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Abstract 

One of the stronger empirical generalizations to emerge from the study of 
genetic systems is that achiasmate meiosis, which has evolved 25-30 times, 

is always restricted to the heterogametic sex in dioecious species. usually the 
male. Here we collate data on quantitative sex differences in chiasma frequency 

from 54 species (4 hermaphroditic flatworms, 18 dioecious insects and vertebrates 

and 32 hermaphroditic plants) to test whether similar trends hold. Though 
significant sex differences have been observed within many species, only the 

Liliaceae show a significant sexual dimorphism in chiasma frequency across spe- 
cies, with more crossing over in embryo mother cells than in pollen mother 

cells; chiasma frequencies are unrelated to sex and gamety in all other higher 

taxa studied. Further, the magnitude of sexual dimorphism. independent of sign, 
does not differ among the three main ecological groups (dioecious animals, plants, 

and hermaphroditic animals), contrary to what would be expected if it reflected 
sex-specific selection on recombination. These results indicate that the strong 

trends for achiasmate meiosis do not apply to quantitative sex differences in 
recombination, and contradict theories of sex-specific costs and benefits. An alter- 

native hypothesis suggests that sex differences may be more-or-less neutral, selec- 
tion determining only the mean rate of recombination. While male and female 

chiasma frequencies are more similar than would be expected under complete 
neutrality. a less absolute form of the hypothesis is more difficult to falsify. In 

female mice the sex bivalent has more chiasmata for its length than the auto- 

somes, perhaps compensating for the absence of recombination in males. Finally, 
we observe that chiasma frequencies in males and females are positively correlated 
across species, validating the use of only one sex in comparative studies of 
recombination. 
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Introduction 

Observations of sex differences in the amount of recombination at meiosis are 
common, even among autosomal genes, and date back to the early days of genetics 

(Morgan, 19 12, 1914; Haldane, 1920). These differences can be usefully divided into 

three types, according to their cytogenetics. First, both sexes may have normal 
chiasmate meiosis, but with quantitative differences in the number or position of 

cross-overs (e.g. mice). Second, one sex may have an achiasmate meiosis, with no 
crossing-over of homologous chromosomes at all (e.g. male fruit flies). Finally, 
there may be neither independent segregation of nonhomologous chromosomes nor 

crossing-over in one sex (always the male), as in haplodiploid and parahaplodiploid 

species (e.g. bees, scale insects). Here, we will be mainly concerned with the 
evolution of quantitative sex differences in recombination. 

Haldane ( 1922) gave the first general treatment of the problem, advancing the 
empirical claim that recombination tends to be reduced in the heterogametic sex. 

Huxley ( 1928) similarly suggested that whenever a marked sex difference in 
recombination occurred, it was always the heterogametic sex that had the lower 

value. Both authors proposed the same explanation: if gender is determined by two 
or more loci on the sex chromosomes, then selection against intersexes will favour 

reduced recombination between these chromosomes in the heterogametic sex, and 

as a pleiotropic effect the recombination of autosomal chromosomes may also be 
reduced. 

These views have been questioned on occasion, both because there are some 
exceptions to the empirical generalization (e.g. Dunn and Bennett, 1967; Callan and 
Perry, 1977) and because the proposed explanation cannot account for observed sex 

differences in hermaphrodites (e.g. Ved Brat, 1966). However, there was no 
alternative theoretical perspective until Trivers (1988) recently revived the subject, 

with slightly different empirical claims and a provocative new explanation. Accord- 
ing to Trivers, recombination tends to be lower in males than females, as well as 

lower in the heterogametic sex than the homogametic sex, though he acknowledges 

that there are many exceptions to these rules. Trivers suggests that both reduced 
recombination and heterogamety are consequences of selection being more intense 

in one sex (usually the male) than the other. He argues that reproducing individuals 
of the sex experiencing more intense selection will, on average, have better combina- 

tions of genes than those of the other sex, and so the cost of breaking up those 
combinations should be higher. Bernstein et al. (1988) counter with an alternative 

explanation, that rates of recombination tend to be higher in females because 

oogenesis is associated with higher metabolic rates, and thus more DNA damage, 
than spermatogenesis; however, they admit to being puzzled by the association with 

gamety. 
Most other theories of recombination can be adapted to predicting sex-specific 

optimal recombination rates. For example, many theorists believe that the main 
function of recombination is to reduce linkage disequilibrium (e.g. Felsenstein, 
1988; Maynard Smith, 1988; Kondrashov, 1988). As two potentially important 

sources of linkage disequilibrium are selection and drift, one might expect that the 
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sex experiencing the more intense selection, or otherwise having the higher variance 
in reproductive success, should have more recombination. This prediction is exactly 

opposite to that made by Trivers. Other predictions follow from the various 
proposed diversity theories of recombination (Williams, 1975; Bell, 1982; Tooby, 

