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With an increasing aging population, the burden of age-related diseases
magnifies. To alleviate this burden, geroprotection has been an area of intense
research focus with the development of pharmacological interventions that target
lifespan and/or healthspan. However, there are often sex differences, with
compounds mostly tested in male animals. Given the importance of
considering both sexes in preclinical research, this neglects potential benefits
for the female population, as interventions tested in both sexes often show clear
sexual dimorphisms in their biological responses. To further understand the
prevalence of sex differences in pharmacological geroprotective intervention
studies, we performed a systematic review of the literature according to the
PRISMA guidelines. Seventy-two studies met our inclusion criteria and were
classified into one of five subclasses: FDA-repurposed drugs, novel small
molecules, probiotics, traditional Chinese medicine, and antioxidants, vitamins,
or other dietary supplements. Interventions were analyzed for their effects on
median and maximal lifespan and healthspan markers, including frailty, muscle
function and coordination, cognitive function and learning, metabolism, and
cancer. With our systematic review, we found that twenty-two out of sixty-
four compounds tested were able to prolong both lifespan and healthspan
measures. Focusing on the use of female and male mice, and on comparing
their outcomes, we found that 40% of studies only used male mice or did not
clarify the sex. Notably, of the 36% of pharmacologic interventions that did use
both male and female mice, 73% of these studies showed sex-specific outcomes
on healthspan and/or lifespan. These data highlight the importance of studying
both sexes in the search for geroprotectors, as the biology of aging is not the same
in male and female mice.
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Introduction

The world population is aging. Life expectancy has increased by
30 years over the last century (Olshansky, 2018) and in 2018, people
over 65 years of age outnumbered children below 5 years for the first
time (Shetty, 2012; United Nations, 2019). This demographic shift is
predicted to continue, as the number of people over 65 years old is
expected to triple by 2050 (Shetty, 2012). The extension of human
lifespan does not always guarantee an extension of healthspan
(defined as the period free from disease), as the two are not
necessarily linked (Prince et al., 2015; Fischer et al., 2016;
Hansen and Kennedy, 2016; Mitchell et al., 2016; Atella et al.,
2019; GBD Ageing Collaborators, 2022; GBD Ageing
Collborators, 2022; Statzer et al., 2022). This is demonstrated by
a global increase in disease burden related to old age which goes
hand in hand with the rise of the aging population (Prince et al.,
2015; Atella et al., 2019; GBD Ageing Collborators, 2022; GBD
Ageing Collborators, 2022). Research has focused on understanding
the biological mechanisms of aging in hope of finding ways to extend
lifespan and healthspan (Sinclair, 2005; Sierra, 2016; Weir et al.,
2017; Olshansky, 2018). For many, extending the years lived in good
health with a reduced burden of chronic diseases is a more
actionable and perhaps more attractive goal than an extended
lifespan (Sierra, 2016; Olshansky, 2018; Mitchell et al., 2019; Aon
et al., 2020).

While lifespan was classically considered the gold standard for
determining the success of geroprotectors, over the last 10 years,
researchers have started to include differential measures of
healthspan in their studies. The concept of frailty as a state of
overall decline is increasingly utilized to assess the risk of disease and
mortality in old age (Kane and Howlett, 2017; Rockwood et al., 2017;
Palliyaguru et al., 2019). Tools for assessing frailty in mice (Liu et al.,
2014; Whitehead et al., 2014; Hession et al., 2022), which have been
reverse-translated from human scales, have become more widely

utilized in recent years as markers of healthspan (Sukoff Rizzo et al.,
2018; Bellantuono et al., 2020; Palliyaguru et al., 2021a) and have
been shown to be modifiable by dietary and pharmacological
interventions that increase lifespan (Kane et al., 2016; Palliyaguru
et al., 2019). Beyond the mouse frailty index, other important assays
to assess health broadly span the domains of muscle function and
coordination, cognitive function and memory, metabolic function,
and tumor incidence (Ackert-Bicknell et al., 2015; Bellantuono et al.,
2020). While there is no established stringent set of measures agreed
upon by the entire community to fully define healthspan in mice, a
number of important publications have established at least a panel of
markers with demonstrated utility in the assessment of healthspan
(Richardson et al., 2016; Bellantuono et al., 2020).

Interventions to increase lifespan and healthspan comprise
behavioral, dietary, and pharmacological approaches (Longo
et al., 2015), and are commonly referred to as geroprotectors
(Moskalev et al., 2016). Potential geroprotectors are defined as
interventions which may extend lifespan and/or healthspan by
targeting one or more of the hallmarks of aging (Moskalev et al.,
2016; Janssens and Houtkooper, 2020; López-Otín et al., 2023).
Examples of successful geroprotectors include rapamycin and
metformin (Martin-Montalvo et al., 2013; Bitto et al., 2016;
Glossmann and Lutz, 2019; Selvarani et al., 2020; Moskalev et al.,
2022). The development of geroprotectors is based on the
“Geroscience hypothesis” (Sierra and Kohanski, 2017), in which
aging plays a central role in many, if not all, chronic diseases.
Interventions that retard aging should simultaneously delay the
onset of many diseases according to this hypothesis. This
foundational framework has proposed a roadmap for how
geroprotectors should impact aging. A number of recent reviews
have eloquently described the role of dietary interventions as
potential geroprotectors (Brandhorst and Longo, 2019; Green
et al., 2022; Longo and Anderson, 2022; Mitchell and Mitchell,
2022), so they will not be included here.

TABLE 1 Search strategy and eligibility criteria.

Search strategy Eligibility criteria

Exclusion criteria Inclusion criteria

Healthspan OR (health AND span) OR health span No measurements of lifespan and/or
healthspan

Lifespan and/or healthspan
measured

AND longevity OR longevities OR lifespan OR lifespans OR mortality OR survival OR
survivability OR survivable OR survivals OR survive OR survived OR survives OR surviving

No pharmacological intervention
included

Only pharmacological studies
included

AND male OR males OR (male AND female) OR female OR females Non-wildtype mice Only wildtype animals

AND English Different species In mice and/or rats

NOT review OR review literature as topic Non-original research Original research

NOT human OR humans In-vitro and in silico studies No in-vitro or in silico analysis

AND mice OR rats Toxicity studies Male and/or female animals

NOT in vitro NOT cell NOT clinical Cancer study Text in English

No full-text available Full text available via PubMed

Presence of concomitant interventions

Intervention not in aged mice
(<18 months)
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It is well-known that there are sexual dimorphisms in the aging
process, including in healthspan, muscle mass maintenance and
physical performance, sex-hormones, age-related diseases and
lifespan (Austad and Fischer, 2016; Le Couteur et al., 2018;
Sampathkumar et al., 2019; Decaroli et al., 2021; Bronikowski
et al., 2022; Viecelli and Ewald, 2022; Della Peruta et al., 2023).
It is noteworthy that men and women have different susceptibility to
various age-related diseases, such as women being more likely to
develop osteoporosis, and men being more prone to cardiovascular
diseases (Crimmins et al., 2019). This is partly influenced by sex-
specific alterations in sex hormones with age, including a decrease in
estrogen levels during menopause for women and a decline in
testosterone with age for men (Guarner-Lans et al., 2011;
Horstman et al., 2012; Decaroli et al., 2021). Further, women and
females of other species tend to have significantly longer lifespans,
but experience higher levels of frailty at a given age when assessed
clinically (Le Couteur et al., 2018; Gordon and Hubbard, 2019; Kane
and Howlett, 2021). In mice, sex-related differences can be seen in
physical performance, which was shown to be lower in aging males
(Tran et al., 2021), while anxiety-like behaviors were increased in
aging males (Kobayashi et al., 2021). Even on the tissue and
molecular level, there are vast sex-specific differences in mice’s
gene expression signatures associated with longevity (Vitiello
et al., 2021). Further, sexual dimorphisms can be observed in
geroprotective interventions aiming to increase lifespan or
healthspan (Sampathkumar et al., 2019). Both dietary and
pharmacological interventions, such as rapamycin and calorie
restriction, have been shown to have sexually dimorphic effects
when tested in mice (Anisimov et al., 2010; Harrison et al., 2014;
Miller et al., 2014; Mitchell et al., 2016; Bielas et al., 2018; Cabo and
Mattson, 2019; Sampathkumar et al., 2019; Berry et al., 2020;
Henderson et al., 2021). These findings suggest underlying
biological differences in the mechanisms of aging between the

sexes and highlight the importance of considering sex as a
biological variable. Despite a 2016 NIH mandate requiring both
sexes to be used in preclinical research (NOT-OD-15-102, 2015:
Consideration of Sex as a Biological Variable in NIH-funded
Research,” 2015), many fields, including the aging field, still face
challenges to the inclusion of both sexes in their studies (Plevkova
et al., 2020; Shansky and Murphy, 2021; Carmody et al., 2022;
Merone et al., 2022). To comprehensively compile the current
literature and provide a summary of findings, we performed a
systematic review of original research publications from 1970 to
2022 and reviewed what is known about sexual dimorphisms in the
lifespan and healthspan outcomes of mice undergoing some form of
pharmacological intervention. Our findings are presented herein.

