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Abstract 

The performance of six classification methods, binary logistic (BLR), probit (PR) and 

cumulative probit (CPR) regression, linear (LDA) and quadratic (QDA) discriminant analysis, 

and artificial neural networks (ANN), is examined in skeletal sex estimation. These methods 

were tested using cranial and pelvic sexually dimorphic traits recorded on a modern 

documented collection, the Athens Collection. For their implementation, an R package has 

been written to perform cross-validated (CV) sex classification and give the discriminant 

function of each of the methods studied. A simple algorithm that combines two discriminant 

functions is also proposed. It was found that the differences in the classification performance 

between BLR, PR, CPR, LDA, QDA, and ANN are overall small. However, LDA is simpler 

and more flexible than CPR, QDA and ANN and has a small but clear advantage over BLR 

and PR. Consequently, LDA may be preferred in skeletal sex estimation. Finally, it is striking 

that the combination of pelvic and cranial traits via their discriminant functions determined 

either by BLR or LDA removes practically any population-specificity and yields much better 

predictions than the individual functions; in fact, the prediction accuracy increases above 97%. 
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Introduction 

Sex estimation is a key aspect of any forensic anthropological analysis as sex is one of the three 

key parameters used in the identification of an unknown individual, along with age and stature 

[1-3]. Even though sexual dimorphism in humans is small, there are morphological and metric 

differences between male and female skeletons, which have been used in sex estimation. 

Morphological methods focus primarily on the pelvis and secondarily on the cranium, and they 

assess the degree of expression of specific traits. Based on the qualitative assessment of this 

degree, they assign the individual to the male or female sex [4-6]. More recently, statistical 

analysis has started being employed whereby the degree of expression of selected pelvic and 

cranial traits, recorded in an ordinal scale, is used as input variable in sex prediction using 

binary logistic regression analysis and/or discriminant analysis [7-8]. This statistical approach 

allows both the prediction of sex but also the estimation of the probability of an individual 

being male or female.  

Discriminant analysis and, more recently, artificial neural networks have also been used in 

metric sex estimation whereby the variables are measurements that capture both size and shape 

differences between males and females [9-14]. A limitation of metric methods compared to 

morphological ones is that they are of limited applicability to fragmented partially preserved 

remains.  

A comparison of different techniques used for sex classification based on ordinal variables was 

carried out by Walker [8]. Walker [8] used cranial traits and examined the performance of four 

multivariate techniques: k-nearest neighbor, binary logistic regression (BLR), linear (LDA) 

and quadratic (QDA) discriminant analysis. He found that QDA, and especially k-nearest 

neighbor analysis, performed poorly in terms of the sex bias criterion since they produced 

discriminant functions the classification error rates of which were much greater for one sex 

than the other. In contrast, BLR and LDA had both low misclassification and low sex bias rates. 

From these two techniques, Walker [8] chose BLR as the best technique, mainly because it 

relies on fewer assumptions than LDA. Comparisons between artificial neural networks (ANN) 

and the classical methods LDA, QDA and BLR have been recently carried out and found that 

ANN perform better than the other methods. However, all these comparisons concern metric 

and not ordinal data [15-17]. 

The current paper examines the performance of the above classification methods, BLR, LDA, 

QDA, and ANN, in sex estimation using ordinal predictors as well as two alternatives of BLR, 

the probit (PR) and the cumulative probit (CPR) regression. From these methods the most 

popular is the first one, since it allows the direct development of mathematical relationships 

between sex traits and sex. These relationships can then be easily applied for sex estimation in 

different assemblages. In contrast, discriminant analyses and neural networks require that the 

training sample be used each time they are employed in sex estimation and this is a major 

disadvantage. For this reason, in the present paper, apart from the evaluation of these six 

methods, we develop simple mathematical relationships for each of them that can be used for 

sex estimation, as is already the case for binary logistic regression. In addition, we explore the 
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performance of a new approach that combines two different discriminant functions for sex 

prediction.  

 

Classification methods 

Binary logistic and probit regression  

Logistic and probit models are common statistical tools for the analysis of dichotomous data. 

