics is
apparent after onset of puberty and established at skeletal
maturity. Whether this response/non-response phenotype
variation is a biomarker for development of knee OA later in life
is currently unknown.

2.3.3 Sex differences in risk for ACL rupture post-
puberty

Sex differences have been observed for a number of sports
injuries either before or after skeletal maturity (Lin et al., 2018).
However, injuries to the anterior cruciate ligament (ACL) of the
knee are very common, particularly among young athletes and
athletes in general with over 200,000 per year in the
United States (Musahl and Karlsson, 2019). Most of these are
non-contact injuries, particularly in sports that require cutting
maneuvers (Renstrom et al., 2008; Musahl and Karlsson, 2019).
Interestingly, females are more likely to suffer ACL injuries than
males on a participation rate index (Ellison et al., 2021), often up to
5/1 in some sports such as soccer (Harmon and Ireland, 2000;
Ireland, 2002; Wild et al., 2012; Sutton and Bullock, 2013; Edison
et al., 2022). Often, an ACL rupture requires reconstruction to help
stabilize the knee, but even with reconstruction the long-term
consequence of the injury is to develop osteoarthritis (OA) at an
early age, with up to ~50% of individuals developing OA within
10–15 years post-injury (Lohmander et al., 2007). While some
patients appear to be able to cope well to the unreconstructed
injury, others do not (Kaplan, 2011). Even after ACL
reconstruction surgery, males and females exhibit different gait
and muscle patterns (Arhos et al., 2022), and thus, the sex
differences persist after the injury. Even after ACL
reconstruction, loss of quadricep muscle integrity persists
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(Gumucio et al., 2018; Johnson et al., 2018) and may contribute to
OA risk.

Given the serious impact such ACL injuries have on the patients,
and the sex differences, considerable effort has gone into
understanding the risk factors for such injuries (Barber-Westin
et al., 2009; Lawra et al., 2021; Maniar et al., 2022)and potential
prevention strategies (Myklebust et al., 2007; Brophy et al., 2010;
Sadoghi et al., 2012; Myklebust et al., 2013; Emery et al., 2015; Zebis
et al., 2016; Butler et al., 2022; Mattu et al., 2022; Weingart et al.,
2022) to diminish the number of such injuries particularly in
females. Some neuromuscular training programs to address
muscle imbalances were proven to have significant impact in
reducing ACL injuries in Norwegian female handball players, but
uptake outside of clinical trials is often low and even when successful
in a controlled setting, may not be embraced by the general
population (Myklebust et al., 2013). Therefore, even in the
presence of scientific and clinical evidence, changing behavior
remains a challenge.

2.3.4 Sex differences in risk for development of
adolescent onset scoliosis post-puberty

Adolescent idiopathic scoliosis (AIS) is a disease of spinal
curvature that usually starts after the onset of puberty. It is
defined by a lateral curvature of the spine of at least 10°

(Weingart et al., 2022). With increasing severity of the curvature,
the ratio of affected females to males increases leading to a ratio of
females to males of ~10/1 for those with curvatures of >30° (Kuznia
et al., 2020). Thus, with increasing severity there are more females
affected than males. The incidence of AIS is approximately 1%–4%
of the adolescent population and the incidence is similar in many
countries that are geographically diverse (USA, China, Brazil)
(Penha et al., 2018; Yan et al., 2020; Weingart et al., 2022).

A range of treatments for AIS are available and these range
from exercises to bracing and finally surgery for those with severe
disease and a large degree of deviation (i.e., Cobb angle) (Day et al.,
2019; Kaelin, 2020; Dufvenberg et al., 2021; Bowden et al., 2022;
Park et al., 2022; Seleviciene et al., 2022; Turner et al., 2022; Zaina
et al., 2022). For those patients with severe disease and needing
surgery, the implantation of rods and screws can alleviate the
curvature-associated complications but can also affect quality of
life during post-skeletal maturity. The majority of the curvature
occurs prior to skeletal maturity and progression of the curvature
appears to slow down after skeletal maturity. Thus, even in the
continued presence of cycling hormone levels in females, the
progression of the curvature in AIS appears to stabilize at
skeletal maturity. No evidence indicating that AIS in males
differed from females with regard to disease progression and
skeletal maturity was found.

Since the onset of AIS correlated with the inset of puberty and
associated hormone level changes and growth rates, some
investigators have assessed the effect of subsequent pregnancy on
females experiencing AIS as younger individuals. Both Betz et al.
(1987) and Dewan et al. (2018) reported minimal effects of AIS on
pregnancy and pregnancy outcomes. Therefore, hormonal changes
occurring during pregnancy did not overtly impact a “re-activation”
of the AIS in the female population.