Methods

A systematic review of the literature was conducted according to
the PRISMA guidelines (Page et al., 2021) to identify publications
reporting on pharmacological interventions in mice and their effects
on lifespan and/or healthspan, in a sexually dimorphic manner.
PubMed (RRID:SCR_004846) was utilized as the search tool and
database to screen the title, abstract, and keywords of all articles
(excluding reviews) using the search terms with Boolean operators
as outlined in Table 1. The search period was limited to all published
within the period of 1970 to 1. January 2022. All identified records
were exported to excel, where the authors (M.K. and S.J.M) screened
them for the eligibility criteria and removed duplicate records,
irrelevant titles/abstracts, as well as non-original research (re-
analysis of previously published data, commentaries, etc.). To
ensure all relevant research was included, an additional manual
review of the literature was performed via PubMed, which produced
four further studies. Of the remaining potential records, the full-text

FIGURE 1
Workflow for the systematic review from identified records to all included studies in this manuscript.
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articles were screened against the exclusion criteria (Table 1) and the
resulting 72 eligible articles were used as the basis for this systematic
review. Figure 1 shows the workflow for the literature search and
study selection, including the identification of the final 150 full-text
articles, of which 72 were included in the final analysis. From the
final articles, we extracted all relevant information for this review.
This included details of the study design as well as the study
outcomes for lifespan and healthspan parameters. For the study
design, the compound used in the intervention, its dose and method
of administration, the age at onset of the intervention and its
duration, and the mouse strain used were recorded. The lifespan
measures were separated into measures of median lifespan and
maximal lifespan due to inherent differences in how authors report
these findings. Due to the diversity of the healthspan measurements
in mice, we defined healthspan parameters according to published
recommendations (Richardson et al., 2016; Bellantuono et al., 2020)
to include frailty, muscle function and coordination, cognitive
function and memory, metabolic function, and cancer incidence.
The limitation of these assays is the missing consensus of what
measure(s) reliably demonstrate improvements in healthspan. For
all outcomes it was reported whether there was a significant
improvement (↑) or worsening (↓) of the parameter during the
study in the intervention group relative to the control group
stratified by sex. We also reported whether there was a sexual
dimorphism (defined as opposing directionalities of the effect,
i.e., improved in males, worsened in females) in the measured
outcome. If the outcome was not reported in the respective study
this was denoted with a “n.m.” (not measured). For median and
maximal lifespan, p-values were added if reported by the authors. All
the information was then structured according to the drug class of

the compound used, covering repurposed FDA drugs, novel small
molecules, probiotics, traditional Chinese medicine, and
supplements, including vitamins and antioxidants.

Results

The final 72 eligible studies (Figure 1) that were included in this
review and published between 1970 and 2022 reveal that 36% (26/
72) included both female and male mice in their research, while 33%
(24/72) used only male mice and 20% (14/72) used only female mice
(Figure 2). Out of the 26 studies including both sexes, a large part
showed sex-specific results (19/26). Next to measurements of
lifespan, a wide variety of healthspan metrics started to be
included in studies from the year 2000 onwards, with a
continuous increase in their implementation over time. All but
one study conducted since 2020 included some sort of
healthspan parameter. Of all compounds tested, 22 out of
64 were able to show positive effects on both lifespan and
healthspan measures.

Repurposed FDA drugs

Repurposing FDA drugs for use in age-related diseases has been
a popular strategy for identifying new geroprotectors (Table 2). One
of the attractive benefits of this strategy is the wealth of
pharmacology, safety, and efficacy data already available for these
compounds. This means investigators can direct resources to
validating the compound in the appropriate model, rather than

FIGURE 2
Proportional representation of the use of female and male mice in all studies included in this manuscript.
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TABLE 2 Study details and results for interventions with repurposed FDA drugs.

Study Compound and dose Start-age and duration Strain Outcome lifespan Outcome healthspan

Median
lifespan

Max lifespan Frailty Muscle function and
coordination

Cognitive function
and learning

Metabolism Cancer

Zhu et al. (2020) Metformin, 100 mg/kg/day (water) 20 months, until end of life No info ↓ f (p < 0.05) n.m n.m n.m n.m n.m n.m

Hiramoto et al. (2020) Tranexamic acid, 12 mg/kg 3 times a

week (water)

2 months, for 24 months ICR-CD1 n.m n.m n.m ↑ m ↑ m n.m n.m

Sciorati et al. (2020) Etanercept, 1 mg/kg/week (injection) 16 months, for 12 months C57BL/6 n.m ↑ f (p = 0.028) n.m ↑ f n.m n.m n.m

Miller et al. (2020) Canagliflozin, 30 mg/kg/day (food) 7 months, until end of life UM-HET3 ↑ 14% m (p < 0.001) ↑ 9% m (p < 0.001) n.m n.m n.m ↑ f and m = f and m

= f = f

Strong et al. (2020) Rapamycin, 42 mg/kg/day (food) 20 months, until end of life UM-HET3 ↑ 11% m (p < 0.001) ↑ 9% m (p = 0.04) n.m n.m n.m n.m n.m

↑ 15% f (p < 0.0001) ↑ 12% f (p < 0.0001)

20 months, 1-month cycles until

end of life

↑ 9% m (p = 0.002) ↑ 9% m (p = 0.001)

↑ 8% f (p < 0.0001) ↑ 10% f (p < 0.001)

20 months, for 3 months ↑ 11% m (p < 0.024) = m (p = 0.08)

= f (p = 0.15) = f (p = 0.12)

Palliyaguru et al.

(2020)

Metformin, 500 mg/kg*bw/day

(food) + HFD

14 months, until end of life C57BL/6 J = m = m n.m ↑ m n.m n.m n.m

Metformin 500 mg/kg*bw/day +

SRT1720 100 mg/kg*bw/day (food)

+ HFD

↓ m (p < 0.0001) ↓ 35% m (p < 0.0001) ↑ m

Harrison et al. (2021) Candesartan cilexetil, 30 ppm 8 months, until end of life UM-HET3 = f and m = f and m n.m n.m n.m n.m n.m

Hiramoto et al. (2019) Tranexamic acid, 12 mg/kg 3 times a

week (water)

2 months, until end of life Hairles mouse

(Hos:HR-1)

n.m ↑ m (p < 0.01) n.m n.m n.m n.m ↑ m

Smith et al. (2019) Acarbose, 1,000 ppm (food) 8 months, until end of life UM-HET3 ↑ 5% f (p = 0.003) n.m n.m n.m n.m n.m n.m

↑ 17% m (p < 0.001)

Bielas et al. (2018) Rapamycin, 14 ppm (food) 9 months, for 13 months (careful,

control under 40% dietary

restriction)

UM-HET3 n.m n.m n.m = f and m n.m n.m n.m

Rapamycin, 42 ppm (food) = f and m

Thangthaeng et al.

(2017)

Metformin, 219–297 mg/kg/day

(water)

22 months, for 3 months C57BL/6 J n.m n.m n.m. (with met

visual acuity

decreased)

= m (with met took longer to

initiate walking)

= m (with met spatial memory

worse)

= m n.m

Bitto et al. (2016) Rapamycin, 8 mg/kg/day

(intraperitoneal)

20–21 months, for 3 months C57BL/6JNia ↑ 14% m (p = ?) n.m n.m n.m n.m n.m ↓ f

= f

Rapamycin, 126 ppm (food) ↑ 14% m (p = ?) n.m n.m ↑ f and m n.m n.m n.m

↑ 9% f (p = ?)