In the context of sex prediction, binary logistic regression (BLR) presumes that the sex traits 

(predictors) have been properly coded, usually in an ordinal scale. Similarly, the sex of the 

individual may also be coded as a binary variable, say 0 for male and 1 for female. Consider 

the sex traits X1, X2, … Binary logistic regression establishes a relationship among these 

variables and the probability P(sex=1) that the individual is female (sex=1) based on the 

following expression [18]:  𝑙𝑛 𝑃(𝑠𝑒𝑥=1)1−𝑃(𝑠𝑒𝑥=1) = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯    (1) 

where c0, c1, c2, … are (adjustable) parameters usually determined using maximum likelihood 

estimation provided that a training sample with documented sex vs. X1, X2, … data is available. 

When c0, c1, c2, … have been calculated, the above equation can be used to calculate P(sex=1). 

Thus, if  𝑦 = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯     (2) 

then  𝑃(𝑠𝑒𝑥 = 1) = 11+𝑒−𝑦    (3) 

Therefore, if P(sex=1) > 0.5, the individual is female, otherwise the individual is male with a 

probability equal to P(sex=0) = 1 - P(sex=1). 

Tables with c0, c1, c2, … values or the expression 𝑦 = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯ can be found in 

the literature and they can be used to compute P(sex=1) by means of Equation (3) and, 

therefore, estimate sex from specific traits. Such a well-known table is Walker’s [8] table with 

y equations for estimating sex from cranial traits based on American/English and Native 

American assemblages. In this table, as well as in all relevant tables, the percentage of correctly 

classified males/females is also presented. This is an important piece of information because it 

evaluates the performance of the regression equations when applied to a certain sample. This 

information is obtained by means of leave-one-out cross validation (LOOCV). According to 

this technique, we remove from the dataset the first case, apply binary logistic regression to the 

remaining cases and, based on the obtained regression equation, we estimate the sex of the 

held-out case. This procedure is repeated for the second case and so on until the last case. Then 

we count the correct predictions and express them as a percentage of correctly classified cases. 
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In probit regression (PR), the inverse of the standard normal cumulative distribution −1 of 

the probability P(sex=1) is modeled as a linear combination of the predictors [18, 19]:  

−1(𝑃(𝑠𝑒𝑥 = 1)) = 𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯    (4) 

where the adjustable parameters c0, c1, c2, … may also be determined using the maximum 

likelihood method as in BLR. When c0, c1, c2, … are known, the above equation can be used to 

calculate P(sex=1) since:   𝑃(𝑠𝑒𝑥 = 1) = (𝑦) = (𝑐0 + 𝑐1𝑋1 + 𝑐2𝑋2 + ⋯  )    (5) 

where  is the standard normal cumulative distribution function. This function may be easily 

calculated using for example the NORMSDIST function in Excel or the pnorm function of R. 

BLR and PR are not subject to strict assumptions. BLR does not require a linear relationship 

between the dependent and independent variables, the error terms (residuals) or the predictors 

do not need to be normally distributed, it can handle both categorical and continuous variables, 

whereas homoscedasticity is not required [18]. The same properties hold for PR but for this 

method the error terms should be normally distributed. In addition, both methods are sensitive 

to outliers but this is not a serious issue when using ordinal data.  

 

Cumulative probit regression  

The use of binary logistic and probit models in sex assessment and in particular the validity of 

the estimated probabilities P(sex=1) was criticized by Konigsberg and Hens [19] within the 

frames of Bayes’ Theorem. These authors proposed as a better alternative the cumulative probit 

model/regression (CPR). Here, we applied the cumulative probit model as follows. First, 

consider the simple case of just one sex indicator, X1, which can be coded using a J-point 

ordinal scale. That is, it can take the integer values i = 1, 2, ..., J. If we model the ordinal 

variable X1 as a function of the binary variable sex (independent variable), the fitting probit 

model is expressed not by just one equation but from (J-1) equations of the form:  