For coordinated growth following onset of puberty requires that
all components of a system work in an integrated manner. Based on

such a concept, the concept that muscle imbalances during growth
could play a role in development and progression of AIS has been
advanced (Pollak et al., 2013; Park et al., 2021; Stepien et al., 2022).
Whether such asymmetry of muscles was present before puberty and
only exacerbated by puberty and rapid growth has also been raised
by Stepien et al. (2022) and also elaborated on regarding potential
embryonic origins has been suggested (Burwell et al., 2016). The
literature has also been reviewed that indicates that there is a
correlation between pectus deformity and AIS (Van Es et al.,
2022). Interestingly, analysis of paravertebral muscles has
indicated that potentially relevant molecular differences can also
be detected with biopsies from AIS patients (Rusin et al., 2012; Kudo
et al., 2015). Chmielewska et al. (2020) reported that methylation of
an estrogen receptor (ESR 2) occurred more commonly in AIS
patients but did not correlate with disease severity. Kudo et al. (2015)
reported that expression of nerve growth factor (NGF) and estrogen
receptor-alpha was higher in AIS patients, but only levels of NGF
correlated with curvature severity. However, other studies indicated
estrogen receptor 2 levels in such muscles showed a correlation with
Cobb angle in AIS patients (Rusin et al., 2012). Additional studies
have explored potential roles for growth related hormones
(Skogland and Miller, 1980) and sex hormone levels
(Raczkowski, 2007; Kulis et al., 2015) on AIS development and
progression. However, this type of data base is not large and likely
needs further study.

As discussed previously, the incidence of AIS is only ~1–4% of
the population so there must be other factors or variables than
puberty-associated sex and growth-related hormone levels
involved. In addition, it is not known whether in detail whether
the muscle involvement is primary or secondary regarding
causality. To address some of the gaps, a number of studies and
reviews have explored and analyzed the possibility that there are
genetic or epigenetic-related variables at play in disease initiation
and progression (Gorman et al., 2012; Zaydman et al., 2021; De
Salvatore et al., 2022; Faldini et al., 2022). A number of studies have
implicated a variety of genes and gene families in AIS including
Fibrillin-1 (Sheng et al., 2019; De Azevedo et al., 2022), Fibrillin-1
and Fibrillin-2 variants associated with severe disease (Buchan
et al., 2014), estrogen receptor variants and polymorphisms
(Esposito et al., 2009; Wang et al., 2020), the NUCKS1 gene in
Chinese adolescents (Xu et al., 2017), and the helicase DNA-
binding protein 7 (CHD7) (Wu et al., 2021; Wu et al., 2022).
While additional studies are needed in this area, the heterogeneity
in genetic contributions detected thus far may indicate that the
term AIS is an umbrella term for multiple subsets of the disease, or
more information is needed to better understand the molecular
basis for a common set of pathways.

3 Influence of sex on MSK tissues as an
adult

There is a wide spectrum of conditions that can arise following
skeletal maturity that exhibit sex differences in either incidence,
characteristics of progression or are restricted to females due to
physiologic differences. Thus, the following discussion contains only
examples of such conditions and is selective and not meant to be all
inclusive.
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3.1 The menstrual cycle, joint laxity and ACL
ruptures

Following attainment of skeletal maturity, many females still
experience changes in knee joint laxity during the menstrual cycle
and this again was proposed to be associated with increased risk for
ACL rupture (Lee et al., 2013b; Herzberg et al., 2017; Shagawa et al.,
2021). Again, it was also determined that there was heterogeneity in
such cycle-associated laxity with some individuals labeled
“responders” and others “non-responders” (Schmitz and Shultz,
2013) similar to what had been shown by Park et al. (2009).

Phase of the menstrual cycle was also reported to influence the
stability of the thumb, and lead to risk for degeneration of the
trapeziometacarpal joint (Parker et al., 2022). The authors attributed
this laxity and subsequent degeneration to serum relaxin level
changes during the menstrual cycle (Parker et al., 2022). At the
time of arthroplasty of this joint, it was shown that there was
elevated relaxin binding activity in tissues around the joint from
females but not males. In contrast, laxity of the cervical spine was
reported to not to be influenced by the menstrual cycle changes
(Weis et al., 2016; Parker et al., 2022).