Fischer et al. (2015) Rapamycin, 14 ppm (food) 4 months, until end of life C57BL/6 J n.m n.m n.m ↑ f (grip strength, ↓m (rotarod) n.m n.m n.m

(Continued on following page)
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TABLE 2 (Continued) Study details and results for interventions with repurposed FDA drugs.

Study Compound and dose Start-age and duration Strain Outcome lifespan Outcome healthspan

Median
lifespan

Max lifespan Frailty Muscle function and
coordination

Cognitive function
and learning

Metabolism Cancer

= m and f (activity, stride

length)

Miller et al. (2014) Rapamycin, 4.7 ppm (food) 9 months, until end of life UM-HET3 ↑ 16% f (p < 0.0001)

= m (3%, p = 0.19)

↑ 5% f (p < 0.0001)

= m (6%, p = 0.23)

n.m n.m n.m n.m n.m

Rapamycin, 14 ppm (food) ↑ 21% f (p < 0.0001)

↑ 13% m (p = 0.0015)

↑ 11% f (p < 0.0001) ↑
8% m (p = 0.003)

Rapamycin, 42 ppm (food) ↑ 26% f (p < 0.0001)

↑ 23% m (p < 0.0001)

↑ 11% f (p < 0.0001) ↑
8% m (p = 0.004)

Harrison et al. (2014) Acarbose, 1,000 ppm (food) 4 months, until end of life UM-HET3 ↑ 5% f (p = 0.01) ↑ 9% f (p = 0.001) n.m ↑ f n.m = f n.m

↑ 22% m (p < 0.0001) ↑ 11% m (p < 0.001) = m (activity) ↑ m (insulin reduced, but

higher fasting glucose)

Zhang et al. (2014) Rapamycin, 14 ppm (food) 19 months, until end of life C57BL/6Nia n.m ↑ f (p = 0.047) n.m ↑ f and m (f more active, ↑ gait

and rotarod, not grip)

n.m n.m ↑ f (fewer neoplastic lesions

and adenomas, careful

interpretation)

= m
= m (p = 0.275)

Flynn et al. (2013) Rapamycin, 14 ppm (food) 24 months, for 3 months C57BL/6 J n.m n.m n.m ↑ f (activity) n.m = f (after 3 months, initial

increase in glucose)

n.m

Neff et al. (2013) Rapamycin, 14 ppm (food) 4 months, for 12 months C57BL/6 J Rj n.m n.m n.m ↑ m (exploration OF, no effect

grip strength)

↑ m (not in object rec., but in

maze and far cond., for all)

n.m ↑ m (less cancer)

13 months, for 12 months n.m n.m n.m = m ↑ m n.m = m (careful)

20–22 months, for 12 months n.m n.m n.m = m ↑ m n.m = m (careful)

Martin-Montalvo

et al. (2013)

Metformin, 100 ppm (food) 12 months, until end of life C57BL/6 ↑ 5.83% m (p = 0.02,

mean ls)

n.m ↑ m (cataracts) ↑ m n.m ↑ m (glucose) = m

Metformin, 1,000 ppm (food) ↓ 14.4% m (p < 0.001,

mean ls)

n.m n.m n.m n.m n.m n.m

Metformin, 100 ppm (food) B6C3F1 = 4.15% m (p = 0.064,

mean ls)

n.m n.m ↑ m n.m n.m = m

Wilkinson et al.

(2012)

Rapamycin, 4.7 ppm (food) 9 months, for 13 months UM-HET3 n.m n.m ↓ f and m (only

cataracts)

= f and m (only spont. activity) n.m n.m ↑ f and m (only adrenal, not

others)

Rapamycin, 14 ppm (food) n.m n.m ↓ f and m (only

cataracts)

= f n.m n.m ↑ f and m (only adrenal, not

others)

↑ m (only spont. activity)

Rapamycin, 42 ppm (food) n.m n.m ↓ f and m (only

cataracts)

↑ f n.m n.m ↑ f and m (only adrenal, not

others)

= m (only spont. activity)

Majumder et al.

(2012)

Rapamycin, 14 mg/kg food 2 months, for 16 months C57BL6/

129svj

n.m n.m n.m n.m ↑ (?) n.m n.m

15 months, for 3 months n.m n.m n.m n.m = (?) n.m n.m

Smith et al. (2011) Sibutramine, 1.25 or 5 or 20 mg/kg/

day (food)

1 month, until end of life CD-1 = f and m n.m n.m n.m n.m n.m n.m

(Continued on following page)
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TABLE 2 (Continued) Study details and results for interventions with repurposed FDA drugs.

Study Compound and dose Start-age and duration Strain Outcome lifespan Outcome healthspan

Median
lifespan

Max lifespan Frailty Muscle function and
coordination

Cognitive function
and learning

Metabolism Cancer

Miller et al. (2011) Rapamycin, 14 ppm (food) 9 months, until end of life UM-HET3 ↑ 18% f (p < 0.0001)

↑ 10% m (p < 0.0001)

↑ 13% f (p < 0.01) n.m ↑ m (activity) n.m n.m = f and m

↑ 16% m (p < 0.01) = f

Simvastatin, 12 or 120 ppm (food) 10 months, until end of life = f andm = f andm n.m = f andm n.m n.m n.m

Anisimov et al. (2010) Metformin, 100 ppm (water) 3 months, until end of life 129/sv ↑ 7.8% f (p < 0.05,

median ls)

= f and m n.m n.m n.m = m (glucose, cholesterol,

trigly, insulin)

↑ f (less malignant tumors)

↑ 4.4% f (p < 0.05,

mean ls)

= m

↓ 13.4% m (p < 0.05,

mean ls)

Harrison et al. (2009) Rapamycin, unknown dose 21 months, until end of life UM-HET3 n.m ↑ 14% f (p < 0.0001)

↑ 9% m (p < 0.0001)

n.m n.m n.m n.m = f and m

Strong et al. (2008) Aspirin, 21 ppm (food) 4 months, until end of life UM-HET3 = f = f and m n.m n.m n.m n.m n.m

↑ m (p = 0.01)

Anisimov et al. (2008) Metformin, 100 ppm (water) 3 months, until end of life SHR ↑ 37.9% f (p < 0.01,

mean ls)

↑ 10.3% f (p = ?) n.m n.m n.m = f = f

↑ 91.9% f (p = ?,

median ls)

Popovich et al. (2003) Deltaran (Ibuprofen), 2.5 mg (5x per

months, injection)

3 months, until end of life SHR = f ↑ f (p < 0.01, last 10%) n.m n.m n.m n.m ↑ f

Forbes (1975) Prednisolone sodium phosphate

15–16 mg/day (water)

8 months, until end of life DBA/2 J = f (mean ls) n.m n.m n.m n.m n.m n.m

Cotzias et al. (1974) L-Dopa 1 month, for 18 months Swiss albino ↑ m (p < 0.001, only

measured at 19 m)

n.m ↓ m (corneal

opacity)

= m n.m n.m n.m

5,000 mg/kg*bw/day

Notes: f, female; m, male; n.m., outcome was notmeasured (?), the sex was not specified; The arrows denote a significant improvement (↑) or worsening (↓) of the respective outcome in the intervention group relative to the control group, while a (=) denotes no difference

to control.
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re-hashing safety data that already exists. Many proposed
geroprotectors have been tested in the NIA Interventions Testing
Program (ITP) in the United States (Miller et al., 2007). This
program solicits investigator-proposed compounds and tests their
lifespan potential in genetically heterogeneous UM-HET3 mice.
Started in the early 2000s, this program to date has tested more
than 60 different compounds.

