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Abstract

Background: In differentiated gonochoristic species, a bipotential gonad develops into an ovary or testis during
sex differentiation. Knowledge about this process is necessary to improve methods for masculinizing genetically
female Atlantic cod for the subsequent purpose of producing all-female populations.

Methods: Gonads were examined histologically in juveniles from 14 to 39 mm total body length (TL). Number
and size of germ cells were determined in a subset of the samples. Relevant genes were cloned, and mRNA levels
determined by qPCR of amh, cyp19a1a; dax1 (nr0b2); shp (nr0b2a) and sox9b in a mixed-sex and an all-female
population ranging from 12–49 mm TL.

Results: Individuals between 14–20 mm TL could be separated in two subgroups based on gonad size and germ
cell number. Ovarian cavity formation was observed in some individuals from 18–20 mm TL. The mixed sex
population displayed bimodal expression patterns as regards cyp19a1a (starting at 12 mm TL) and amh (starting at
20 mm TL) mRNA levels. After approximately 30 mm TL, cyp19a1a and amh displayed a gradual increase in both
sexes. No apparent, sex-dependent expression patterns were found for dax1, shp or sox9b transcripts. However,
shp levels were high until the larvae reached around 35 mm TL and then dropped to low levels, while dax1

remained low until 35 mm TL, and then increased sharply.

Conclusions: The morphological sex differentiation in females commenced between 14–20 mm TL, and ovarian
cavities were evident by 18–20 mm TL. Testis development occurred later, and was morphologically evident after
30 mm TL. This pattern was corroborated with sexually dimorphic expression patterns of cyp19a1a from 12–13 mm
TL, and a male-specific increase in amh from 20 mm TL.

Keywords: Atlantic cod, Sex differentiation, Aromatase, cyp19a1a, Anti-müllerian hormone, amh, dax1,
shp, Masculinization

Background
All female populations of Atlantic cod (Gadus morhua) are

desired in aquaculture to prevent possible genetic impacts

on wilds stocks from fertilized eggs spawned in cages.

All female populations is even more beneficial if com-

bined with triploidy, as triploid fish normally do not

develop large gonads and secondary sex characters that are

regarded negative in the grow-out phase in aquaculture

[1,2]. All female populations are most commonly produced

by using sperm from masculinized XX females [3,4].

However, in order to successfully masculinize fish, the tim-

ing of sex differentiation (time window when the fish are

labile to phenotypical sex change), must be known.

Sex differentiation is the complex process of develop-

ing a functional testis or an ovary from a bipotential

vertebrate gonad [5]. In fish, maternally transferred

mRNAs, necessary for the formation and migration of

primordial germ cells (PGCs), is segregated asymmetric-

ally into the future PGCs [6]. The PGCs migrate towards

the gonadal ridge [7], where they become enclosed by

somatic gonadal cells [8]. The PGCs remain quiescent

in the undifferentiated gonad for a period of time [9],

before they start to proliferate and differentiate into
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oogonia or spermatogonia upon extrinsic cues. The tim-

ing of sex differentiation varies between teleost species,

and it can occur very early as in medaka (Oryzias

latipes) with increasing numbers of germ cells in pre-

sumptive females already at hatching [10], intermediate

as in zebrafish (Danio rerio) (21–25 day post hatching)

[11], or late in juvenile stages as in sea bass (Dicen-

trarchus labrax) (120–150 days post fertilization) [12,13]

and Atlantic halibut (Hippoglossus hippoglossus) at

approximately 38 mm fork length [14].

Some common features are observed during sex differ-

entiation in different fish species. One is the up-

regulation of expression of the cyp19a1a gene. Cyp19a1a

protein catalyzes the conversion of androgen into estro-

gen, which drives ovarian differentiation [15-17]. Sex

specific expression of cyp19a1a in the gonads has been

observed for example in southern flounder (Paralichthys

lethostigmata) [18] and Nile tilapia (Oreochromis niloti-

cus) before and during sex differentiation [19,20].

Anti-Müllerian hormone (Amh) is well studied in

mammals, but less so in teleosts. In mammals, Amh

induces regression of the Müllerian duct during male

sex differentiation, and also modulates the differentiation

of Leydig cells by down-regulating the expression of sev-

eral genes coding for steroidogenic enzymes [21], and it

inhibits expression of the aromatase gene during sex dif-

ferentiation [22]. Teleosts have no Müllerian duct, but

Amh has been shown to inhibit steroidogenesis in adult

zebrafish testis [23]. The undifferentiated gonad express

amh at 17 and 21 dpf, with a male-biased expression start-

ing at about 30 dpf in zebrafish [24,25], suggesting that

Amh is important in male zebrafish sex differentiation.

Male-biased overexpression has also been shown in other

species, like Japanese flounder (Paralichthys olivaceus)

[26] and rainbow trout (Oncorhynchus mykiss) [27,28].

The dax1 gene (dosage sensitive sex-reversal adrenal

hypoplasia critical region, chromosome x, gene 1) codes for

a nuclear receptor protein, that amongst others represses

the transcription of steroidogenic factor 1 (Sf1) in mammals

[29], which in turn regulates the expression of many steroi-

dogenic enzymes and genes involved in reproduction [30].