Shultz et al. (2012) reported that serum levels for IGF-1 and
markers of collagen turnover were associated with menstrual cycle-
associated changes in knee laxity and potential risk for knee injury.
The timing, direction of the changes and extent of the changes were
influenced by whether the individuals were or were not taking oral
contraceptives (Shultz et al., 2012). The authors reported that lower
serum collagen production fragments and greater IGF-1
concentrations predicted greater anterior knee laxity. A limitation
of such studies is that serum levels reflect total body changes in those
parameters and not just those associated with the knee and therefore
the correlation may not be relevant to the knee specifically. In
addition, given that collagen is an essential structural component of
most connective tissues of the knee (ligaments, menisci, cartilage,
capsule) it may be a risky strategy to modify collagen cyclically every
~28 days from the onset of puberty to menopause. Interestingly, in
an in vitro generated, tissue engineered artificial ligament made with
ACL cells, culturing the tissue with estrogen in vitro led to alterations
in mechanical function without loss of collagen (Lee et al., 2015).
These authors reported that exposure to estrogen led to decreases in
the activity of lysyl oxidase, the enzyme that catalyzes formation of
covalent collagen crosslinks. Presently, this is a correlation and
details regarding how such a mechanism could work in vivo
during multiple menstrual cycles remains to be elucidated.

An alternative hypothesis might be that the menstrual cycle-
associated changes in joint laxity is regulated by changes in water
content. Increases and decreases in ligament water content can
influence laxity (Wallace et al., 2002). As many females appear to
retain water during parts of the menstrual cycle (Bunt et al., 1989;
Ramsay, 1989; Kosar et al., 2022), and skin thickness is increased in
specific phases of the menstrual cycle and during pregnancy,
reversible changes in water content could be responsible. The
skin changes were speculated to be associated with hormone-
mediated water retention (Eisenbeiss et al., 1998). In some
pregnant females, pregnancy-associated changes in cornea
thickness have been reported, presumably due to water retention
that is reversed postpartum (Taradaj et al., 2018). As changes in
water content would be a readily reversible strategy to influence the

properties of a connective tissue, it would be preferred over one that
involved the degradation and synthesis of an essential structural
component such as collagen. Thus, over ~30 years of menstrual
cycles, the water content strategy would not be prone to risk for loss
of the integrity of the tissues involved via altering the integrity of the
main structural molecules, the collagens.

3.2 Pregnancy: Joint laxity, low back pain
and risk for disease development later in life

During pregnancy many women develop joint laxity including in
the spine as well as low back pain (Daneau et al., 2021; Chatprem et al.,
2022; Wakkar and Pati, 2022). These complications can be at higher
risk in those with hypermobility syndromes (VanderJagt and Butler,
2019; Ahlqvist et al., 2020; Pezaro et al., 2020; Robinson et al., 2022).
While many women recover after pregnancy, some reports indicate
that persistent post-pregnancy changes in the sacroiliac joint may
contribute to the long-term postural deformities (Bailey et al., 2020)
and sacroiliac joint dysfunction (Fiani et al., 2021). Sex differences in
sacroiliac joint and lumbar spine degeneration have been noted and
may occur via different process (Muellner et al., 2022). However,
whether there is a subset of females whose pregnancy-associated back
pain and sacroiliac involvement are causal of degenerative disease
later in life remains to be confirmed by large studies.

3.3 Sex differences in spondyloarthritis

The term spondyloarthritis covers a heterogeneous set of
conditions that can involve a variety of tissue (Sharip and Kunz,
2020) including joints and the spine, specifically the sacroiliac joints
(Brown et al., 2020; Xiong et al., 2022). These inflammatory
immune-mediated conditions can affect spinal tissues especially
support tissues such as ligaments and their entheses of the axial
skeleton (Alber et al., 2022; Li et al., 2022). Long considered mainly a
disease of men, particularly ankylosing spondylitis, has more
recently been reported to also affect a subset of females (Masi,
1992; Wright et al., 2020; Cunha et al., 2022; Marzo-Ortega et al.,
2022; Stovall et al., 2022). Sex differences in disease presentation
characteristics (Chimenti et al., 2021), as well as disease activity
compared to males have been reported, with females exhibiting
higher disease activity than males and exhibiting different response
patterns to clinical interventions (Mease et al., 2021; Stovall et al.,
2022; van der Horst-Bruinsma et al., 2022).

The onset and progression of the axial spondyloarthritis
spectrum of diseases clearly has a genetic basis (Brown et al.,
2020), with association with HLA B27 (Masi, 1992; Diaconu
et al., 2022). Recent attempts to identify biomarkers of disease
subtypes has progressed (Akhtari et al., 2020; Alber et al., 2022),
as well as insights into inflammatory mechanisms (Lee et al., 2022b).
In addition, recent information has revealed that the gut
microbiome of patients is different from a healthy control
population, but no sex differences were noted (Wang et al.,
2022). Additional study of intestinal tissue and fecal samples
have identified potential alterations in the tryptophan
metabolizing pathways that could be involved in microbiome
contributions to the disease progression (Berlinberg et al., 2021).