One of the most promising compounds that came out of the ITP
is rapamycin. Rapamycin has potent antitumor and
immunosuppressive activity and was originally discovered in soil
samples from the Easter Island. In mice, rapamycin has been tested
at various doses, as well as at different ages of onset. Most data are
consistent with the notion that rapamycin extends lifespan in both
males and females, with stronger effects shown in females (Harrison
et al., 2009; Miller et al., 2011; Miller et al., 2014; Zhang et al., 2014;
Strong et al., 2020). Healthspan data supports the concept that age-
related deficits are mitigated with rapamycin treatment (Flynn et al.,
2013; Neff et al., 2013; Zhang et al., 2014), although specific tests may
or may not show sexually dimorphic results (Table 2). Recent work
has demonstrated that rapamycin treatment in the first 45 days of
life is sufficient to improve healthspan, reduce frailty and extend
median lifespan, at least in males (Shindyapina et al., 2022).
Moreover, rapamycin treatment for 3 months during middle age
(20–21 months) increased median lifespan by 14% for males and 9%
for females (Bitto et al., 2016). This data highlights the importance of
considering the age of onset of these therapeutics and that lifelong
treatment may not be necessary. Other drugs tested in the ITP
include aspirin, canagliflozin, candesartan, metformin, sibutramine,
simvastatin, and acarbose (Strong et al., 2008; Miller et al., 2011;
Smith et al., 2011; Harrison et al., 2014; Smith et al., 2019; Miller
et al., 2020; Harrison et al., 2021). Canagliflozin, a diabetes drug,
showed sexually dimorphic effects on lifespan, with an increase in
bothmedian andmaximal lifespan of 14% and 9%, respectively, only
in males (Miller et al., 2020). In a parallel study, canagliflozin was
found to retard age-related lesions in males only, suggesting that the
lifespan extension in the treatedmales is likely a reflection of delay in
lethal neoplasms (Snyder et al., 2022). Interestingly, another diabetes
drug, metformin, did not show lifespan extension in genetically
heterogeneous males but did have small but significant effects on
median lifespan in C57BL/6 J males, and a trend towards an effect in
B6C3F1 male mice (Martin-Montalvo et al., 2013). Metformin at
0.1% improved markers of health in these mice, however, it must be
noted that 1% metformin caused significant kidney damage and
significantly reduced lifespan by 14% (Martin-Montalvo et al.,
2013). Others have also tested metformin and shown that 1%
metformin improved median and maximal lifespan in female
SHR mice by 91.9% and 10.3%, respectively (Anisimov et al.,
2008). When tested in 129/sv mice, the same concentration
improved median lifespan in females by 7.8% but reduced it by
13.4% in males. In a recent study in female mice of an unknown
strain, 1% metformin reduced their median lifespan (Zhu et al.,
2020). Taken together, there are clear sexual dimorphic effects of
metformin in different mouse strains on lifespan, with a lack of a
clear directionality effect across strains. Several studies were able to
show positive healthspan effects of metformin doses ranging from
1% to 5% in C57BL/6 J mice (Martin-Montalvo et al., 2013;
Palliyaguru et al., 2020), illustrating the uncoupling of lifespan
and healthspan outcomes. A third diabetes drug, acarbose,

showed promising effects on lifespan in both female and male
genetically heterogenous mice, with larger effects in males
(Harrison et al., 2014; Smith et al., 2019). Healthspan was not
tested in these studies. Aspirin, a classic anti-inflammatory drug,
extendedmedian lifespan in male, but not in female UM-HET3mice
(Strong et al., 2008). No effects on lifespan or healthspan were shown
by the drugs Candesartan (Harrison et al., 2021), an
antihypertensive drug, Sibutramine (Smith et al., 2011), an
appetite suppressant, or Simvastatin (Miller et al., 2011), a statin
reducing cholesterol. As these compounds were tested as part of the
ITP, healthspan measures were not included in these studies.

Drugs that were tested outside of the ITP include tranexamic
acid, Deltaran, Etanercept, L-Dopa, and Prednisolone. Deltaran,
Etanercept, and Prednisolone are all anti-inflammatory drugs that
were tested in female mice, from which the first two had positive
effects on lifespan and healthspan (Popovich et al., 2003; Sciorati
et al., 2020). Prednisolone showed no effects on lifespan (Forbes,
1975). L-Dopa, a precursor to the neurotransmitters dopamine,
noradrenaline, and adrenaline, showed positive effects on male
lifespan but had no impact on healthspan (Cotzias et al., 1974).
Tranexamic acid, an antifibrinolytic, positively impacted male
lifespan and healthspan parameters (Hiramoto et al., 2020; 2019).

Overall, using repurposed FDA drugs as geroprotectors is a
promising strategy. Still, more research is needed to determine the
optimal doses, ages of onset, and specific indications for these drugs,
as well as the effectiveness in both sexes.

Novel small molecules

Beyond repurposing already approved drugs, a common
approach in drug development is developing novel small
molecules, which allows for a more target-specific approach.
Examples of pathways that novel small molecule may target in
the aging field, include oxidative stress, inflammation, AMPK, or
senescence (Table 3). These are some of the processes implicated as
hallmarks of aging (López-Otín et al., 2023).

Promising results have been shown with a carboxy-fullerene
superoxide dismutase (SOD) mimetic and 17-α-estradiol. The SOD
mimetic with its antioxidant properties was able to extend female
and male lifespans by 11% and improved the mice’s cognition and
learning (Quick et al., 2008). In the ITP, 17-α-estradiol, a synthetic
form of the hormone estradiol with proposed neuroprotective
properties, has been found to extend lifespan in male mice in
repeated studies but not in females (Harrison et al., 2014;
Harrison et al., 2021). Lifespan effects have ranged from a
median lifespan increase in male mice of 12% (Harrison et al.,
2014) up to 19% (Harrison et al., 2021). While healthspan was not
measured in these two studies, independent studies have shown that
healthspan benefits are seen in both male rats and mice with 17-a-
estradiol (Mann et al., 2020), highlighting the importance of cross-
species validation of potential geroprotectors.

Two small molecules, SRT1720 and SRT2104, which were
developed as specific sirtuin 1 (SIRT1) activators, have shown
benefits in both healthspan and lifespan measures in both a high-
fat diet (HFD) background, as well as a standard diet background.
Mitchell et al. found that SRT1720 improved several measures of
healthspan in male mice as well as mean lifespan, but only a trend
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TABLE 3 Study details and results for interventions with novel small molecules.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

Dorigatti et al.
(2021)

Beta-guadinidinopropionic
acid, 300 ppm ad libitum (food)

18–19months, for 17–22
(m)/25–26 (f) weeks

UM-
HET3

n.m n.m n.m ↑ f and m (only gait, not
muscle strength)

n.m = f and m n.m

Palliyaguru
et al. (2020)

SRT1720, 100 mg/kg*bw/day
(food)

14 months, until end of
life

C57BL/
6 J

↑ m (p < 0.0001) = m n.m = m n.m n.m n.m

Harrison et al.
(2021)

17-α-estradiol, 14ppm 16 months, until end of
life

UM-
HET3

↑ 19% m (p < 0.0001) ↑ 7% m (p <
0.004)

n.m n.m n.m n.m n.m

20 months, until end of
life

↑ 11% m (p < 0.007) = m
(p = 0.17)

Geranylgeranyl-acetone,
600 ppm

9 months, until end of
life

= f and m = f and m

MIF098, 240 ppm 8 months, until end of
life

= f and m = f and m

Sun et al.
(2019)

Dimethylamino-micheliolide,
10 mg/kg/EOD (orally)

12 months, for
15 months

C57BL/6 = m n.m n.m ↑ m (only treadmill, not
rotarod)

= m ↑ m n.m

Dimethylamino-micheliolide,
25 mg/kg/EOD (orally)

= m n.m n.m = m ↑ m ↑ m n.m

Dimethylamino-micheliolide,
50 mg/kg/EOD (orally)

= m n.m n.m ↑ m (only open field tot
distance)

= m = m n.m

Krut’ko et al.
(2016)

Alpha-fetoprotein,
10 mg/kg*bw/day
(intraperitoneal)

18 months, for 2 weeks BALB/c n.m n.m ↑ f (coat
condition and
hair loss)

↑ f (but statistics not very
good)

n.m n.m n.m

Harrison et al.
(2014)

17-α-estradiol, 4.8 ppm (food) 10 months, until end of
life

UM-
HET3

= f (p = 0.8) = f (p = 0.9) n.m n.m n.m n.m n.m

↑ 12% m (p = 0.0012) = m
(p = 0.13)

Mitchell et al.
(2014)

SRT1720, 100 mg/kg*bw/day
(food)

6 months, until end of
life

C57BL/
6 J

= m (trend p = 0.096) = m ↑ m (less
cataracts)

↑ m (improved rotarod
13 and 18 months)

n.m ↑ m (lower
glucose)

= m

↑ 8.8% m (p = 0.04,
mean ls)

Quick et al.
(2008)

Carboxy-fullerene SOD
mimetic, 10 mg/kg/day (water)

12 months, until end of
life

C57BL/6 ↑ 11% f and m (p =
0.004, mean ls, analyzed
together)

↑ f and m n.m n.m ↑ f and m n.m n.m

Strong et al.
(2008)

Nitroflurbiprofen, 200 ppm
(food)

4 months, until end of
life

UM-
HET3

= f and m = f and m n.m n.m n.m n.m n.m

(Continued on following page)
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towards increasing median lifespan (Mitchell et al., 2014). More
striking effects were seen when HFD-fed mice were treated with
SRT1720 (Minor et al., 2011). Although in a second study of
SRT1720 on an HFD, bodyweight and rotarod performance were
not significantly different from the control group (Palliyaguru et al.,
2020). A significant limitation of this work was that these
compounds were not tested in female mice, thereby limiting the
generalizability of these results.