1982). Alternatively, sex differences in recombination may be more-or-less invisible 
to natural selection, the latter determining only the mean value. Simulations by Nei 

( 1969) indicate that sex differences in recombination may have very little effect on 
population mean fitness. 

Information currently available on achiasmate meiosis in no way contradicts 
Haldane’s, Huxley’s, and Trivers’ empirical claims: we know of 25-30 independent 

origins of achiasmate meiosis among dioecious animals (A. Burt, unpublished; see 
Serrano, 1981; Bell 1982; Nokkala and Nokkala, 1986 and references therein) and 

every time it has evolved in the heterogametic sex, which all but twice is the male 
(exceptions are Copepoda and Lepidoptera/Trichoptera). Here, we bring together 

the available data on quantitative sex differences in chiasma frequencies, to further 
test the strength of the proposed trends and, if possible, to test the various 

explanations. To this end we also examine the magnitude of sexual dimorphism in 

chiasma frequency, independent of sign, and look for evidence of compensation 
between the sexes. 

One further motivation for this study is to estimate the correlation between male 

and female chiasma frequencies across species, thus determining whether the value 

for one sex is a good indicator of what is happening in the other sex and in the 
species as a whole. This estimate is important because male meiosis is usually more 

easily studied than female meiosis, and so comparative surveys of chiasma frequen- 
cies tend to only use data for males (e.g. Burt and Bell, 1987; Sharp and Hayman. 
1988). There are about 20 times more chiasma frequencies for males in the literature 

as for females. 

Data and Analysis 

Rates of recombination can be measured both by counting chiasmata through the 

microscope and by crossing marked individuals to construct a linkage map. Counts 

of chiasmata are available for many more species than are extensive linkage maps, 
and here we will restrict ourselves to the former. As with any comparative analysis 

using data from the literature, the quality of estimates varies - for example, in 
techniques and sample sizes. Actually counting chiasmata in some species is quite 

straight-forward and in others quite difficult; female mammals are notoriously 
difficult. For plants, often only metaphase figures are available, whereas counts at 

the earlier diplotene stage are usually considered more accurate. Perhaps more 
importantly, the methods used are often different for the two sexes, so that 

observed differences between males and females may be due to differences of 
technique rather than real. This problem is particularly acute when the data for the 

two sexes come from different studies (3 of 6 amphibians and 2 of 4 mammals in 
our data set). 
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Perhaps the best measure of recombination to be got from a meiotic spread is the 

proportion of the genome which recombined. This value can be calculated by 
measuring the distances between the ends of chromosomes and the nearest chiasma 

and between neighboring chiasmata, and expressing these as a proportion of the 
total genome length. For n bivalents and C chiasmata, there will be n + C such 

distances, di. The proportion of the genome which recombines is then equal to the 
proportion of pairs of loci which are on different segments: P = 1 - Ed;. This value 

will be a function of the number and size distribution of chromosomes and the 
number and position of cross overs. Corrections could be made for obviously 

noncoding fractions of the genome simply by not including them in the calculations. 

Unfortunately, this proportion has yet to be reported for any species. Instead, we 
shall use simple counts of the number of chiasmata, noting that for any given 
distribution of cross overs along the genome, our measure P increases monotoni- 

cally with the number of chiasmata. Ignoring possible sex differences in the position 
of cross overs will lead to some inaccuracy: for example, Fletcher & Hewitt (1980) 

observe that males of Chr)~sochraon dispar have slightly more chiasmata per 

bivalent than females, but that they are terminalized to such an extent that the 
effective amount of recombination is greater in females. However, quantitative 

information on the position of chiasmata is available for very few species. 
One possible check on the data is to compare sex differences in chiasma 

frequency and linkage map lengths. Unfortunately, we know of map length data for 
only three species in our data set, all mammals: Sminthopsis crassicauduta (Bennett 

et al., 1986) mice (Dunn and Bennett, 1967), and humans (Donis-Keller et al., 
1987). For S. crassicauduta and mice the sex differences in chiasma frequency and 

map lengths are in the same direction, but not for humans: the cytogenetic data 

suggest that males have more chiasmata than females (51 vs 43; Lange et al., 1975; 
Jagiello et al., 1976) but the genetic data indicates they have shorter map lengths 