Frontiers in Physiology frontiersin.org06

Hart 10.3389/fphys.2023.1127689

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1127689


Thus, the sex differences in spondyloarthritis are somewhat
different from many of the other diseases discussed previously in
that the majority of patients are males rather than females, even
though this set of diseases is believed to have an autoimmune basis.
Therefore, the females with spondyloarthritis-related conditions are
likely a unique subpopulation of individuals. The molecular and
cellular basis for these differences has not yet been delineated, but
this area is the focus of considerable investigation so hopefully, some
insights will emerge in the near future to clarify these issues.

4 Risk for menopause-associated MSK
conditions and diseases

Menopause occurs in all females at ~45–55 years of age and the
decline in menstrual cycles and sex hormone levels can be
accompanied by the development of a variety of diseases or
conditions in different subset of females. This area has been
reviewed recently by (Hart, 2022a). An individual female does
not encounter all of the post-menopausal conditions, so there is
some selectivity in which are exhibited by a particular female.
During most of evolutionary history the average lifespan
was <40 years, so the vast majority of females did not live the
make the transition to the post-menopausal state. Therefore, aside
from the fundamental question of why menopause occurs at all
(Lumsden and Sassarini, 2019; Hart, 2022a), questions also arise as
to why these post-menopausal conditions or diseases were
maintained mainly in females. One possibility is that such risks
for the various post-menopausal diseases/conditions served
purposes related to reproductive success. However, if that was
true, why did an individual female not harbor the risks for
multiple of these post-menopausal conditions. Such questions
remain to be answered when more details regarding the
underlying mechanisms are elucidated.

As only some of these conditions impact tissues of the MSK
system, and others such as dementia and obesity affect other
systems, the conditions are quite diverse (Hart, 2022a). Only
those affecting the MSK system will be briefly discussed below as
they are representative of conditions that can arise with the decline
in sex hormones, another sex-specific transition that contributes to
sex differences development of disease.

4.1 Osteoporosis

Osteoporosis (OP), or loss of bone integrity and increased risk
for low-energy fractures (Vandenput et al., 2022), is often thought of
as a disease of post-menopausal females. However, OP affects only a
subset of post-menopausal females, and the ratio of females/males
with OP is ~3/1 [discussed in 21]. The treatment of males with OP is
understudied (Rinonapoli et al., 2021; Vescini et al., 2021). There are
also sex-differences in when fractures occur in males and females,
with males suffering from fractures ~10 years later in life than
females (Vescini et al., 2021). The extent of bone loss is quite
variable between individuals of either sex, so the underlying
mechanisms must be complex and influenced by several factors.
While there are reported sex differences in skeletal growth (Nieves,
2017), any correlations between bone growth early in life and rate of

bone loss with aging and onset of menopause have not been
established.

OP in females was effectively treated with hormone replacement
therapy (HRT) for many years until a variety of risk factors were
identified (i.e., cardiovascular disease, breast cancer, venous
thromboembolism, endometrial cancer) which led to a reluctance
to support such treatment (Booyens et al., 2022; Davis and Baber,
2022; Pan et al., 2022). However, this treatment option is now being
revisited. In light of such reluctance regarding use of HRT, a number
of other options have been developed including bisphosphonates,
monoclonal antibodies against proteins involved in bone cell
function, vitamin D, and anabolic peptides such as parathyroid
hormone fragment and calcitonin (Zhou et al., 2014; Mulder et al.,
2016; Chandran, 2022; Lim, 2022; Zhu and March 2022). Such
interventions vary in effectiveness and side-effects, and thus, many
patients are now using those with lower risks. However, in both men
and women, OP is often the “silent disease” until a fracture occurs,
so many individuals with OP are not treated, and this is especially
true for men as the condition is generally viewed as a female disease.
The molecular basis for why this particular subset of females is
affected by OP following loss of sex hormones at menopause
remains undefined. Similarly, the molecular or genetic basis for
why a subset of males develop OP also remains largely unknown.
Furthermore, it also remains to be determined if similar or very
different mechanisms are involved. However, males do respond to
bisphosphonates and other treatments (Adler, 2018; Johnston and
Dagar, 2020) so there may be some commonalities.