Age-related changes in the immune system, often referred to
as “inflamm-aging” (Franceschi et al., 2018), contribute to the
pathogenesis of many age-related diseases. Alpha-fetoprotein, an
immunoregulator, improved muscle function and coordination
in female mice (Krut’ko et al., 2016). The anti-inflammatory
molecules MIF098 (Harrison et al., 2021),
dimethylaminomicheliolide (Sun et al., 2019), and
nitroflurbiprofen (Strong et al., 2008), as well as the
antioxidant 4-OH-PBN (Strong et al., 2008) and the insulin
sensitivity promoting geranylgeranyl-acetone (Harrison et al.,
2021) showed no effect on lifespan when tested in male and
female UM-HET3 mice. Beta-guadinidinopropionic acid, an
AMPK activator (Dorigatti et al., 2021), showed improvements
in muscle function and coordination independent of sex when
measured with gait and rotarod performance, but not with grip
strength or exercise tolerance tests, while lifespan was not
measured.

Probiotics

We only identified one probiotic, Akkermansia muciniphila,
that has been tested as a potential geroprotector and fulfilled the
criteria to be included in this review. Two studies, displayed in
Table 4, found that Akkermansia muciniphila had no effect on
lifespan, but did show minor improvements in healthspan
measures such as frailty, muscle function, and cognitive
function in female mice (Cerro et al., 2021; Shin et al., 2021).
Further research is needed to fully understand the potential of A.
muciniphila and other probiotics as potential geroprotectors
including determining the optimal dosage and administration
for use in humans.

Traditional Chinese medicine

Traditional Chinese medicine (TCM) is another field where
researchers have tested compounds for their effects on longevity
and healthspan (Zhao and Luo, 2017) (Table 5). TCM has a long
history, and many herbs and their components are being studied
now in a variety of diseases where they show beneficial effects,
including aging (Chen et al., 2019; Bi et al., 2022; Xue et al., 2022).
The flavanol Icariin, an ingredient of the herb Epimedium,
improved the median lifespan in male mice by 8%,
accompanied by improved muscle function and coordination.
These beneficial effects could be attributed to its purported anti-
inflammatory and anti-oxidant properties (Zhang et al., 2015; Bi
et al., 2022). A late-onset treatment (22–23 months of age) with
Liuwei Dihuang, an anti-oxidant TCM formula comprised of six
different herbs, increased maximal lifespan significantly with aTA
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dose of 4 ppm, but showed no significant effect at a higher dose of
7 ppm (Chen et al., 2019). Healthspan parameters, including
frailty and cognitive function, were improved by extracts of
the medicinal mushroom Hericium erinaceus, when given for
2 months to 21–23 months old male mice (Roda et al., 2021).
Their healthspan measure was an alternative version of a frailty
index, the locomotor frailty index which is determined via
average speed and resting time. Their study found a 10%
reduction in frailty in the treatment group and no sex-specific
effects were observed. In a similar study design, the anti-oxidant
acer truncatum seed oil was shown to improve cognitive function
in male mice as measured with the Morris Water Maze test (Li
et al., 2021). These results are promising and show the potential
of medicinal herbs and their bioactive components as
geroprotectors. However, further research is needed to
understand what exactly is mediating the beneficial effects,
especially in formulas such as Liuwei Dihuang, which mixes
six different herbs.

Vitamins, supplements, antioxidants, and
other compounds

Many vitamins, supplements, and antioxidants have been
studied for their ability to improve healthspan and/or lifespan, as
shown in Table 6. Interestingly, the strains of mice used in these
studies vary beyond just the standard C57BL/6 mice commonly
used in biomedical and aging studies (Palliyaguru et al., 2021b).
In the case of SkQ1, for example, the authors used three different
strains of mice (Anisimov et al., 2011) which ensures any effects
observed are tested across different genetic backgrounds. A
number of these compounds, which were tested in UM-HET3
mice as part of the Interventions Testing Program, did not have
any significant effects on lifespan outcomes in either sex (Miller
and Chrisp, 1999; Strong et al., 2013), with the exceptions of
methylene blue and nordihydroguaiaretic acid (NHGA) showing
sexually dimorphic lifespan effects (Strong et al., 2008; Harrison
et al., 2014). Methylene blue improved lifespan only in female

mice (Harrison et al., 2014), while NHGA improved only male
lifespan (Strong et al., 2008; Harrison et al., 2014). Healthspan
metrics were not measured in these animals. Additionally,
glycine, which was also tested as part of the Interventions
Testing Program, increased median lifespan by 4% in females
and by 6% in males and significantly reduced the risk for lung
adenocarcinomas (Miller et al., 2019).

Of the studies that used standard C57BL/6 mice, several
found improvements in lifespan as well as healthspan metrics.
Alpha-ketoglutarate was tested in both female and male mice
and showed positive effects on lifespan and healthspan in a sex-
independent manner, although stronger lifespan effects were
observed in female mice (Shahmirzadi et al., 2020). Healthspan
showed similar effects in both sexes, with particularly good
improvements in female fur color. A sex-independent increase
in median and maximal lifespan was also achieved with
D-glucosamine, with a treatment onset at 25 months, and
additional improvements in glucose metabolism were
observed (Weimer et al., 2014). Treatment with procyanidin
C1 (PCC1) from grape seeds (Xu et al., 2021), as well as
treatment with sodium rutin, a flavonoid (Li et al., 2022), in
male mice increased lifespan and several measures of
healthspan, such as frailty, muscle function, and cognitive
function. Multiple other studies measuring solely lifespan in
C57BL/6 mice showed improvements with compounds
including antioxidants and polyphenol mixtures, however,
most were tested in male mice only (Bezlepkin et al., 1996;
Saito et al., 1998; Kitani et al., 2007). Future studies with these
compounds should involve healthspan outcomes as well as
validating findings in female mice.

Declining NAD levels with age are thought to be one
contributor to age-related degeneration (Gomes et al., 2013;
McReynolds et al., 2020), with supplementation of NAD
precursors evaluated as therapeutic avenues. In C57BL/6 mice,
400 ppm of nicotinamide riboside increased the maximal lifespan
as well as muscle function and coordination in mice when given
late in life (22–24 months) (Zhang et al., 2016), however, sex of
the mice in this study was not specified. A higher dose of

TABLE 4 Study details and results for interventions with probiotics.

Study Compound
and dose

Start-age
and
duration

Strain Outcome lifespan Outcome healthspan

Median
lifespan

Max
lifespan

Frailty Muscle
function and
coordination

Cognitive
function
and
learning

Metabolism Cancer

Shin et al.
(2021)

Akkermansia
muciniphila, 4.9 ×
108 CFU/
150 mL/day
(orally)

24–25 months C57BL/
6 J

= (?) = (?) ↑ (?) ↑ (?) ↑ (?) n.m n.m

Cerro
et al.
(2021)

Akkermansia
muciniphila, 2 ×
108 CFU/
100 mL/day
(orally)

18 months, for
1 month

ICR-
CD1

n.m = f n.m = f ↑ f n.m n.m

Notes: f, female; m, male; n.m., outcome was not measured (?), the sex was not specified; The arrows denote a significant improvement (↑) or worsening (↓) of the respective outcome in the

intervention group relative to the control group, while a (=) denotes no difference to control. CFU, stands for “Colony Forming Unit”.
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1,000 ppm of nicotinamide riboside started early in life
(8 months) did not improve lifespan parameters in female and
male UM-HET3 mice (Harrison et al., 2021). Supplementation
with nicotinamide started at 12 months improved glucose
metabolism but was also not able to improve lifespan
parameters in male C57BL/6 mice (Mitchell et al., 2018).