(2017 vs 3857 CM; Donis-Keller et al., 1987). Apparently, the female chiasma 

frequencies are greatly underestimated. This corroborates Chandley’s (1988 : 20) 

statement that, due to technical difficulties, “accurate counts of chiasmata for the 
human female still remain to be established.” As the problems of getting sufficient 

appropriate material (oocytes at time of ovulation) are much greater for human 

females than for other species, this discrepancy is unlikely to be representative of 
the rest of the data. Indeed, among other organisms for which both chiasma 

frequencies and extensive genetic maps exist, there is a strong correlation between 
the two (r = 0.85, n = IO; A. Burt, unpublished). Here, we have excluded humans 

from further analysis. 
Having decided to use counts of chiasmata at meiosis, there still remains a 

number of possible indices of recombination. Burt and Bell (1987) defined the 
excess chiasma frequency as the number of chiasmata per bivalent in excess of one, 

summed across bivalents. This measure was considered to most accurately reflect 

selection for recombination, independently of the various constraints on changes in 
chromosome number and the mechanical role of chiasmata in proper segregation. 

However, it does not make much biological sense for polyploid and achiasmate 
species, both of which are represented in our data set. Therefore we use here the 
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number of chiasmata per autosomal bivalent. Interpretations are also made easier 

by this choice, since in our data set the chiasma frequency per bivalent is independent 
of chromosome number (r = -0.105, n = 54, p > 0.4), while excess chiasma fre- 

quency is positively correlated with chromosome number (r = 0.317, n = 54, 
p < 0.02). In any case, choice of index does not affect the conclusions drawn. 

Data is available for 54 species of animals and higher plants (Appendix), 
approximately 0.002% of all known animals and higher plants. Unfortunately, the 

data set is taxonomically unrepresentative: there are 8 species of acridid grasshop- 

pers, but no other arthropods; 4 Triturus newts, but no fish, reptiles, or birds; 22 
species in the Liliaceae, but only two dicots. This nonrandomness means that we 

cannot put much weight on overall trends and must instead look within lower taxa: 
since we cannot make definitive statements about all animals and higher plants, we 

shall try to say something about acridid grasshoppers, Triturus, and the Liliaceae. 

Results 

Correlations 

Across all chiasmate species there is a positive correlation between male and 

female chiasmata per bivalent (r = 0.75, n = 54, p < 0.001; Fig. 1). this result seems 
to be fairly robust, as the sign of the correlation is positive in 9 of 11 independent 

taxa (Table 1). The exceptions are amphibians and Oedipodinae, a subfamily of 
grasshoppers, though neither are significantly negative. 

Sexual dimorphism 

Across all species females seem to have more chiasmata than males (paired t-test, 

t = 2.49, n = 54, p < 0.02). Closer examination of the data shows that this trend 
holds for Lilium (all 8 species, p - 0.008) and probably Liliaceae genera (all 4 

genera have more species with more chiasmata in the female than the male, 
p = 0.0625). However, there is no evidence that the trend applies to other plant taxa 

or any animal taxon (Table I). As many species individually show significant sex 

differences in chiasma frequency (Appendix), this result indicates that there is a 
large sex x species interaction effect. All dioecious species in the data set are male 

heterogametic (except one species with unknown sex chromosome system), so the 
absence of a consistent sex difference also indicates that there is no consistent 

difference between homo- and heterogametic sexes. 