4.2 Osteoarthritis

Osteoarthritis (OA) is a degenerative disease of joints such as the
knee, hip, shoulder and also fingers of the hand. For many years it
was presented as a disease of articular cartilage as that tissue was the
one most affected. However, it is now thought of more as a disease of
the whole joint, considering the joint as an organ system (Radin
et al., 1991; Frank et al., 2004). As reviewed recently by Hart (Hart,
2022b), OA is now considered an inflammatory disease and there
appear to be sex differences in some inflammatory markers in OA
(Perruccio et al., 2019).

In the years prior to the onset of menopause, the ratio of females
to males with OA is ~1/1, but after menopause, the ratio become >2/
1 [discussed in 21,22,200]. Thus, after menopause, there is an
increase in the number of females with the condition compared
to males. It has been proposed that this subset of post-menopausal
females developing primarily knee and hip OA represent a unique
and separate subtype of OA (Hart et al., 2021; Hart, 2022a; Hart,
2022b). Presently, conservative treatment options such as exercise,
pain medications, and bracing are not sex specific. However, in the
future some options could be sex-specific to address the potentially
unique mechanisms involved in OA arising in post-menopausal
females as suggested by Hart (Hart, 2022a) and Hart et al. (Hart
et al., 2021). Therefore, there has been slow progress in the
conservative treatment realm for OA, and for many patients this
leads to a total joint replacement for the condition.

Thus, in a subset of post-menopausal females the loss of sex
hormones leads to alterations in joint regulatory mechanisms
leading to OA. What is uniquely different in this subset and how
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sex hormone loss contributes to the OA development, remains to be
elucidated for the most part.

4.3 Sarcopenia

Sarcopenia is the age-related loss of muscle structure and
function (i.e., muscle mass and strength) and can occur in both
males and females, but there are some sex-associated differences in
the onset and progression of such muscle loss (Du et al., 2019;
Buckinx and Aubertin-Leheudre, 2022; McMillian et al., 2022).
Sarcopenia can also be influenced by associated obesity in some
patients (Jia et al., 2022; Muollo et al., 2022). Sarcopenia and
sarcopenic obesity in older individuals can influence other age-
and sex-related conditions such as osteoporosis (Edwards et al.,
2015), cardiovascular fitness (Billingsley et al., 2022), osteoarthritis
(Godziuk et al., 2020), and cognitive performance (Cavazzotto et al.,
2022), all affecting different subsets of post-menopausal females
compared to age-matched males.

Therefore, sarcopenia as an age-related loss of muscle integrity
would appear to interface with other post-menopause conditions to
impact disease activity and progression. As some post-menopausal
females also gain weight after menopause, likely due to loss of
estrogen’s effect on energy balance (De Jesus and Henry, 2022;
Mahboobfard et al., 2022), sarcopenic obesity is also very prevalent
in this population, a finding that may enhance the impact of the
other conditions discussed above.

4.4 Intravertebral disc degeneration

Estrogen is believed to play a role in intravertebral disc (IVD)
degeneration (Wang and Griffith, 2010; Jin et al., 2020). In the post-
menopausal state, the presenting symptom is usually pain (Wang,
2016). The IVD degeneration types include adult-onset lumbar
scoliosis (Aebi, 2005; Rumancik et al., 2005; Urrutia et al., 2011a;
Urrutia et al., 2011b) or spondylolisthesis (Jacobsen et al., 2007;
Cholewicki et al., 2017). The causes for the development of such
conditions in post-menopausal women is mainly unknown, but
some associations with parity have been made (Cevik et al., 2020),
and risk factors for pregnancy-related pelvic girdle pain investigated
(Wuytack et al., 2020), as well as a focus on pregnancy-associated
changes in motor control of the spine (Desgagnes et al., 2022). Some
evidence that exercise can help prevent development of low back
pain has appeared, but it is not compelling as yet (Santos et al., 2022).
In addition, some evidence for the role of HRT in preventing
developing of some post-menopausal spondylolisthesis has been
generated (Marty-Poumarat et al., 2012), potentially implicating the
loss of estrogen in develop of the condition rather than a
consequence of pregnancy-associated factors alone.