Dax1 has an essential role in fetal testis development in

mice [31], and Cyp19 aromatase expression is up-regulated

when Dax1 is disrupted [32]. In contrast, over-expression

of this gene caused male to female sex reversal in humans

[33]. In fish the role of Dax1 is less clear.

Shp (short heterodimer partner) is a nuclear receptor

protein that belongs to the same subfamily of nuclear

receptors as Dax1. It functions as a transcriptional

co-repressor that inhibits the expression of steroidogenic

genes by inhibiting the expression of sf1, thereby acting

as a gonadal gatekeeper of male sexual maturation in

mice [34]. The Shp protein might have similar functions

in fish, as shp is highly expressed during early life stages

in Nile tilapia (5 dph) and seemed to repress the activity

of sf1 [35]. Moreover, in rainbow trout, shp was highly

expressed during early stages of sex differentiation, and

then decreased twofold in both sexes [27].

Sox9 is a transcription factor containing the DNA-

binding motif HMG, and is considered one of the more

important genes related to sex differentiation in verte-

brates [36]. In mammals, Sox9 has multiple functions

such as cartilage formation and testis differentiation

[37,38]. In zebrafish, two sox9 genes have been identi-

fied: sox9a and sox9b [39]. Sox9a may have a role in

testis, and Sox9b may have a role in ovary development,

based on expression patterns in adults. Hence, in zebra-

fish, sox9a may be male biased and sox9b may be female

biased. However, both sox9a and sox9b are expressed

in chondrogenic cells of both sexes [39]. A sexually

dimorphic sox9 expression pattern was also indicated in

medaka and rainbow trout [40,41].

Based on morphological studies, sex differentiation

in Atlantic cod was initially reported to take place from

approximately 27 mm total body length (TL) [42], and

steroid treatment to induce masculinization was recom-

mended from approximately 25 mm TL. But a more recent

study demonstrated that exposure of Atlantic cod to 17-α-

methyltestosterone in the diet from 12 mm to 25 mm TL

onwards resulted in high proportion of hermaphrodites,

suggesting that sex differentiation commenced earlier

than at 27 mm TL [2]. We therefore wanted to carry out a

combined morphological and molecular study on sex dif-

ferentiation in Atlantic cod to study this process further.

We examined the morphological development of the

early gonads in individuals from 14 to 34 mm TL. More-

over, in individuals from 12 to 49 mm TL we studied the

expression of genes known to be involved in sex differ-

entiation and early gonadal development in other tele-

osts species. Partial sequences of Atlantic cod amh,

dax1, shp and sox9 were obtained, specific real-time

qPCR assays were developed and validated, and tran-

script levels were analyzed in the trunk (head and tail

removed) of individuals from a normal, mixed sex popu-

lation and from an all-female population produced with

sperm from sex-reversed genetic females.

Methods

The following experiment was approved by the National

Animal Research Authority in Norway in advance of the

experiment.

Fish material

Origin: Three XX hermaphrodites (genotypic females)

from a previous masculinization trial [2] and one XY

male (genotypic male) were slaughtered, testis tissue was

excised and carefully minced in separate sterile dishes,

before dilution with Hanks Balanced Saline Solution
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(HBSS – modified; Sigma-Aldrich, St Louis, Missouri,

USA) (3 ml milt/30 ml HBSS) and incubated on ice for

30 min. Approximately 250 ml of stripped eggs from

two XX females were mixed and separated into 4 equal

batches; three batches were fertilized with sperm

from the three XX hermaphrodites, and one batch were

fertilized with sperm from one normal XY male. The

batches were incubated for 35 min before transfer into

four separate 70 L incubators at ambient temperature

(6.2 °C ± 0.1) and salinity (35%). At four days post

hatching (dph) (118.6 degree days) the larvae were trans-

ferred group-wise to start-feeding tanks (50 L) with a

water temperature of 8.3 °C, which was raised to 12 °C

over the following 10 days (14 dph). The tanks were sup-

plied with algae paste and rotifers, and 33 dph the larvae

received artemia, and were gradually weaned onto dry

feed from 36 dph. The weaning diet was a commercial

agglomerated diet (Ewos Aglo norse, Bergen, Norway)

with a particle size range of 300–500 μm (for fish

between 9–14 mm total body length; TL), and of 400–

600 μm (for fish between 13–22 mm TL). All tanks

were supplied with automatic feeders to ensure continu-

ous feeding.

Sampling

For gene expression analysis, approximately 50 indivi-

duals were sampled from both the mixed sex population

and one of the all-female populations at each of the fol-

lowing time points: 66, 74, 79, 87 and 96 days post

fertilization (n = 500 individuals). The average TL (± SD)

at each sampling was 11.2 (±2.4); 18.4 (±4.9); 23.9 (±3.6);

30.4 (±3.8) and 43.7 (±4.0) mm respectively.

The fish were sedated in MS-222 (tricaine methane-

sulfonate, Finquel, Washinton, USA) (0.013 g/500 ml

chilled seawater (SW)). TL was measured, and head

and tail removed before the trunk was wrapped in pre-

labeled aluminum foil and snap frozen in liquid nitrogen.

The tissue was kept at −80 °C until analysis.