Ranges 

The magnitude of sexual dimorphism, independent of sign, is given by Imale-fe- 

malel. This is also the range, a measure of dispersion. The idea of sex-specific 
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Fig. 1. Male vs female chiasma frequencies per bivalent with line of equality. Numbers refer to species 

in the appendix. Note the large gap separating chiasmate and achiasmate species: all chiasmate species 

have at least one chiasmata per bivalent (horizontal and vertical lines). 

optima suggests that the magnitude of sexual dimorphism should be correlated with 

the opportunity for sex differences in selection, and thus presumably in the order 

dioecious > hermaphroditic > hermaphroditic 
animals plants animals 

Mean ranges for these groups are 0.40 + 0.102 (s.e.), 0.39 k 0.055 and 0.52 f 0.269 
chiasmata/bivalent respectively (Table 1); there is no significant difference among 

groups (F,, 51 = 0.20) contradicting this prediction. 
We can also test the idea that sex differences in recombination are neutral. In its 

strongest form, this hypothesis predicts that species will drift up and down lines of 
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Table 1. Chiasma frequencies per bivalent for males and females. Lettered entries are phylogenetically 

independent (Burt, 1989). n is the number of species; t refers to paired t-tests; IDiffl is the average 

magnitude of sexual dimorphism. the mean of the absolute value of the difference between male and 

female; r is the correlation coefficient for male and female values. 
- 

Taxon n 

All 54 

Animalia 22 

Platyhelminthes 4 

a Trematoda I 

b Turbellaria 3 

Insecta, Orthoptera, Acrididae 8 

C Eyprepocnemidinae I 

d Melanoplinae I 

e Gomphocerinae 3 

f Oedipodinae 3 

Chordata 10 

Amphibia 6 

B Anura 1 

Urodela 5 

h Salumandru I 

i Triturus 4 

Mammalia 4 

j Marsupialia I 

k Rodentia 1 

I Primates 2 

Plantae. Angiospermae 32 

m Dicotyledonae, Leguminosae 2 

Monocotyledonae 30 

n Commelinaceae 1 

0 Gramineae 2 

Liliaceae 22 

P ANium 8 

q Lilium 8 

r Tulhaghiu 4 

S Orchidaceae 5 

Male 

2.05 

I .77 

1.74 

2.31 

1.56 

1.37 

I .28 

I .23 

1.69 

1.11 

2.11 

2.27 

1.94 

2.34 

2.00 

2.42 

1.86 

2.27 

1.10 

2.03 

2.25 

2.38 

2.24 

1.70 

1.76 

2.47 

2.36 

2.87 

2.08 

1.50 

Female 

2.23 

1.87 

2.14 

2.31 

2.09 

1.33 

I .09 

1.27 

1.60 

1.16 

2.19 

2.52 

3.52 

2.32 

3.07 

2.14 

1.70 

1.70 

1.52 

I .78 

2.48 

2.00 

2.51 

I .90 

I .74 

2.81 

2.44 

3.36 

2.47 

1.63 

t 

2.49* 

0.76 

1.23 
- 

1.27 

0.71 
- 

- 

3.25 

0.42 

0.33 

0.61 
- 

0.05 

0.89 

0.75 

- 

1.67 

2.88** 

1.03 

3.50** 
- 

2.00 

3.30** 

0.38 

5.93*** 

4.53’ 

1.78 

wl r 

0.41 0.75*** 

0.42 0.49’ 

0.52 0.25 

0.00 

0.69 0.20 

0.11 0.89** 

0.19 
0.05 - 

0.09 0.94 

0.14 -0.98 

0.64 0.04 

0.81 -0.57 

1.58 

0.66 -0.52 

1.07 

0.56 -0.50 

0.37 0.59 

0.57 
0.42 - 

0.25 1.00 

0.39 0.82*** 

0.39 I.00 

0.39 0.84*** 
0.20 - 

0.02 I.00 

0.49 0.73*** 

0.52 0.50 

0.50 0.89” 

0.39 0.70 

0.15 0.84 

* p < 0.05; ** p < 0.01: *** p < 0.001 

neutral equilibrium representing isoclines of equal total recombination. The ex- 
pected magnitude of sex differences can be calculated under this model as follows. 