In summary, a number of MSK conditions arise in subsets of
post-menopausal females at rates higher than age-matched males, or
associated with conditions uniquely associated with females
(i.e., pregnancy). Some of these can be linked more directly to
loss of sex hormones than others, but clearly there are significant sex
differences that have been noted. Of interest is the differences
between adolescent idiopathic scoliosis which appears to arise in
the thoracic spine post-puberty and onset of increased levels of sex

hormones, and adult scoliosis which is associated with the lumbar
spine and arises in the post-menopausal state following loss of sex
hormones. The development of adult scoliosis can be a “re-
activation” of somewhat quiescent AIF or not but does appear to
occur rapidly in the post-menopausal state in a subset of patients
(Urrutia et al., 2011a; Marty-Poumarat et al., 2012). Why it occurs in
a particular subset is currently unknown. In a recent Clinical Case
Series with 187 patients having Adult Symptomatic Lumbar
Scoliosis (ASLS), >90% were female (Carreon et al., 2020).
Therefore, there is a majority of patients with ASLS that are
post-menopausal females (mean age >58 years) (Carreon et al.,
2020). Details regarding the characteristics of the males with
ASLS could not be found.

At the surface, these differences may be difficult to reconcile, but
it is also clear that many epigenetic changes occur at the time of
puberty (Hart, 2022a) and also from life experiences, so the loss of
sex hormones following menopause likely does not return females to
the pre-puberty state. Thus, the basis for the development of post-
menopausal conditions is likely complex and multifactorial.

5 Analysis of sex differences in risk for
MSK conditions and diseases

It is clear from the above discussions that sex differences exist for
a variety of MSK conditions across the lifespan, from development
into the post-menopausal years. As some of these conditions or
diseases occur prior to the onset of puberty, others after the onset of
puberty, and then again others after menopause, the fundamental
causes of the conditions cannot be related directly to sex hormone
levels. Certainly, some hormonal changes associated with puberty,
menstrual cycles, and pregnancy have been correlated with risk for
joint injuries or disease, but it must be remembered that only a small
percent of females in each “category” are affected. Thus, other
variables such as genetic factors or epigenetic alterations are
likely also involved in the risk.

Some of the response patterns associated with sex differences
may be imprinted during in utero development when hormones
from the mother as well as locally produced hormones set the stage
for future hormone-related events associated with puberty and
menopause in females contribute to the elaboration of some of
the risks for loss of MSK tissue integrity.

The presence of sex hormone receptors in most tissues is
relatively constant across the lifespan, although levels and
functioning for some receptors can vary across the menstrual
cycle (Zelenko et al., 2012; Kruger et al., 2023) and during aging
(Gardini et al., 2020; Oveisgharan et al., 2023). Some of such changes
can be cell and tissue-specific and are potentially due to methylation
of the receptor genes (Penolazzi et al., 2004; Tsuboi et al., 2017).
Cells from tissues of both males and females express sex hormone
receptors (Liu et al., 1996; Sciore et al., 1998; Yu et al., 2001) and both
sexes make and respond to both estrogens and testosterone
(Hammes and Levin, 2019; Ipulan-Colet, 2022). Some tissues
may express different levels of estrogen receptors (ER-alpha, ER-
beta, plasma membrane-associated variants) and androgen
receptors (Petersen et al., 1998; Pujol et al., 1998; Walters and
Nemere, 2004; Song and Santen, 2006; Chang et al., 2013;
Madeira et al., 2013). Studies from the author’s laboratory have
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indicated that estrogen receptors can exert effects on the expression
of proteinase genes via interactions with the promoter region in
model systems (Lu et al., 2006; Lu et al., 2006; Achari et al., 2008;
Achari et al., 2009; Thaler et al., 2014). Such activities by ER were
dampened by the addition of their hormone ligand estrogen.
Furthermore, the activity of ER-beta in this regard was greater
than that for ER-alpha. Thus, in the absence of hormone, ER
could still exert effects on cells and potentially account for some
of the post-menopausal conditions arising after menopause in
subsets of females. Whether the potential effects of the ER could
be affected by anabolic growth regulators in the pre-puberty phase of
the lifespan remains to be determined. It also remains to be
determined whether similar activities are associated with
androgen receptors and those for progesterone.

The findings and speculations that muscle imbalances in the
femur and in the spine of post-puberty females may be involved in
the risk for ACL injuries and adolescent idiopathic scoliosis,
respectively, is of interest. Why and how such imbalances
develop, and their bilaterality would implicate that they develop
in a subset of females during development but then the differences
are elaborated following the onset of puberty and initiation of
growth leading to maturation. In the case of AIS, the variation in
the extent of the curvature may mean that either other factors in
addition to such muscle influences are involved, or such variation
resides within the muscles themselves and the variation arises due to
variation in the hormone-hormone receptor consequences in the
muscle tissue.