RNA extraction and gene cloning

Total RNA was isolated from mature Atlantic cod testis

using Trizol reagent (Invitrogen, Carlsbad, California,

USA) according to established procedures. The RNA

amount was quantified (NanoDrop Technologies, Wil-

mington, DE, USA) and its quality checked by agarose

gel electrophoresis. cDNA was subsequently generated

using a SMART RACE cDNA kit (Clontech, Mountain

View, California, USA), according to the manufacturer’s

instructions. Cloning of gene specific cDNA fragments

was done by PCR using primers deduced from ortholo-

gous gene sequences or from sequence searches in an

in-house expressed sequence tag (EST) database. All

PCR primers are given in Table 1. The obtained

fragments were subcloned in pCR4-TOPO (Invitrogen,

Carlsbad, California, USA) and sequenced.

An Atlantic cod amh sequence was obtained using pri-

mers amh_fw1 and amh_rv2 to generate a 387 base pairs

(bp) long PCR fragment that was verified as amh by se-

quence similarity (Genbank accession no HQ630631).

Primers for sox9 (sox9_fw1 and sox9_rv2) were pre-

dicted from an alignment of several fish sox9 sequences

and used for PCR amplification of a 653 bp long frag-

ment that was verified by sequencing (Genbank acces-

sion no HQ630630). The sequence of vasa from tilapia,

zebrafish and trout were aligned and used to predict

primers vasa_fw1 and vasa_rv2. The primers produced

a 1087 bp long fragment that was verified as vasa

(Genbank accession no HQ630632). To clone a partial

cod dax1 cDNA sequence, degenerate primers dax1_fw1

and dax1_rv2 were designed, and PCR products of

~160 bp were sub-cloned and sequenced. Two different

sequences were obtained: one sequence was highly

similar to dax1, whereas the other sequence was highly

similar to shp sequences. To obtain additional cod dax1

cDNA sequences, specific primers dax1_fw3 and

dax1_rv4 were designed and used for 3′-RACE in com-

bination with the UPM and NUP primers, respectively

(supplied in the SMART RACE kit; Clontech, California,

USA), using 3′RACE-ready mature cod testis cDNA as

template. PCR products of ~900 bp were generated, gel

purified with QIAEX, TOPO cloned and sequenced (Gen-

bank accession no HQ677835). In a similar way, specific

primers shp_fw1 and shp_rv2 were designed to obtain

additional cod shp cDNA sequences with 3′-RACE.

Approximately 675 bp PCR products were generated, gel

Table 1 Primers for cloning of amh, dax1, shp, sox9b and

vasa in Atlantic cod

Primer name Direction Primer sequence*

amh_fw1 forward 5′-CGACCAGCAGGAGAGCTCCAGTACA -3′

amh_rv2 reverse 5′-CATGTTTTCCTTGACGTGGCTGAGG-3′

dax1_fw1 forward 5′-TGCAAAGCSGCSTCSSMRGTYCTGGYGA-
ARAC-3′

dax1_rv2 reverse 5′-CCASCACGAGCARRGGYGCCCA-3′

dax1_fw3 forward 5′-GATACGCTTCGTGAAAAACGTGCCGTGT-
TTTCG-3′

dax1_rv 4 reverse 5′-GACGACCAGCTGGTGCTCGTGCGGAGC-3′

shp _fw1 forward 5′-ACTTTATGAAGAACTTGCCGGCGTTTAAC-
CAGCTG-3′

shp_rv 2 reverse 5′-CAGCGATCAGTTTTCGCTGCTCCAGAAGT-
GCTG-3′

sox9_fw1 forward 5′-GGCTACGACTGGACNYTNGTNCCNATG-3′

sox9_rv2 reverse 5′-GGCAGGTACTGRTCRAACTCRTYGAC-3′

vasa_fw1 forward 5′-GGTGTCAACTTTGAYAARTAKGA-3′

vasa_rv2 reverse 5′-CCGGTTCTACCAATKCGRTGNACRTA-3′

*R =A or G, Y = T or C, S =G or C, M=A or C.
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purified with QIAEX, TOPO cloned and sequenced (Gen-

bank accession no HQ677836).

The cloning and development of real-time PCR assay

of Atlantic cod cyp19a1a has been reported earlier

(as cyp19a1) [43].

Real time quantitative PCR (qPCR)

In order to obtain gene expression profiles from individ-

ual larvae, total RNA were isolated from frozen larvae

trunks (−80 °C) using an Invitrogen iPrepTM Purification

Instrument (Invitrogen,Carlsbad, California, USA) and the

IPrep TM Trizol W PLUS RNA Kit (Invitrogen, Carlsbad,

California, USA) according to the manufacturer’s instruc-

tions. Homogenization of the tissue was performed using

2 ml tubes containing zirconium oxide beads in a Precel-

lysW 24 Homogenizer (Bertin, Villeurbanne, France).