Since bivalents are constrained to having at least one chiasma for proper segrega- 
tion, we shall consider the number of chiasmata per bivalent minus one (i.e. the 

mean number of ‘excess chiasmata’ per bivalent). As both male and female excess 
chiasma frequencies are non-negative, the range is constrained mathematically to 

being in the interval [0, 2 m], where m is the mean of male and female values. The 
neutral hypothesis claims that all values within this interval are equally likely, and 

thus that the expectation of the range is equal to m. In figure 2 we show the range 
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Fig. 2. Range of excess chiasmata per hivalent between sexes versus the mean. Points are mathematically 

constrained to fall below the top dashed line (y = 2x). and are expected by the neutral hypothesis to fall 

around the lower dashed line (y = x). Solid line is the weighted regression fitted through the origin and 

the bivariate mean (y = 0.36x). 

of excess chiasmata per bivalent versus the mean. Almost all points fall below the 

line of equality, indicating that the male and female values are more similar than 
predicted. 

Compensation 

If selection determines only the mean rate of recombination, then the optimal rate 

for one sex will depend on what the other is doing, and rice wrsa. We test for 
evidence of such tradeoffs in three situations: achiasmate species, haplodiploid 

species, and the sex chromosomes. 
In species where one sex has an achiasmate meiosis, one might expect the other 

to have a higher than average chiasma frequency to compensate. Chiasma frequen- 

cies for species in which one sex is achiasmate are available for 13 species (Appendix). 
The rate of recombination in the chiasmate sex is to be compared to that of the same 

sex of a fully chiasmate species. Note that for two such comparisons to be 
independent, they must involve different parts of the phylogeny ~ a comparison 

between a Lepidopteran and an Orthopteran is not independent of a comparison 
between another Lepidopteran and another Orthopteran (see Burt, 1989 for discus- 

sion). In our data set there are three such ‘phylogenetically independent’ comparisons 
between an achiasmate species and a fully chiasmate species: Neorhabdocoela 

(Turbellaria, nos. 55 vs 3 in Fig. I), Insecta (56-64 vs 5- 12) and Fritilfariu 

(Liliaceae, 65-67 vs 37). In no case is there any indication of compensation. 
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Fig. 3. Chiasma frequency as a function of chromosome length (arbitrary units) in female mice. 

Regression line is for autosomes only (circles; r = 0.95). The sex bivalent (star) has significantly more 

chiasmata for its length than the autosomes. Chromosome length (from idiograms of oocyte chro- 

momeres) and chiasma frequencies (mean of 15 oocytes) from Jagiello & Fang (1987). 

Data are also available for one haplodiploid species, the parasitic wasp Aphytis 

m~dzspidis (Rossler and DeBach, 1973, no. 68 in Fig. I). Again there is no 
indication of compensation compared to wholly sexual insects (Fig. 1). 

Finally, in species with strongly dimorphic sex chromosomes the X (or Z) has a 

haplodiploid mode of inheritance and one can test for compensation by comparing 
chiasma frequencies of the sex bivalent to those of autosomes in the homogametic 

sex. The only data available on chiasma frequencies for individually identifiable 
bivalents in the homogametic sex are for mice (Jagiello and Fang, 1987). In figure 

3 we plot chiasma frequency as a function of chromosome length and observe that 
the X bivalent has significantly more chiasmata at meiosis than the autosomes 

(t = 3.4, p < 0.01). This observation supports the notion of compensation. 

Discussion 

The strong empirical generalizations for the occurrence of achiasmate meiosis in 

dioecious species do not hold for quantitative sex differences in chiasma frequency: 
chiasma frequencies do not differ consistently between homo- and heterogametic 
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sexes, nor between males and females, outside the Liliaceae. Dunn and Bennett 

( 1967) come to similar conslusions, based on many fewer species, in their review of 
sex differences in genetic map lengths. These results suggest that the two types of 

sex differences require different explanations. 
Early accounts of sexually dimorphic rates of recombination suggested that 

recombination might be lower in the heterogametic sex as a result of selection 

against crossing over between the sex chromosomes in this sex (Haldane, 1922; 

Huzley, 1928). Bell (1982) notes that this cannot be a complete explanation for 
achiasmate meiosis: White (1976) estimates that it has evolved some 8 times in the 

Mantodea, yet in each instance males were X0 heterogametic, so crossing over 
between sex chromosomes could not have been possible in males anyway. Here we 

conclude that the explanations of Haldane and Huxley also cannot satisfactorily 
account for observed quantitative sex differences in chiasma frequency. 