In the case of AIS, the imbalances would have a direct effect on
the regulation of growth of the spine tissue. However, the femoral
muscle imbalances may never be detected or matter if the individual
did not participate in sports that depend on a balance between the
quadriceps and hamstring muscles to prevent non-contact injuries
to components of the knee such as the ACL. While not evident from
the literature, it would be of interest to determine whether the
occurrence of muscle imbalances in the femur occurred in the same
subpopulation that experiences AIS. In addition, it remains unclear
whether the basis for the muscle imbalances in AIS and the femur
arise during development and are just elaborated after onset of
puberty, or whether it arises after puberty via some as yet unknown
differential effect of sex hormones on specific muscle growth and
maturation.

While many aspects of sex-specific biological differences appear
to be “imprinted” during fetal development and thus onset of
puberty merely enhances an established blueprint, it is also
possible that epigenetic events arising during early post-natal
growth and maturation could also play a more individualized
role in the response pattern to the mediators arising with the
onset of puberty that are responsible for further growth and
conditions leading to sexual maturation in a variety of relevant
systems including the MSK system (Chmielewska et al., 2020;
Shepherd et al., 2021; Szyf, 2021; Hart, 2022a; Gegenhuber and
Tolkuhn, 2022; Monotas et al., 2022). As sex hormones can both
modify the activity of sex hormone receptors (Lu et al., 2006; Lu
et al., 2006; Achari et al., 2008; Achari et al., 2009; Thaler et al., 2014),
as well as modify other gene expression patterns as sex hormone-
receptor complexes (Fuentes and Silveya, 2019; Kovacs et al., 2020;
Mayayo-Peralta et al., 2021), the molecular basis for sex differences
in the regulation of MSK tissues across the lifespan can take many

forms. Clearly, as puberty leads to epigenetic alterations, and then
further epigenetic alterations can occur in females associated with
pregnancies, the loss of cycling hormone levels following onset of
menopause is not a return to the pre-puberty state. In males, life
experiences and environmental exposures could also potentially lead
to epigenetic alterations that could influence age-related MSK
conditions and diseases.

Based on the above discussion some of the sex differences
regarding the regulation of MSK tissues may reside in differences
in neuroregulation. All MSK tissues except for articular cartilage are
innervated to some degree, innervation that is associated with
proprioception and regulation of the integrated functioning of
the tissues for mobility and environmental navigation
(Ackermann et al., 2016; Hart, 2018), as well as providing input
into different tissues cellular and molecular responses (Murphy and
Hart, 1993; Hart and Reno, 1998; Hart et al., 1999; Salo et al., 2007;
Scott et al., 2007; Beye et al., 2008; Bring et al., 2012; Ackermann
et al., 2014). Sex differences in brain maturation can occur in
childhood and adolescence (De Bellis et al., 2001; Campbell et al.,
2005; Abel and Rissman, 2012; Koolschijn and Crone, 2013) and
thus potentially contribute to sex-specific differences in MSK tissue
risks and regulation. In addition to direct effects of neural regulation
on tissues of the MSL system, neural regulation of the vascular
components of such tissues can also occur in a sex-dependent
manner (Joyner et al., 2015; Charkoudian et al., 2017; DeLorey,
2021; Klassen et al., 2021). Such sex differences may play a role in
adapted vasoregulation during pregnancy (McDougall et al., 1998;
McDougall et al., 2000). Therefore, sex-differences in the regulation
of MSK tissues may be regulated at multiple levels, with some
directly influenced by sex hormones, but others indirectly via
sex-differences in vasoregulation and neuroregulation.

Some insights regarding the complexity of sex-specific
regulation of the MSK system comes from the study of muscles.
Muscles, like all MSK tissues, are regulated by mechanical loading
and subscribe to the “use it or loss it” principle (Hart, 2021).
Therefore, exercising can lead to growth of muscles with
adaptation to a new functional level. Such exercising and loading
of bone can also lead to enhanced bone qualities (Hart, 2021). Disuse
can lead to atrophy of both muscles and bone, such as in space flight
[discussed in 276]. As discussed earlier, use of neuromuscular
training programs can overcome the risk for ACL tears in female
athletes with muscle imbalances in the femur but if the exercises are
not continued, the risk returns to an elevated state (Myklebust et al.,
2013), presumably due to a return to the imbalanced state. Thus, the
“set point” for the bilateral muscle imbalances may be defined early
in life, and while adaptive, it returns to a state that was likely defined
during growth and maturation. However, this hypothesis remains to
be proven by additional research. Since the muscle imbalances are
bilateral in nature, the neuroregulation of the tissue likely defines the
muscle characteristics arise during development, early growth and
maturation, adolescence and then maintained at skeletal maturity.
Thus, even in the presence of changing sex hormone levels during
the menstrual cycle, the muscle imbalances are maintained. The
menstrual cycle can also impact the peripheral vascular function in
pre-menopausal females (Williams et al., 2020) and exercise
metabolism (Oosthuyse and Bosch, 2010), so the imbalance can
still be maintained when multiple variables could potentially exert
an influence on muscle function. While not yet proven, these muscle
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imbalances could likely arise via regulatory imprinting during
development and growth and maturation, as well as additional
factors such as to further epigenetic alterations to the regulation
of the affected tissues (Gegenhuber and Tolkuhn, 2022; Monotas
et al., 2022). In the knee joint, laxity is overtly affected by the
menstrual cycle in ~80% of young females (Park et al., 2009), but in
20% the individuals are resistant to changes associated with
fluctuating sex hormone levels indicating they may be directly
regulated independent of the hormones such as estrogen. For the
80% of females who were affected, the changes may be associations
and not direct “cause and effect’ relationships. To better understand
such relationships, further research will be required.