RNA quantity and quality were determined by UV

absorbance at 230, 260 and 280 nm using a NanoDropW

NP-1000 spectrophotometer (NanoDrop technologies,

Wilmington, DE, USA). Samples with a 260/280 nm

absorbance ratio outside the range of 1.7 – 2.1 were

excluded from further analysis. On a subset of the sam-

ples (approximately 10%), RNA integrity was verified

with a Bioanalyzer 2100 expert system (Agilent Tech-

nologies Inc., Santa Clara, USA) and all samples had

RIN values from 8–10. Reverse transcription into

cDNA took place using a reverse transcription core kit

(RT-RTCK-05, Eurogentec, Searing, Belgium) according

to the manufacturer’s instructions with 500 ng total

RNA in 30 μl reaction volume. The cDNA was diluted

10-fold with nuclease free water.

Specific primers and probes for real-time, quantitative

PCR analysis of Atlantic cod amh, cyp19a1a, dax1, shp,

and sox9b mRNAs as well as for the reference gene ef1α

are given in Table 1. They were all designed with Primer

express software (Applied Biosystems, Carlsbad, California,

USA), according to the manufacturer’s guidelines.

TaqMan PCR assays were performed in duplicate,

using 96-well optical plates on an ABI Prism Fast

7900HT Sequence Detection System (Applied Biosys-

tems, Carlsbad,CA, USA) using default settings (95 °C

for 20s, followed by a 40 cyckles of 95 °C for 1 s and

60 °C for 20s). For each 25 μl PCR reaction 2.5 μl cDNA

was mixed with 200 nM fluorogenic probe, 900 nM sense

primer, 900 nM antisense primer in 1xTaqMan Fast

Universal PCR Master Mix (Applied Biosystems, Carlsbad,

California, USA). Gene expression data were calculated

relative to the smallest and youngest fish, using the ΔΔCt

method as described in detail previously [44].

Gonad histology

For the evaluation of gonad histology, Atlantic cod ran-

ging from 14 to 34 mm TL were obtained from a com-

mercial hatchery (Sagafjords, Bergen, Norway). These

fish were reared under the same temperature and feeding

regime and exhibiting growth rates comparable to the

fish used for the gene expression experiment. The fish

were sedated as described above, the length was mea-

sured, and the fish were euthanized with MS-222 (tricaine

methanesulfonate, Finquel, Washinton, USA) (0.04 g/

500 ml SW). The juveniles were individually fixed either

in 5%v/v PBS-buffered glutaraldehyde, or in 4%w/v

(RNase-free) PBS-buffered paraformaldehyde at 40 C

overnight. After dehydration, the glutaraldehyde-fixed

samples were embedded in Technovit 7100 resin (Heraus

Kultzer Wehrheim, Germany) while the paraformaldehyde-

fixed samples were embedded in RNase-free paraffin (His-

towax 56.58 °C, VWR International, Norway), according to

conventional techniques. Serial longitudinal sections of

2 (plastic embedded) or 4 (paraffin embedded) μm thick-

ness were collected and mounted consecutively on glass

slides. Some individuals were transversally embedded

and sectioned; for this purpose they were first decalci-

fied - by immersion in 80% formic acid at 400 C during

48 h – for facilitating sectioning. The serial histological

sections were stained with 1%w/v toluidine blue 2%w/v

borax staining solution. Each gonad was analyzed

Table 2 Primers and Probes for qPCR and ISH

Transcript Primer or probe Sequence (5′–3′)

amh forward primer GTCAGGCCAGCGAGAGCA

reverse primer AGGGCGACAACACATACGTTTC

probe [FAM]-CATCTGCAGGTGCAGGA-
ACACTATATGC-[TAMRA]

cyp19a1a forward primer ACAACAACAAGTACGGCAGCAT

reverse primer GTAGAGGAGCTGCTGAGGATGAG

probe [FAM]-CGGCGTATGGATCAA-[MGB]

ef1á forward primer GCCCCTCCAGGACGTCTAC

reverse primer ACGGCCCACGGGTACTGT

probe [FAM]-AGATCGGCGGTATTG-[MGB]

dax1 forward primer TGGTGGCGCAGCTCTTCT

reverse primer GCAGCACCTCTTCCATGTTGA

probe [FAM]-CAAGCCCGTGATCGGCG-
CC-[TAMRA]

shp forward primer GCGGGCGTCGGTAAACTTA

reverse primer CGCGTACTCCTTCGGACTCA

probe [FAM]- CAAACCGCCAAACCTCTTG-
AGACAGGGCCAAAC -[TAMRA]

sox9b forward primer AAGAAGCCGAGCGCTTAAGG

reverse primer CCGCCTCGGTTGGTATTTG

probe [FAM]-TTCAACACAAAAAGGACCA-
CCCGGACT-[TAMRA]

vasa forward primer T3Rpps- TGACCTGGACCAGCTTCT-
GCTCCACGTCA

reverse primer T7Rpps- CAAGTTTGCTCATGGGAC-
CTGCGTGCGT

Haugen et al. Reproductive Biology and Endocrinology 2012, 10:47 Page 4 of 13

http://www.rbej.com/content/10/1/47



according to morphological features, such as shape,

presence, size and number of germ cells and presence of

an ovarian cavity.