−1(𝑃𝑐𝑖) = 𝑎𝑖 + 𝑏 ∗ 𝑠𝑒𝑥, 𝑖 = 1, 2, … , 𝐽 − 1    (6) 

where 𝑃𝑐𝑖 is the cumulative probability of category i, that is, the probability of X1 falling in 

category i or below. Therefore, 𝑃𝑐𝑖 = 𝑃1 + 𝑃2 + ⋯ + 𝑃𝑖    (7) 

where P1, P2, …, Pi is the probability of X1 falling exactly in category 1, 2, …, i, respectively. 
In fact, P1, P2, …, Pi are conditional probabilities and, in particular, Pi is the probability 

conditional on sex that an individual is in the i-th category of the sex indicator X1. When we fit 

the probit model to the ordinal response X1 using sex as independent variable, we obtain the 

adjustable parameters 𝑎1, 𝑎2, … , 𝑎𝐽−1, 𝑏 and then the conditional probabilities may be 

calculated from the following system of equations: 
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 𝑃𝑐1 = 𝑃1 = (𝑎1 + 𝑏 ∗ 𝑠𝑒𝑥)                                  𝑃𝑐2 = 𝑃1 + 𝑃2 = (𝑎2 + 𝑏 ∗ 𝑠𝑒𝑥)                        ⋯                                                                    𝑃𝑐(𝐽−1) = 𝑃1 + 𝑃2 ⋯ + 𝑃𝐽−1 = (𝑎𝐽 + 𝑏 ∗ 𝑠𝑒𝑥)    (8) 

Now, if the observed score of X1 for an individual is i, the probability that the individual is a 

female may be estimated by applying Bayes’ Theorem [19]   𝑃(𝑠𝑒𝑥 = 1) = 𝑃𝑖𝑃𝑀/(𝑃𝑖𝑃𝑀 + 𝑃𝑖𝑃𝐹)                     (9) 

where PM is the prior probability that an individual is male and PF is the prior probability that 

an individual is female. These quantities may be estimated, as in Discriminant Analysis, from 𝑃𝑀 = 𝑛𝑀/𝑛, 𝑃𝐹 = 𝑛𝐹/𝑛 where nM, nF is the number of males and females, respectively, and 𝑛 

is the total number of cases. Alternatively, they may be estimated via an optimization procedure 

that searches for the PM, PF values that yield the optimum prediction performance in the 

training sample.  

When there are many sex traits, X1, X2, …, Equation (9) is still valid but now Pi = PI is the 

probability conditional on sex that an individual is in the state I composed of the i1-th category 

of X1, i2-th category of X2 and so on. In this case we may calculate the conditional probabilities 

P1, P2, …, PJ for each sex indicator X1, X2, … and then PI may be estimated under the 

assumption of conditional independence. This is the main assumption of this method. 

 

Discriminant analysis 

An alternative approach for sex classification and prediction is Discriminant Analysis (DA). 

DA is based on the Mahalanobis distance between 𝑥 = (𝑋1, 𝑋2, … , 𝑋𝑚) and the mean vectors 𝜇0 and 𝜇1, where 𝑥 is a vector of sex traits (variables) and 𝜇0 and 𝜇1 are the mean vectors of 

the male and female subsamples.  

There are two main variants of DA: quadratic (QDA) and linear (LDA) discriminant analysis. 

In QDA the probability P(sex=1) is estimated via the following relationships [20-21]: 

 𝑃(𝑠𝑒𝑥 = 1) = 𝑒𝑑1(𝑥)𝑒𝑑1(𝑥)+𝑒𝑑0(𝑥)    (10) 

 𝑑𝑘(𝑥) = − 12 (𝑥 − 𝜇𝑘)𝑡Σ𝑘−1(𝑥 − 𝜇𝑘) − 12 ln|Σ𝑘| + 𝑙𝑛𝑃𝑘    (11) 

 

where k = 0 or 1 are the classes of male and female, respectively, Σ𝑘 is the covariance matrix 

for class k, and 𝑃𝑘 are the prior probabilities used. The last quantity is estimated from 𝑃𝑘 =
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𝑛𝑘/𝑛, where 𝑛𝑘 is the number of cases k and 𝑛 is the total number of cases. Note that the first 
term in Equation (11) is the so-called Mahalanobis distance between 𝑥 and 𝜇𝑘. It can be shown 

that Equations (10) and (11) may be expressed as Equations (2) and (3) where y is given by: 

 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑋𝑖𝑚
𝑖=1 + ∑ 𝑏𝑖𝑋𝑖2𝑚

𝑖=1 + ∑ 𝑐𝑖𝑗𝑋𝑖𝑋𝑗𝑚
𝑖<𝑗                                                                                (12) 

    

QDA is reduced to LDA if we assume Σk = Σ, where Σ is the pooled sample covariance matrix. 