The above discussion also raises the interesting speculation that
perhaps the myriad of conditions that can affect subsets of post-
menopausal females, as well as potentially other sex-specific risk
factors for injury and disease have at least some of the mechanistic
basis an indirect effect via neuroregulation of the microvascular
systems in specific target tissues, as well as variation in direct
neuroregulation of specific target tissues. As the functionality of
specific MSK tissues requires integration of the target cells in each
tissue and the mechanical environment + the microvasculature + the
innervation, any potential “defects” in such integration could lead to
diseases or conditions developing at different stages of the lifespan, a
lifespan that likely have more transitions for females than males.
Such conceptual thinking could provide some insights into
commonalities for the various conditions/diseases discussed,
particularly those arising in the postmenopausal state. Thus,
rather than completely focusing on the target tissues in isolation,
perhaps a different approach could lead to improved understanding
of the mechanisms involved.

Future studies should further investigate the different potential
regulatory features of tissues of the MSK system to assess the relative
contributions of direct effects of sex hormones, and potential
indirect neurovascular mechanisms as well as direct effects of
neuro elements on the target tissues. Thus, some tissue changes
are likely associated with the menstrual cycle and accompanying
hormone level changes, but “cause and effect” may not be direct in
the regulation of the tissues and their risk for injury and disease.

6 Conclusion

Sex differences in risk for diseases or injury involving tissues of the
MSK system exist across the lifespan. While some of the risk may be
associated with sex-specific events (i.e., pregnancy), still other sex-
dependent risks appear to be associated with growth and maturation,
puberty, and menopause. Thus, these risks can become evident prior
to onset of increases in sex hormones, following the onset of increases
in such hormones at puberty, and then later in life when sex hormones
decrease associated with menopause. This latter stage of life is also
interfaced with aging variables.

Thus, while there are sex differences in risk for MSK tissue injury
or diseases, it is not absolute and both sexes can be affected but to
differing extent. In the case of sex differences in ACL rupture risk, the
risk can be lowered to ~1/1 via neuromuscular training programs so
the sex differences can be modified. For other conditions such OP,
prevention of fracture risk can be diminished with hormone
replacement or anti-resorption drugs in females, and with anti-

resorption drugs in males. Therefore, diminishing risk can be
accomplished for many of these patients but this approach does
not address the fundamental mechanisms causing these conditions.

From the above discussion, it is clear that the risk for different
types of injuries or diseases involving MSK tissues, particularly for
females, varies from prior to puberty, post-puberty, and then in the
post-menopausal state. Therefore, it remains unclear if (and how) sex
hormones are directly contributing to the observed sex differences by
causing the conditions! As many of the templates for regulation of
MSK tissues are laid down during development, it may be that the sex-
hormone environment affects the fetus with development of a genetic/
epigenetic “blueprint” to set the stage for the elaboration of risks later
in life. Clearly, neonatal hip dysplasia arises during development and
is evident at the time of birth and is framed by the in-utero
environment. Thus, sex hormones may contribute to the
elaboration of the post-natal risks that are sex-dependent via
modulation of pre-existing risk arising during development.

For individual patients or potential patients, prevention of disease
or injury is a paramount importance and understanding the molecular
and genetic basis for the risk is critical for the individual. Therefore,
better understanding of the scientific basis for the risks discussed should
lead to development of improved treatments, prevention strategies, and
identification of those subsets of females and males with specific risks.
Certainly, human heterogeneity (i.e., genetics, epigenetics,
environmental variables) can contribute to the complexity of such
understanding and the deciphering of the basis for such risks may be
complex with “one solution” not fitting all individuals.
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