The already mentioned SkQ1, which was tested in different
genetic backgrounds, showed sexually dimorphic effects in
C57BL/6 mice as well as BALB/c mice, where it was only able
to extend male, but not female lifespan (Anisimov et al., 2011). Of
the compounds in this category, magnesium thiazolidine
carboxylate was the only compound that extended female
median lifespan, even though p-values are missing in this
study (Miquel and Economos, 1979). Studies testing
spermidine, trehalose, polyphenol-rich grape skin extract, and
resveratrol found improvements in several healthspan metrics in
male C57BL/6 mice (Pearson et al., 2008; Asseburg et al., 2016;
Berry et al., 2020; Wirth et al., 2021), however, they either
observed no effects on lifespan (Pearson et al., 2008; Asseburg
et al., 2016; Wirth et al., 2021), or lifespan was not measured
(Berry et al., 2020). Of note, a number of these studies included
males only. No effects on lifespan or healthspan could be shown
with C60 in olive oil in either female or male C57BL/6 mice
(Grohn et al., 2021). Interestingly, b-aminopropionitrile was
shown to reduce female lifespan (Davies and Schofield, 1980),
despite an earlier study reporting it increased lifespan in male
LAF/J mice (LaBella and Vivian, 1978). This highlights the
importance of using both sexes and a variety of mouse strains.

Studies on vitamin E discovered an interesting sexual
dimorphism, as it only had an effect on male, but not female
lifespan (Morley and Trainor, 2001; Navarro et al., 2005). Vilon
and Epithalon, both synthetic peptides, were shown to
significantly improve female lifespan as well as multiple
metrics of healthspan (Khavinson and Anisimov, 2000;
Khavinson et al., 2000). Anisimov et al. also observed an
interesting effect of melatonin on uncoupling lifespan and
healthspan. At a low dose (2 mg/L), tumor incidence was
reduced, but lifespan was unaffected; meanwhile at a higher
dose (20 mg/L), lifespan was increased, but tumor incidence
was unaffected (Anisimov et al., 2003). Dose-dependent effects
were also observed by Soda and colleagues (Soda et al., 2009)
when testing a combination of polyamines (spermidine and
spermine), with the highest dose improving lifespan when
compared to lower doses, which were solely tested in male
mice. Further, 2-mercapto-ethanol was shown to improve
lifespan and healthspan, but it was only tested in male mice
(Heidrick et al., 1984). Ethoxyquin, a quinoline-based
antioxidant, was shown to improve lifespan and healthspan in
both males and females (Comfort et al., 1971). However,
interventions with ubiquinone (Lönnrot et al., 1998; Lee et al.,
2004) and alpha-lipoic acid in male mice did not show any effects
on lifespan (Lee et al., 2004). While some of the discussed
compounds have shown promising results in extending
lifespan and improving healthspan in mice, most studies have
only been conducted on one sex, leaving questions about their
potential benefit on the opposite sex.

TABLE 5 Study details and results for interventions with traditional Chinese medicine.

Study Compound
and dose

Start-age
and
duration

Strain Outcome lifespan Outcome healthspan

Median
lifespan

Max
lifespan

Frailty Muscle
function and
coordination

Cognitive
function
and
learning

Metabolism Cancer

Roda
et al.
(2021)

Hericium
erinaceus, 1 mg/
day (orally)

21–23 months,
for 2 months

C57BL/
6 J

n.m n.m ↑ m n.m ↑ m n.m n.m

Li et al.
(2021)

Acer truncatum
seed oil,
0.01 mL/g/day
(orally)

20 months, for
1 month

C57BL/
6

n.m n.m n.m n.m ↑ m n.m n.m

Chen
et al.
(2019)

Liuwei
Dihuangh,
0.432 g/kg/day
(water)

22–23 months,
until end of life

C57BL/
6 J

n.m ↑ (?) (p =
0.048)

n.m n.m n.m n.m n.m

Liuwei
Dihuangh,
0.72 g/kg/day
(water)

n.m = (?) (p =
0.078)

S.-Q.
Zhang
et al.,
2015)

Icariin, diet
with 0.02%

12months, until
end of life

C57BL/
6

↑ 8% m
(p = 0.03)

= m n.m n.m n.m n.m n.m

12 months, for
12 months

n.m n.m n.m ↑ m n.m n.m n.m

Notes: f, female; m, male; n.m., outcome was not measured (?), the sex was not specified; The arrows denote a significant improvesment (↑) or worsening (↓) of the respective outcome in the

intervention group relative to the control group, while a (=) denotes no difference to control.
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TABLE 6 Study details and results for interventions with vitamins, supplements, antioxidants, and other compounds.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

Xu et al. (2021) PCC1, 20 mg/kg biweekly
(orally)

20 months, for
4 months

C57BL/
6 J

n.m n.m n.m ↑ m n.m n.m n.m

24–27 months, until
end of life

↑ 64.2% m (p <
0.0001)

↑ 9.4% m (p <
0.0001)

n.m = m n.m n.m = m

Wirth et al. (2021) Spermidine, 3 mM ad
libitum (water)

17 months, for
6 months

C57BL/
6 J

n.m n.m ↑ m (only hair
loss)

n.m n.m = m n.m

Rj

Grohn et al. (2021) C60 in olive oil, 1.7 mg/kg
(injection), for 1 week daily,
then for 1 month weekly,
then for 7 months biweekly

25–27 months, for
7 months

CB6F1 = f = f n.m n.m n.m n.m n.m

C60 in extra virgin olive oil,
4 mg/kg*bw/day (orally), for
1 week daily, then for
1 month weekly, then for
7 months biweekly

23 months, for
8 months

C57BL/6 = f and m = f and m n.m = f and m n.m n.m n.m

Li et al. (2022) Sodium rutin, 0.2 mg/mL ad
libitum (water)

8 months, until end
of life

C57BL/6 ↑ m (p < 0.01) = m (trend,
3 months
longer)

↑ m (kyphosis,
cataract, hair
loss)

↑ m ↑ m n.m n.m

Harrison et al.
(2021)

Nicotinamide riboside,
1,000 ppm

8 months, until end
of life

UM-
HET3

= f and m = f and m n.m n.m n.m n.m n.m

Shahmirzadi et al.
(2020)

Alpha-ketoglutarate, 2% w/
w (food)

18 months, until end
of life

C57BL/
6 J

↑ 10.5%/16.6% f ↑ 19.7%/8% f ↑ f and m ↑ f and m (gait and
activity, not treadmill)

n.m n.m n.m

↑ 9.6%/12.8% m
(cohort 1/2)

= m (cohort 1/2)

Berry et al. (2020) Trehalose, 0.1 mg/day
(water)

25 months, for
1 month

C57BL/
6N

n.m n.m n.m = /↑ m (only
coordination, not
strength)

n.m n.m n.m

Miller et al. (2019) Glycine, 8% in food 9 months, until end
of life

UM-
HET3

↑ 4% f (p = 0.006) = f n.m n.m n.m n.m ↑ f and m

↑ 6% m (p = 0.002) ↑ 6% m (p =
0.0005)

Mitchell et al.
(2018)

Nicotinamide, 37.5 mg/
g*bw/day (food)

12 months, until end
of life

C57BL/
6 J

= m = m n.m = m = m ↑m (only glucose) n.m

= m = m n.m = m = m = m n.m

(Continued on following page)
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TABLE 6 (Continued) Study details and results for interventions with vitamins, supplements, antioxidants, and other compounds.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

Nicotinamide, 75 mg/g*bw/
day (food)

Zhang et al. (2016) Nicotinamide riboside,
400 mg/kg/day (food)

24 months, until end
of life

C57BL/
6JRj

n.m ↑ (?) (p = 0.034) n.m n.m n.m n.m n.m

22–24 months, for
6 weeks

C57BL/
6 J

n.m n.m n.m ↑ (?) n.m n.m n.m

Asseburg et al.
(2016)

Polyphenol-rich grape skin
extract, 200 mg/kg*bw/day
(ST: orally, LT: food, LS:
water)

22–24 months, for
6 weeks

C57BL/
6 J

n.m n.m n.m ↑ (?) n.m n.m n.m

13 months, for
6 months (LT)

n.m n.m n.m = m n.m n.m n.m

6 months, until end
of life (LS)

= m = m n.m ↑ m (only locomotor
activity)

n.m n.m n.m

Weimer et al.
(2014)