In this case Equation (12) is simplified to 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑋𝑖𝑚
𝑖=1                                                                                                                                (13) 

Equations (12) and (13) can be used like Equation (2) for sex estimation. That is, based on a 

training dataset, the probabilities P = P(sex=1) are estimated for each case using linear or/and 

quadratic discriminant analysis. Then the adjustable parameters a0, ai, bi, cij may be calculated 

by means of linear or multilinear regression using log(P/(1-P)) as dependent variable and 𝑋𝑖 or 𝑋𝑖, 𝑋𝑖2, 𝑋𝑖𝑋𝑗 as independent variables. Sex prediction in the target sample is carried out via 

Equation (3) and Equation (13) or/and Equation (12). 

Discriminant analysis is a parametric multivariate technique and, therefore, it is subject to 

several assumptions: The size of the smallest group should exceed the number of sex traits 

(independent variables), the variables should follow the multivariate normal distribution, the 

variance/covariance matrices of variables should be homogenous across groups, whereas 

multi-collinearity among variables should be excluded. Note that the equality of covariances 

assumption is not required in QDA and this is the basic reason that LDA is a much less flexible 

classifier than QDA. Nonetheless, as Tabachnick and Fidell [18] point out, if classification is 

the primary goal, then most of the above requirements do not affect the classification 

performance, provided that there are no outliers. Deviation from these assumptions may distort 

only tests of statistical significance, just as in MANOVA, if such tests have been carried out. 

 

Neural networks 

An (artificial) neural network (ANN) is a system of interconnected neurons, which is used to 

identify clusters in a data set via processes that mimic the way the human brain works [22-23]. 

From this point of view, it can be used for sex classification and prediction. A simple neural 

network is shown in Figure 1. When the neural network is used for sex classification, the 

leftmost layer of the network (input layer) consists of m input units that represent the traits 𝑋1, 𝑋2, … , 𝑋𝑚, whereas the output layer has only one node, which is related to the sex variable. 

Note that this variable, i.e. the output of the network, takes values between 0 and 1 and, 
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therefore, it is related to the probability P(sex=1). In the example of Figure 1, there is just one 

hidden layer with three nodes. It is called hidden layer because its values are not observed in 

the training set. The circles labeled “1” are called bias units. 

 

 

 

Fig. 1 Simple neural network for sex classification with two input nodes and one hidden layer 

with three nodes 

 

In every neural network the input values 𝑋1, 𝑋2, … , 𝑋𝑚 are transformed to an output value via 

proper weights, wi. Thus, a neural network with m input nodes and one hidden layer with p 

nodes represents the following function provided that the numbering of the weights is as in 

Figure 1 [23, p. 143]: 

𝑠𝑒𝑥 = 𝑓 (𝑤(𝑚+1)𝑝+1 + ∑ 𝑤(𝑚+1)𝑝+𝑖𝐻𝑖𝑝
𝑖=1  )                                                                                   (14) 

where 

𝐻𝑖 = 𝑓 (𝑤(𝑖−1)(𝑚+1)+1 + ∑ 𝑤(𝑖−1)(𝑚+1)+1+𝑗𝑋𝑗𝑚
𝑗=1  )                                                                    (15) 

Here, f is the activation function of the network and sex  P(sex=1), i.e. we may at least as a 

first approximation adopt that the ANN output is the probability P(sex=1). In what concerns 

the function f, we have adopted the logistic function f(x)=ex/(1+ex). 
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It is seen that if we know the number of inputs and the hidden nodes as well as the weights, the 

estimation of sex is straightforward via Equations (14) and (15). There are several algorithms 

to train a network and compute weights. The most interesting point is that all these algorithms 

do not assume any underlying pattern for the data. 