In eight individuals (14 to 20 mm TL), the total

number of germ cells was quantified in plastic embed-

ded serial sections. The length of the gonad was mea-

sured by summing up the total number of sections

(2 μm) in which gonad tissue was observed. For estimat-

ing germ cell number per gonad, the diameter of

germ cell nuclei was determined in 8 juveniles using an

ocular with a scale bar. Based on the germ cells’ average

diameter (7.1 ± 0.04 μm; n~ 20/juvenile), germ cells

were counted in every third section of 2 μm, to avoid

double counting.

In order to visualize germ cells, vasa mRNA was

detected by in situ hybridization. A cod vasa PCR prod-

uct (405 bp) was generated using primers vasa_ISH1 and

vasa_ISH2 (Table 2) and cod testis cDNA as template.

The PCR product was gel purified and 300 ng served

as template for digoxigenin (DIG)-labeled cRNA probe

synthesis by in vitro transcription (Roche Molecular Bio-

chemicals) according to the manufacturer’s instructions.

For vasa in situ hybridization, RNase-free parafor-

maldehyde fixed, paraffin (Histowax 56.58 °C, VWR

Interantional, Norway) embedded individuals were used,

as described in [45], using sense and antisense cRNA

probes at a concentration of 200 ng/ml of hybridiza-

tion buffer. Ribonuclease A (2 μg/ml; Sigma-Aldrich,

St. Louis, USA) treatment was performed in RNase buf-

fer (0.01 M Tris, 0.5 M NaCl, 0.005 M edetic acid

[EDTA], pH 7.5). As positive control, the same pro-

cedure for vasa mRNA in situ hybridization was per-

formed on sections of mature cod testis.

Statistics

The germ cell number (per gonad) and gonad length

(μm) were tested for statistical differences using a non-

parametric Mann–Whitney U test (p< 0.05) (Statistica 9,

StatSoft inc. Tulsa, USA).

Results

Gonadal histology and germ cell morphometry

In juvenile Atlantic cod, gonad tissue is located in the

dorso-caudal region of the abdominal cavity, ventral of

the swim bladder (Figures 1a and 2a), and connected to

the dorsal body wall by a thin connective tissue, the

mesogonadium. In individuals between 14 to 18 mm TL,

the gonads consisted of connective tissue, small blood

a) a’)

SBBW
BW

In

gc

b) c)

10µµm
25µm

Figure 1 Differentiating gonad of Atlantic cod, presumptive female. Transverse plastic section (2 μm) stained with Toluidine blue/Borax
solution. a) and a’) formation of an ovarian cavity in a 16 mm TL juvenile. a): scale bar represents 100 μm; a’): scale bar represents 15 μm);
b) gonad with an ovarian cavity in a 18 mm TL juvenile; c) ovary in a 30 mm TL juvenile. SB – swim bladder; In – intestine; BW – body wall;
gc – germ cell. The stippled line identifies the ventral part of the swimming bladder in a). Arrows indicate primordial germ cells; arrowheads
in c) indicate mitotic figures.
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vessels and large germ cells (7.1± 0.04 μm diameter), with

no apparent difference between individuals as regards

somatic elements and germ cell morphology (Figures 1a’

and 2a’). A more detailed analysis on a subsample of eight

individuals between 14–20 mm TL, revealed that the total

number of germ cells per gonad and the gonad size was

either high or low (Figure 3). Moreover, the group with

the high number of germ cells showed several mitotic

figures in the germ cells and a large gonad size, while

the group with few germ cells also showed few mitotic

figures in the germ cells and small gonads.

Histological examination of gonadal development in

individuals in the size range 18–20 mm TL revealed

the first signs of ovarian cavity formation in five of

the examined individuals: gonadal somatic tissue

started to grow out laterally (Figure 1a and 1a’),

arched back to the gonad, and eventually fused in a

zipper-like pattern. The fusion progressed rostro-

caudally, creating the ovarian cavity in the stroma of

the forming ovaries (Figure 1a and 1b). In similarly

sized fish without signs of ovarian cavity formation, a

large blood vessel was observed in the proximal re-

gion of the gonad (Figure 2b and 2c); lateral out-

growths were absent. From 20 mm TL onwards, the

gonads grew considerably, resulting in an enlargement

of the ovarian cavity concomitant with an increase in

Figure 2 Differentiating gonad of Atlantic cod, presumptive male. Transverse plastic section (2 μm) stained with Toluidine blue/Borax
solution. a) and a’) Undifferentiated gonad in a 14 mm TL juvenile; b) Early testis in a 18 mm juvenile (scale bar represents 10 μ); c) Early testis in
a 34 mm juvenile (scale bar represents 10 μm); d) Testis of a 32 mm juvenile (scale bar represents 25 μm). BV – blood vessel; arrows indicate
primordial germ cells.
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the number of germ cells in the ovaries, while an

elongation of the gonad was seen in presumptive

males (Figures 1c and 2d respectively).

In situ hybridization

To identify and verify the presence of germ cells in the

developing gonads with an independent approach, we

performed in situ hybridization for vasa mRNA. The

signal for vasa was very strong in the germ cells in

all gonads of individuals up to 34 mm TL (Figure 4a

and 4b). Maturing testis was used as a positive control

(Figure 4c). Expression of vasa was strong in spermato-

gonia, weak in spermatocytes, and absent in spermatids

and spermatozoa. No signal was observed in sections

incubated with the sense probe (Figure 4d).