D-Glucosamine 25 months, until end
of life

C57BL/
6NRj

n.m ↑ m and f (p =
0.0143)

n.m n.m n.m ↑ m and f n.m

Harrison et al.
(2014)

Nordi-hydroguaiaretic acid,
800 ppm (food)

6 months, until end
of life

UM-
HET3

↑ m (p = 0.04) n.m n.m n.m n.m n.m n.m

Nordi-hydroguaiaretic acid,
2500 ppm (food)

↑ m (p = 0.0053) n.m n.m n.m n.m n.m n.m

Nordi-hydroguaiaretic acid,
5,000 ppm (food)

= f n.m n.m n.m n.m n.m n.m

↑ m (p = 0.0048)

Methylene blue, 28 ppm
(food)

4 months, until end
of life

= f (p = 0.17) ↑ f (p = 0.004) n.m n.m n.m n.m n.m

= m (p = 0.27) = m (p = 0.6)

Strong et al. (2013) Resveratrol, 300 ppm
(food)/50 mg/kg*bw/day

4 months, until end
of life

UM-
HET3

= f and m = f and m n.m n.m n.m n.m n.m

Green tea extract, 2000 ppm
(food)/333 mg/kg*bw/day

= f and m = f and m = f and m n.m n.m n.m n.m

Curcumin, 2000 ppm
(food)/333 mg/kg*bw/day

= f and m = f and m n.m n.m n.m n.m n.m

Oxaloacetic acid, 2200 ppm
(food)/367 mg/kg*bw/day

= f and m = f and m n.m n.m n.m n.m n.m

(Continued on following page)
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TABLE 6 (Continued) Study details and results for interventions with vitamins, supplements, antioxidants, and other compounds.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

Medium-chain triglyceride
oil, 60′000 ppm (food)/
10′000 mg/kg*bw/day

= f and m = f and m n.m n.m n.m n.m n.m

R. A. Miller et al.,
2011)

Resveratrol, 300 or
1,200 ppm (food)

12 months, until end
of life

UM-
HET3

= f andm = f andm n.m = f andm n.m n.m n.m

Anisimov et al.
(2011)

SkQ1, 5 or 250 nmol/kg/day
water?

lifelong 129/sv = f n.m n.m n.m n.m n.m n.m

SkQ1, 1 or 30 nmol/kg/day
water? (analyzed together)

BALB/c = f n.m n.m n.m n.m n.m n.m

↑ m (p < 0.05)

SkQ1, unknown dose C57BL/6 = f n.m n.m n.m n.m n.m n.m

↑ m (p < 0.05)

Soda et al. (2009) Polyamine high (Spermidine
1,540 nmol/g, Spermine
374 nmol/g)

3 months, for
19 months

Jc1:ICR ↑ m (p = 0.011,
compared to normal
and low)

n.m n.m n.m n.m n.m n.m

Polyamine normal
(Spermidine 434 nmol/g,
Spermine 160 nmol/g)

= m (p = 0.432,
normal vs low)

n.m n.m n.m n.m n.m n.m

Polyamine low (Spermidine
224 nmol/g, Spermine
143 nmol/g)

= m (p = 0.432,
normal vs low)

n.m n.m n.m n.m n.m n.m

Strong et al. (2008) Nordihydro-guaiaretic acid,
2500 ppm (food)

9 months, until end
of life

UM-
HET3

= f = f and m n.m n.m n.m n.m n.m

↑ m (p = 0.0006)

Pearson et al.
(2008)

Resveratrol, 100 ppm (food) 12 months, until end
of life

C57BL/
6NIA

= m = m = m = m n.m n.m n.m

Resveratrol, 400 ppm (food) = m = m ↑ m (less
cataracts)

↑ m (improved rotarod) n.m n.m n.m

Resveratrol, 2400 ppm
(food)

= m = m n.m n.m n.m ↑ m (lower
cholesterol)

n.m

Kitani et al. (2007) Tetrahydro-curcumin, 0.2%
(food)

13 months, until end
of life

C57BL/
6JHsd

↑ m (p < 0.01) ↑ m (p < 0.01) n.m n.m n.m n.m n.m

19 months, until end
of life

= m = m

(Continued on following page)
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TABLE 6 (Continued) Study details and results for interventions with vitamins, supplements, antioxidants, and other compounds.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

Green tea polyphenols,
80 mg/L (water)

13 months, until end
of life

↑ m (p < 0.05) = m

Navarro et al.
(2005)

Vitamin E (dl-RRR-α-
tocopherol, 5 g/kg (food)

7 months, until end
of life

CD-1 = f = f n.m ↑ m ↑ m n.m n.m

↑ m (p < 0.0001) ↑m (p < 0.0001)

Lee et al. (2004) α-lipoic acid, 600 ppm
(food)

14 months, until end
of life

B6C3F1 = m = m n.m n.m n.m n.m = m

Coenzyme Q10, 100 ppm
(food)

= m = m n.m n.m n.m n.m = m

Anisimov et al.
(2003)

Melatonin, 2 mg/L (5x per
months, water)

3 months, until end
of life

SHR = f = f n.m n.m n.m n.m ↑ f

Melatonin, 20 mg/L = f ↑ f (p < 0.05,
last 10%)

n.m n.m n.m n.m = f

Morley and
Trainor (2001)

Vitamin E, 20, 40 and
400 mg/kg (food)

Conception, until
end of life

Balb/c = f = f n.m n.m n.m n.m n.m

Khavinson et al.
(2000)

Vilon (Lys-Glu), 0.1 mg (5x
per months, injection)

6 months, until end
of life

CBA = f ↑ f (p < 0.05,
last 10%)

n.m ↑ f n.m n.m ↑ f

Khavinson and
Anisimov (2000)

Vilon (Lys-Glu), 0.1 mg (5x
per months, injection)

6 months, until end
of life

CBA = f ↑ f (p < 0.05,
last 10%)

n.m ↑ f n.m n.m ↑ f

Epithalon (Ala-Glu-Asp-
Gly), 0.1 mg (5x per months,
injection)

↑ f (p < 0.05) = f n.m ↓ f n.m n.m ↑ f

Miller and Chrisp
(1999)

DHEA sulfate, 100 mg/mL
(water)

Birth, until end of
life

UM-
HET3

= f and m = f and m n.m n.m n.m n.m = f andm

Saito et al. (1998) N-tert-butyl-a-
phenylnitrone, 0.25 mg/mL
(water)

24.5 months, until
end of life

C57BL/
6 J

↑ m (p < 0.005,
mean ls)

n.m n.m n.m n.m n.m n.m

Lönnrot et al.
(1998)

Ubiquinone Q10,
10 mg/kg/day

2 months, until end
of life

C57/B17 = m = m n.m n.m n.m n.m n.m

Bezlepkin et al.
(1996)

Antioxidant mixture: 7.5 mg
beta carotene, 15 mg α-
tocopherol, 50 mg ascorbic
acid, 25 mg rutin, 25 μg

2 months, until end
of life

C57BL/6 ↑ m (p < 0.05,
mean ls)

↑ m (p < 0.05,
last 10%)

n.m n.m n.m n.m n.m

9 months, until end
of life

↑ m (p < 0.05,
mean ls)

↑ m (p < 0.05)

(Continued on following page)
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TABLE 6 (Continued) Study details and results for interventions with vitamins, supplements, antioxidants, and other compounds.