The only consistent sex difference observed was that in the Liliaceae there are 
more chiasmata formed in the embryo mother cells (female) than in the pollen 

mother cells. It is difficult to relate this observation to the various theories because 
the relevant plant population biology is unknown. For example, while among 

animals the variance in reproductive success tends to be higher in males than in 
females (Clutton-Brock, 198X), the only direct study on a plant gave ambiguous 

results. Meagher (1986) studied seeds collected from known female parents of 
Chamaelirium luteum, a dioecious lily, and estimated paternity using genetic mark- 

ers; he found that variance in the number of mates was higher for males than 

females (F,,. 68 = 7.7). However, in a study of established seedlings, from which 

both the mothers and the fathers were estimated, variance in the number of mates 

and the number of progeny was higher among females than among males 

(F136, 183 = 3.15 and F136, 1R3 = 4.19 respectively; Meagher and Thompson, 1987). 

Similarly, several diversity theories of recombination emphasize the importance of 
dispersal patterns (e.g. Williams, 1975; Bell, 1982; Tooby, 1982), and so one could 

derive predictions from any differential dispersal of genes transmitted through 

pollen and ovules. While one would expect that genes transmitted through pollen 
should be scattered further than those through ovules, since they have an extra 

round of dispersal, nevertheless established seedlings of C. luteum were found 
significantly closer to their father than to their mother (8.9 vs 10. I m; Meagher and 

Thompson, 1987). 
Thus it is not clear how well any particular theory based on sex-specific costs 

and benefits can account for the trend in the Liliaceae. In any case, no such 

theory seems to account in any obvious way for the considerable variance in 
sexual dimorphism outside this family. Further, the very idea of sex-specific 

optima suggests that the magnitude of sexual dimorphism should be correlated 
with the opportunity for sex differences in selection. To test this idea we compared 

dioecious animals, plants, and hermaphroditic animals; the absence of a significant 
difference among these groups contradicts the hypothesis. Indeed, it is rather 

difficult to imagine how any selective differences might account for the large sex 

differences observed in some Platyhelminthes. Perhaps an alternative approach is 
required. 
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Are sex dlxerences in recombination neutral? 

To now we have assumed that selection on recombination determines a simple 

individual optimum and that sex differences in recombination are due to sex 

differences in this optimum. The repair theory of Bernstein et al. (1988) is a 
particularly clear example of this type of theory. However, it is also possible that 

selection determines only the population mean recombination rate (analogous to 
determining a 50: 50 sex ratio) and that individual optima will depend on what 

others in the population are doing. In the present context, the optimum for males 

may depend on the females’ rate of recombination, and [lice versa. Theories of 
linkage disequilibrium decay fit this mold well. 

Suppose there is linkage disequilibrium (1.d.) among the males of a population, 
but not the females. Then, since the sexes contribute equally to the next generation, 

recombination in females will have no effect on population 1.d. On the other hand, 
if 1.d. is equal in the two sexes, then the mean amount of recombination in the two 

sexes will determine the rate of decay; sex differences per se will have no effect. 
Thus, if the function of recombination is to reduce I.d., then the potential for 

sex-differential optima of recombination is restricted to instances where there are 

sex differences in the amount or pattern of 1.d. Furthermore, one can divide the 1.d. 
in a population at time of reproduction into the fraction which was created in that 

generation, and the remainder, which is a holdover from all previous generations. 
Only the former can differ consistently between the sexes, due to sex-specific 

epistasis or selection: just as the sexes start each generation with equal gene 
frequencies (assuming a large zygote population), so they start with equal 1.d. (This 

need not be so: one can imagine a meiotic system in the heterogametic sex in which 
recombinant chromosomes segregate with one type of sex chromosome and 

parental chromosomes with the other. Other mechanisms can be imagined for 

haplodiploid and monogenous species. However, we know of no example.) At 
equlibrium, when the 1.d. created by selection equals that destroyed by recombina- 

tion. the 1.d. created in one generation between unlinked loci will be only one half 
the total 1.d.; for more closely linked loci, this fraction will be correspondingly 

lower. 
Thus, if recombination functions to reduce linkage disequilibrium, then there is 

unlikely to be strongly dimorphic selection pressures between the sexes. Indeed, 
Nei’s ( 1969) simulation study of recombinational load using different fitness ma- 

trices for the two sexes found only very slight effects of sex differences in recombi- 

nation on population mean fitness ~ too small, he suggests, to be selected. These 
very slight differences in optima may be swamped by other factors, such as 

differences in the mechanical cost of chiasmata or historical contingencies. For 
example, if there is selection on the population for increased recombination, then 

whichever sex has more additive genetic variance for rates of recombination may 
respond more. and thus the sexes may diverge over time. The absence of a 

consistent sex difference across species would not be mysterious, but expected. 