Gene expression during sex differentiation

Throughout most of the sampling period (12–40 mm

TL), the expression of cyp19a1a mRNA was higher in

the all-female population and in approximately half of

the individuals of the mixed sex population, compared

to the other half of the individuals of the mixed sex

population (Figure 5a). However, an increase was

observed in cyp19a1a mRNA expression from around

30–35 mm TL, which started from different levels in the

two subgroups of the mixed sex group.

The transcript levels of amh showed no bimodality until

around 20 mm TL, and the mixed sex group and the all fe-

male group had overlapping values in that size range, while

an apparent bimodal pattern was evident from 20 mm TL

onwards in the mixed sex group. From around 30–35 mm

TL increasing levels were seen in both modals of the

mixed sex group, and in the all female group (Figure 5b).

dax1 mRNA levels showed a size dependent pattern

(Figure 5c). All individuals exhibited low levels with

some variation until approximately 30–35 mm TL, after

which a up-regulation of dax1 mRNA levels was

recorded in all individuals. The mRNA levels of shp also

changed with the size but displayed a pattern opposite

to that of dax1: up to 30–35 mm TL, levels were high

but then declined (Figure 5d).

The expression of sox9b showed a gradual twofold

increase with size (see Additional file 1: Figure S1),

Expression levels of the reference gene ef1α were rela-

tively stable throughout the sampling period for all indi-

viduals (see Additional file 2: Figure S2).

Discussion

In Atlantic cod, the undifferentiated gonad is positioned

ventral of the swim bladder in the caudal part of

the body cavity, has very few germ cells and was

observed in juveniles ranging from 14 to 18 mm TL. The

first morphological sign of ovarian differentiation was

observed in individuals of 18 to 20 mm TL, when an

empty space formed in the stroma of the ovaries, known

as the ovarian cavity. In the majority of gonochoristic

teleosts examined, the appearance of an ovarian cavity is

the earliest morphological sign of ovary formation [9].

In the size range of 14–20 mm TL, two subgroups were

found that differed in germ cell number and gonad size,

indicating ongoing morphological sex differentiation

during this period. A common early distinction between

ovary and testis is based on the number of germ cells

present in the early gonad, since oogonia generally show

earlier elevated mitotic activity and enter earlier into mei-

osis than spermatogonia [46]. The somatic part of the

gonads appeared to be histologically undifferentiated until

18 mm TL in all individuals examined. Taken together,

our morphological observations support the notion that

individuals with a high number of germ cells before

ovarian cavity formation were females whereas those with

a low germ cell number most likely were males. These

findings are in line with the observation of high mitotic

activity of germ cells in developing ovaries of many teleost

species [9]. In a more recent work on three-spined

stickleback (Gasterosteus aculeatus), an increase in the

number of germ cells in gonads of female but not of male

fry preceded the appearance of traditional morphological

criteria for sex differentiation [47].

In the current study, based on these considerations,

individuals in the size range of 18–34 mm TL with no

apparent ovarian cavity and a low number of germ cells

were considered to be males. These presumptive males

had small filament-shaped gonads, with few undifferenti-

ated germ cells, but with large blood vessels in the

Figure 3 Number of germ cells per gonad. Total number of germ
cells per gonad and gonad length of Atlantic cod juveniles (n = 8)
ranging between 14 to 20 mm TL. Asterisks denote significant
difference, P< 0.05 (Man-Whitney non-parametric test).
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proximal region of the gonad. The formation of blood

vessels at the proximal or distal regions of the gonad is

considered an indicator of the early testis in several fish

species [46,48].

Despite differences in germ cell numbers between pre-

sumptive males and females in the size range of 14–

20 mm TL, further germ cell differentiation was not

observed, indicating that the somatic differentiation of

ovaries in individuals of approximately 18–20 mm TL

preceded germ cell differentiation, except for their

increased proliferation in females. This is in accordance

with the conclusions of Nakamura et al. [46], where

morphological differences in the stroma may give a more

correct indication of the timing of the sex differentiation

than germ cell morphology.

To confirm the identity of the germ cells, we performed

vasa in situ hybridization as vasa mRNA is restricted

to germ cells [49-51]. In individuals of 32–34 mm TL,

we observed a very strong vasa signal in the germ cells.

Our results confirmed that Atlantic cod is a differen-

tiated gonochoristic species, where the sexually undiffer-

entiated gonad develops directly into a testis or an ovary

[42]. Our study provides evidence that morphological

gonad differentiation in Atlantic cod occurs earlier in

females than in males, as generally found in other

primary gonochoristic teleosts [5,9]. Different from the

results presented here, an earlier report described ovar-

ian cavity formation in Atlantic cod at 27 mm TL [42].

This divergence might be related to significant growth

differences between the two studies.

Our use of an all-female population compared with a

normal mixed sex population allowed studying potential

sexually dimorphic gene expression patterns during the

period of sex differentiation. During the period from

12–20 mm TL, cyp19a1a appeared to have a sexually di-

morphic expression pattern in the mixed-sex population

in parallel with the observed morphological female sex

differentiation. The all-female population displayed a

relatively high and less variable cyp19a1a expression in

this size range, corresponding to the levels of the highest

modal of the mixed sex group.