Study Compound and dose Start-age and
duration

Strain Outcome lifespan Outcome healthspan

Median lifespan Max
lifespan

Frailty Muscle function
and coordination

Cognitive
function and
learning

Metabolism Cancer

selenium, 5 mg zinc per
kg*bw

16 months, until end
of life

= m = m

23 months, until end
of life

= m = m

Heidrick et al.
(1984)

2-mercaptoethanol, 0.25% of
food

4 months, until end
of life

BC3F1 ↑ m 13.2% (p < 0.005,
mean ls)

↑ m (p < 0.001,
last 10%)

n.m n.m n.m n.m ↑ m

Davies and
Schofield (1980)

β-aminopropio-nitrile,
0.5–2 mg/mL water

3–4 months, until
end of life

C57BL/
Icrfa

↓ f ↓ f n.m n.m n.m n.m n.m

β-aminopropio-nitrile,
1 mg/mL water

9 months, until end
of life

= f = f

Miquel and
Economos (1979)

Magnesium thiazolidine
carboxylate, 0.07% of food

23 months, until end
of life

C57BL/6 ↑ f 7% (no p-value) n.m n.m n.m n.m n.m n.m

LaBella and Vivian
(1978)

β-aminopropio-nitrile, 1 or
3 mg/mL water

2 months, for 6/12/
18 months

LAF/J ↑ m (p < 0.05,
mean ls)

= m n.m n.m n.m n.m n.m

β-aminopropio-nitrile,
3 mg/mL water

2 months, for
6 months

= m = m

Comfort et al.
(1971)

Ethoxyquin, 0.5% of food 3 months, until end
of life

C3H ↑ f and m (p < 0.005,
not specified)

n.m n.m ↑ f and m n.m n.m = f andm

Notes: f, female; m, male; n.m., outcome was notmeasured (?), the sex was not specified; The arrows denote a significant improvement (↑) or worsening (↓) of the respective outcome in the intervention group relative to the control group, while a (=) denotes no difference

to control. PCC1, procyanidin C1; DHEA, dehydroepiandrosterone.
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Adherence to the SABV mandate for
preclinical studies

Since 2020, the NIH mandate has been in place, which requires
authors to include both males and females in NIH-funded
preclinical research studies. Of the 17 studies published since
2020 included in this systematic review, only six used both
female and male mice and compared their outcomes (35%)
(Figure 3). This is the same number of studies that used only
male mice for their research (35%). When looking at the
proportion of studies that used both sexes in all included studies,
which is 36% (26/72) (Figure 2), nothing has changed despite the
mandate being in place. This highlights the need for journals to
further encourage or require compliance with the mandate and to
promote the integration of sex as a biological variable in preclinical
research studies. This could lead to a better understanding of the
potential sex-specific differences in the outcomes of these studies
and lead to improved treatments for all patients, regardless of their
biological sex. It is also important for researchers to be aware of the
potential impact of sex on the outcomes of their studies and to
design studies that accurately represent the populations they aim to
serve.

Discussion

The goal of this manuscript was to systematically review the
available literature on sexual dimorphism in the use of
pharmacological compounds as potential geroprotectors. We
focused on lifespan and healthspan outcomes using mice as a

model organism. Of the more than 7000 potentially eligible
studies identified through our search, only 72 original research
publications met the stringent inclusion and exclusion criteria.

Our results showed that of the 72 included studies, 40% (29/
72) of studies only used male mice or did not clarify the sex, 20%
(14/72) of studies used only female mice, and only 36% (26/72)
of studies used both sexes for all their measurements (Figure 2).
Additionally, of all studies using both sexes, 73% (19/26)
showed sex-specific outcomes. These data highlight the
importance of considering sex as a biological variable
(SABV) when testing novel geroprotector interventions. The
failure to do so prevents a clear understanding of the sex-
specific effects of the tested compounds, particularly as our
systematic review found that 73% of studies showed sex
differences in the effects of the tested compound on the
health or lifespan outcome. It is tempting to speculate how
many geroprotectors that have “failed” preclinical testing may
have been successful if they were tested in females.

In 2016, the National Institutes of Health mandate came into
force, requiring the use of both males and females in NIH-funded
research, unless there was a strong scientific justification. This
mandate resulted from the workshop on sex as a biological
variable. Since then, a number of authors (Garcia-Sifuentes
and Maney, 2021; Shansky and Murphy, 2021; Carmody et al.,
2022) have looked at adherence to these policies across different
scientific disciplines, with a general consensus that adherence
should be improved. In addition to inclusion, it is important that
authors also provide statistical evidence supporting the
difference. A recent report examining sex differences across
nine biological disciplines (in 147 articles) found incorrect use

FIGURE 3
Proportional representation of the use of female and male mice in all studies included in this manuscript since 2020.
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of statistics by authors to support their claims, which they suggest
may lead to over-reporting or masking of sex-specific differences
(Garcia-Sifuentes and Maney, 2021). These examples argue for
continuing discussion on the importance of SABV and ongoing
efforts to train biomedical researchers in how to test for and
report sex differences correctly in their studies. It may be of
importance for leading SABV journals to put together a white
paper detailing the best practice for incorporating SABV in
biomedical research, including how to appropriately use
statistical tests to report effects, much like the PRISMA
guidelines for systematic reviews. It is, however, encouraging
to see journals such as the American Journal of Physiology-Heart
and Circulatory Physiology requiring the inclusion of sex as a
biological variable in the reporting of published articles (Denfeld
et al., 2022) in their journal. Other journals, such as the Journals
of Gerontology and Arteriosclerosis, Thrombosis, and Vascular
Biology, have published statements recommending this to their
authors (Le Couteur et al., 2018; Robinet et al., 2018). In the
studies included here and published since 2020, there is no
change observable regarding the use of both sexes when
compared to all studies that were included.

Two more recent studies and therefore not yet included in this
review have implemented the use of both sexes and found
improvements in lifespan as well as healthspan. In the first study,
the NADase CD38 inhibitor 78c increased median lifespan by 17%
in males, but not in females, and improved exercise performance,
endurance, and metabolic function in males (Peclat et al., 2022). In
the second study, the PI3K p110α inhibitor, which targets the insulin
receptor/insulin-like growth factor receptor pathway, extended
median and maximal lifespan of both male and female mice and
improved muscle function, with more significant effects in females
(Hedges et al., 2023). These results further emphasize the
importance of considering biological sex in preclinical research.

While including both sexes in preclinical research is critical, it is
equally important to consider the genetic diversity of the mouse strains
used in these studies. Testing interventions in heterogenous mouse
strains provides a more accurate representation of how treatments may
perform in a diverse human population, improving our ability to
develop safe and effective treatments. Studies comparing genetically
diverse inbred mouse strains have found significant differences in
lifespan parameters (Yuan et al., 2009; Yuan et al., 2020),
highlighting the importance of using multiple mouse strains when
researching a potential geroprotector. While the studies included in this
review exhibit some level of genetic diversity, there is room for
improvement in terms of testing a specific compound on several
genetic backgrounds to ensure greater generalizability.

In addition to the healthspan parameters focused on in this review,
there are further health assessments that can be useful in intervention
studies in aging mice. These include blood chemistry analysis, which
provides information on glucose homeostasis, lipid metabolism, liver
and kidney function, and inflammatorymarkers (O’Connell et al., 2015;
Palliyaguru et al., 2021a; Zhang et al., 2022). Live animal imaging
techniques, such as magnetic resonance imaging (MRI) (Chen et al.,
2011) and positron emission tomography (PET) (Borrás et al., 2011;
Hulsmans et al., 2018), can allow for the non-invasive visualization of
organs and tissue and can therefore provide insights into structural and
functional changes occurring with an intervention. Analysis of
metabolomics (Adav and Wang, 2021; Tian et al., 2022), proteomics

and transcriptomics (Takemon et al., 2021) can be used to identify
changes in metabolic pathways, protein expression and gene expression
in response to an intervention. Finally, tissue histology can assess
changes on a tissue and cellular level (Pettan-Brewer and Treuting,
2011). Generally, it is important to use a wide variety of health
assessment tools to get a more comprehensive understanding of the
efficacy of geroprotective interventions.

Limitations of the systematic review

There are a number of limitations to consider when
interpreting the findings of this systematic review. One
limitation is that only one database (Pubmed) was used, which
means that there may be a selection bias, as the studies included
in the review may not be representative of the overall population
of geroprotector studies. Additionally, the studies included in the
review used a variety of outcomes and statistical methods,
making it harder to compare the results across studies. Some
studies also had missing information, which can impact the
ability to accurately interpret the results. Furthermore, the
quality of the studies included in the review may vary, with
some studies having more robust designs, higher statistical
power, and more reliable results compared to others. Overall,
these limitations should be considered when interpreting the
results of the review and planning future research on
geroprotectors and their effects on healthspan and lifespan.

Conclusion

Pharmacological interventions represent an attractive
therapeutic avenue for modulating age-related diseases and
frailty, especially in those individuals for whom dietary
interventions are not feasible. The results from our systematic
review show that most studies have only been performed in
males, meaning the generalizability of these findings to females is
unknown. Given that females represent roughly 50% of the
population, the knowledge gap surrounding the translational
value of these interventions is large, as for half the population we
do not know how these may impact healthspan or lifespan. Thus, we
reiterate the point that only by studying both males and females can
we leverage sex-specific differences to provide novel insights into the
pathophysiology of aging and improve healthy aging for all.
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