In its strongest form, this theory suggest that sex differences in recombination are 
invisible to natural selection and that species will drift up and down lines of neutral 



270 Burt et al. 

equilibria representing isoclines of equal total recombination. This does not seem to 
be an accurate description of the data, as the chiasma frequency of males and 

females is much more similar than this hypothesis would lead one to predict (Fig. 

2). 
A slightly modified theory suggests that sex differences are more-or-less neutral 

only in the region of the line of equality, affecting mean fitness only at some 
distance away. Such a situation may arise, for example, if the mechanical or 

physiological costs of crossing over increase with increasing numbers of cross-overs. 
To test this modified theory we take a different tack. 

The neutral theory of sex differences predicts that experimental manipulations of 
recombination in one sex will result in selection for compensation by the other. 

Unfortunately, this prediction is difficult to assess at the moment: we are not aware 
that any such experiment has been done, and interpreting comparative relations in 

terms of tradeoffs is notoriously difficult, as recent experience with the cost of 
reproduction has demonstrated (Bell and Koufapanou, 1986). For example, the 

positive correlation of male and female chiasma frequencies across species (Fig. 1, 

Table I) may seem to contradict the prediction of compensation, but actually is to 
be expected simply if the between-species variance in mean chiasma frequency is 

greater than the variance in sexual dimorphism. The most relevant comparisons are 

those which appear to be a ‘natural experiment’ - a seemingly randomized effect, if 
not actually manipulated. Here we consider three such situations: achiasmate 

species, haplodiploid species, and the sex chromosomes. 
The comparison of chiasmate and achiasmate species is the least satisfactory of 

the three. On the one hand, the fact that achiasmy is only ever observed in one sex 
supports the prediction of compensation. (Christensen’s ( 1961) study of 
hermaphroditic enchytraeid annelids is often cited as the one example of achiasmate 
meiosis in both sexes. Subsequent study indicated that spermatogenesis in these 

worms is in fact chiasmate (Christensen 19X0).) On the other hand, there is no 
indication of compensation in the chiasma frequencies of the recombining sex (Fig. 

I). However, this result may simply indicate that an achiasmate meiosis reflects 
selection for reduced recombination, which is also acting on the other sex. 

Haplodiploidy seems a more promising natural experiment to test the hypothesis, 

for it is less likely that this genetic system has evolved and is maintained by 
selection for reduced recombination. Unfortunately, data is available for only a 

single species (Aphytis mytilaspidis), and this exists in both sexual (haplodiploid) 
and asexual (automictic) forms (Rossler & DeBach 1973). It appears, then, that 

there has been selection for reduced recombination in this particular species, and so 

it is perhaps not surprising that there is no indication of compensation in the 
females’ chiasma frequency (Fig. I). Comparable data on more haplodiploid species 

would be of interest. 
The final example is a comparison of chiasma frequencies of the sex chromo- 

somes and the autosomes in the heterogametic sex. In female mice the sex 
chromosomes have more chiasmata for their length then the autosomes (Fig. 3), 

perhaps compensating for the much lower levels of recombination in the male. 

Alternative explanations for this observation seem possible, for the absence of 
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recombination in males is not the only difference between the sex chromosomes 
and the autosomes. Perhaps most importantly, the X-chromosome is hemizygous 

in the male, resulting in lower mutation rates (Cavalli-Sforza and Bodmer, 

1971; Miyata et al., 1987) greater sensitivity to founder events (Templeton, 
1987) faster rates of evolution (Charlesworth et al., 19X7), and perhaps altered 

rates of 1.d. production. One possible test to distinguish these theories would be to 
look at achiasmate species: the theory of compensation predicts that in such 

species there should be no difference between sex chromosomes and autosomes in 

the homogametic sex; theories based on the hemizygous nature of the X-chromo- 
some in the heterogametic sex predict differences as large as those in chiasmate 

species. 
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