A bimodal expression pattern of cyp19a1a was appar-

ent already from 12–14 mm TL in the mixed-sex group,

suggesting that molecular sex differentiation already

commenced in this size range before morphological

indications of female sex differentiation. In a similar

manner, a sexually dimorphic pattern in the expression

of cyp19a1b in the brain of rainbow trout populations

before and during the early morphological gonad differ-

entiation has been reported [27,52].

Figure 4 In situ hybridization for vasa mRNA in Atlantic cod gonads. a) Testis tissue of a fish of 34 mm TL; b) ovarian tissue of a fish of
32 mm TL, OC – ovarian cavity; c) In a mature (adult) testis (positive control); d) In a maturing testis using sense probe (negative control).
Arrows indicate positive oogonia/spermatogonia in a) and b); arrowheads show type A spermatogonia in c, BSpg – type B spermatogonia;
Sc – spermatocytes.
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From around 30–35 mm TL onwards, an increas-

ing cyp19a1a expression was observed both in the pre-

sumptive females and presumptive males, as well as

in the all-female population. This may indicate that

Cyp19a1a also has a role in male development in this

size range, and may be related to up-regulation of steroi-

dogenesis in both sexes.

In the size interval from 12–20 mm TL, no sexually

dimorphic expression pattern was evident for amh.

However, from around 20 mm TL until the end of

Figure 5 Gene expression profiles in early life stages of Atlantic cod. Gene expression profiles in early life stages of mixed sex (open
triangles) and all-female (closed circles) Atlantic cod; a) cyp19a1a; b) amh; c) dax1; d) shp. Data are presented on a logarithmic scale as fold
change compared to the smallest and youngest fish.
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the experiment, amh displayed an apparent sexually

dimorphic expression pattern, as indicated by low tran-

script levels in the all-female population and the bimodal

pattern in the mixed sex group. This pattern suggests a

role for Amh in testis differentiation starting from

20 mm TL onwards.

The further increase of amh mRNA observed after

30 mm TL together with increasing cyp19a1a mRNA

levels in the presumptive males may be related to a pos-

sible function of aromatase and estrogens in stimulating

stem cell proliferation, while increased amh mRNA

levels may at the same time have prevented the onset

of spermatogenesis as shown in Japanese eel (Anguilla

japonica) [53,54]. Furthermore, in the all-female popula-

tion and the presumptive females of the mixed sex

population, there was a gradual increase of amh mRNA

levels from around 35 mm TL onwards, although at

lower levels than in the presumptive males, suggesting a

role for amh also in females. This is corroborated by the

finding that amh is expressed in granulosa cells in zebra-

fish [24].

dax1 and shp did not show an apparent sexually

dimorphic pattern in our study. However, a size dependent

pattern was evident, with a low expression of dax1 from

the first samples at 12 mm TL, which persisted until

approximately 35 mm TL, when dax1 expression increased

in most individuals. The opposite was true for shp, which

was expressed initially at high levels, with a drop to low

expression level after approximately 35 mm TL. One

possible reason for the lack of an apparent sexually

dimorphic expression of dax1 may be that this gene is

also expressed in many other tissues apart from the

gonads [35,55], which may mask potential sex-dimorphic

expression in the gonads. In Nile tilapia, dax1 and shp

showed no sexually dimorphic expression during sex

differentiation, and the expression of dax1 was weak

in the early stages (5–10dph)) and then significantly

up-regulated between 10–15 dph [35].

The high initial levels of shp found here, followed by a

drop to low expression levels after approximately 35 mm

TL, are consistent with findings in rainbow trout [27],

where shp was found to belong to a group of genes

showing high expression during early ovarian and

testicular development, but decreasing in both sexes

when gonads had differentiated and gametogenesis was

about to commence. This decrease in shp transcript

levels during/after sex differentiation may reflect that

Shp-mediated repression of other hormone receptors

might fade with completion of sex differentiation. More-

over, Shp suppressed the expression of steroidogenic

enzymes in mouse Leydig cells [34], thus increasing

cyp19a1a and decreasing shp are consistent with

increased steroidogenic activity, also in the presumptive

males after around 35 mm TL.

A phylogenetic analysis of teleost sox9 sequences

deposited in the NCBI databank together with Atlantic

cod sequences (Additional file 3: Figure S3) obtained

from the recent genome sequence [56], revealed two

subtypes that both are clearly distinct from sox8, similar

to the situation in other teleosts such as zebrafish [39],

medaka [42] and rainbow trout [43]. The Atlantic cod

sox9 transcript studied in this communication is a sox9b

variant, although the classification is somewhat unclear

due to variable naming among the databank entries. The

two sox9 variants are probably co-orthologues that

are partially subfunctionalized [42], but possibly with

species-specific expression pattern in gonads as indi-

cated in medaka and zebrafish [39,42].

The sox9 variant that was analysed in the current

study was thus classified as sox9b, and was found to have

Figure 6 The timing of the sex differentiation process in Atlantic cod. Schematic presentation of the timing of the sex differentiation process in
Atlantic cod based on histological events and mRNA expression profiles of cyp19a1a and amh. dpf is days post fertilization; GC is germ cell.
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no sexually dimorphic pattern between 12–49 mm TL.

However, there was a gradual increase in the expression

of this gene throughout the sampling period. This was

also the case in tilapia during sex differentiation [19],

but in this species, sox9 was up-regulated in male

gonads after sex differentiation. In our experiment, a

possible explanation for the lack of male specific expres-

sion of sox9b could be that the use of the whole trunk

may have masked any sexually dimorphic expression

pattern in the gonads, since Sox9 is also an important

gene for cartilage development [39]. At this stage, there

will be a substantial cartilage development due to high

growth rates in general.

Conclusions

Our results suggest that sex differentiation in Atlantic

cod has already commenced at around 12 mm TL,

resulting in a sex-dimorphic expression pattern of

cyp19a1a. From 14 mm TL, there was a difference in

the proliferation of germ cells and in gonad size in pre-

sumptive females. The expression profiles of amh suggest

that male differentiation commenced at approximately

20 mm TL, but apart from the large blood vessel at the

proximal region of the gonad, testicular differentiation

was not morphologically evident until later. At around

34–35 mm TL, there was a change in the expression pro-

files of cyp19a1a, amh, dax1 and shp. The increase of

cyp19a1a, amh, dax1 and the decrease of shp are compat-

ible with up-regulation of genes encoding nuclear recep-

tors and steroidogenic genes in males, possibly in context

with estrogen-mediated expansion of the spermatogonial

stem cell population. The main findings are schematically

summarized in Figure 6.

Overall, the data suggest that treatments to masculinize

Atlantic cod should commence before 18 mm TL, when

the first morphological signs of female development were

noted, and possibly as early as 12 mm TL, or earlier, as

the first molecular signs of sex dimorphic development

were noted from the start of the experiment. A body size

of 12 mm TL correspond to the time when Atlantic cod

normally are weaned from live prey diet to formulated

feed, and thus a time when androgens or other com-

pounds can easily by administered in a controlled man-

ner. Application of e.g. androgens or aromatase inhibitor

treatments before this body size would normally imply

treatment in water which can be more difficult to control

in terms of dosage and uptake. The suggested time

window for androgen treatment as suggested in the

current paper is supported by a recent study in Atlantic

cod [2]. The study revealed that androgen treatments

starting at 12 mm TL and lasting until 25 mm TL were

very efficient in inducing sex reversal resulting in high

proportions of hermaphrodites, while the same treat-

ments in the size range of 12 to 20 mm TL were less

effective, and treatments in the size range of 12 to 16 mm

TL was not effective at all [2]. This suggests that the

androgen treatment must cover the entire period when

female differentiation was noted in the current study to

be efficient in inducing sex reversal.

Additional files

Additional file 1: Figure S1. Gene expression profiles of sox9b in early
life stages of mixed sex (open triangles) and all-female (closed circles)
Atlantic cod. Data are presented on a logarithmic scale as fold change in
mRNA compared to the smallest and youngest fish.

Additional file 2: Figure S2. Scatter plot of Ct values for ef1α mRNA
from the mixed sex (open triangles) and all-female (closed circles)
Atlantic cod individuals. Data are from quantitative real time PCR. All
samples had similar template RNA concentrations loaded into the
qPCR reaction.

Additional file 3: Figure S3. Phylogenetic analysis of Sox9 amino acid
sequences from different teleost species depicted as trees generated by
the Neighbor-Joining (NJ) method (left) and Maximum Likelihood (ML)
method (right). The bar represents 5% divergence between sequences.
The sequences group into two large classes as noted as a and b to the
right. The sequences are named according to appearance in the NCBI
databank. Only apparently full length sequences were included in the
alignment. Clarias gariepinus Sox9a ADJ96868, Clarias gariepinus Sox9b
ADJ96869, Cynoglossus semilaevis Sox9a ACY05958, Cyprinus carpio Sox9b
AAX56088, Danio rerio Sox9a AF277096, Danio rerio Sox9b AF277096,
Danio rerio Sox9b AF277097, Danio rerio Sox8 AAX73357, Dicentrarchus
labrax SOX9 CBN81190, Epinephelus akaara Sox9 AAT77677, Epinephelus
coioides Sox9 ACT10337, Gasterosteus aculeatus Sox9a AAQ62978,
Gasterosteus aculeatus Sox9b AAQ62979, Monopterus albus Sox9a1
AF378150, Monopterus albus Sox9a2 AF378151, Odontesthes bonariensis
SOX9 AAP84605, Oncorhynchus mykiss SOX9 BAA24365, Oncorhynchus
mykiss SOX9a2 AAG43497, Oreochromis aureus SOX9 ABY66377, Oryzias
latipes SOX9b AAX62151, Oryzias latipes SOX9a AAX62152, Paralichthys
olivaceus Sox9 ACO40490, Poecilia reticulata Sox9 ABG77973, Salmo salar

Sox9 ACN10975, Takifugu rubripes Sox9 AAL32172. The Atlantic cod
sequences were obtained through Blast search at The Cod Genome
Project web site [57] and translated from the Gadus morhua Sox9
ENSGAUG00000009261 (apparent complete open reading length that
include the primer sites used in this communication) and Gadus morhua
Sox9v ENSGAUG00000015623.
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