 

Statistical methods  

An R package has been written to perform cross validated sex estimation based on the above 

six classification methods. This package includes eleven R functions: CVBLR, CVPR, 

CVCPR, CVLDA, CVQDA, CVNN, sdiscr, sdiscr2, discrNN, discrQDA, and discrCPR. The 

first five perform cross-validated binary logistic and probit regression, cumulative probit 

regression, and linear and quadratic discriminant analysis, whereas the sixth function is used 

to implement artificial neural networks. The next function, sdiscr, may be used to estimate the 

sex and the corresponding probability for one or more individuals using an equation of the form 

of Equations (2), (3), (5), (12), (13), i.e. equations that may be determined from the CVBLR, 

CVPR, CVLDA, and CVQDA functions. The sdiscr2 function can combine two discriminant 

functions that arise either from the BLR or LDA methods. Finally, the discrNN function 

estimates the sex and the corresponding (approximate) probability by means of weighting 

factors obtained from the CVNN function using Equation (14), the discrQDA function uses 

Equations (10) and (11) instead of Equation (12) for predictions based on QDA, and the last 

function, discrCPR, can be used for predictions based on the CPR method.  

In this R package, binary logistic and probit regression are implemented using the basic glm 

function in combination to the CVbinary function of the DAAG library to perform leave-one-

out cross-validation (LOOCV). In addition, the stepAIC function of the MASS library is used 

for backward stepwise model selection, i.e. for variable reduction, which is a crucial step for 

building a simpler model without losing the predictive power of the data. Linear and quadratic 

discriminant analyses are performed via the lda and qda functions of the MASS library. These 

functions can also perform LOOCV. For variable reduction, the stepclass function of the klaR 

library is used adopting the backward technique and the accuracy (AC) as performance 

measure. For the CPR method, we used the polr function of the MASS library. The CVCPR 

function may perform LOOCV but it does not have the option for variable reduction. 

For the implementation of ANN, the R function nnet of the homonymous library was adopted. 

This function is based on the feed-forward algorithm, which is a rather fast algorithm. 

However, we should point out that, irrespective of the algorithm used for the estimation of the 

weights, different runs of an ANN algorithm may give different weights, especially if their 

number is large enough. For this reason, for the neural networks training we used 20 repetitions 

and the networks with the optimum performance were selected for sex prediction. It is evident 

that the ANN performance depends upon the number of the hidden nodes. This number was 

varied from 1 to 40. An important consideration when using ANN are overfitting issues and, 

for this reason, it is important to perform LOOCV. Note that nnet does not have the option to 
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perform LOOCV, and for this reason in the present study, we have written the relevant code. 

In what concerns variable reduction, this may be achieved qualitatively via Garson’s plot, 

which shows the relative importance of the input variables. In the present study, we instead 

chose to use in the input layer the variables obtained from BLR/LDA/QDA.  

Finally, we combined two discriminant functions based on different skeletal traits to test if this 

would increase the performance of the individual functions. An algorithm that can be used to 

combine two such functions, say one based on cranial and the other on pelvic traits, is the 

following. Consider that the prediction for an individual using the first discriminant function 

is male and using the second function is female. Then, we examine the inequality 

P1(sex=0)>P2(sex=1), where P1(sex=0) is the probability of the individual being male 

according to the first function and P2(sex=1) the probability of the individual being female 

according to the second function. If the inequality is true, the individual is assumed to be male, 

otherwise the individual is female. The case where the first discriminant function predicts 

female and the second function predicts male is treated similarly. This algorithm is 

implemented in the sdiscr2 function. 

More details and the code of the R functions are given as Online Resources 1 and 2.  

 

Materials 

The Athens Collection, housed at the Department of Animal and Human Physiology at the 

National and Kapodistrian University of Athens, Greece, consists of 225 skeletons. Most of 

this material has documented age, sex, occupation, and cause of death and represents 

individuals who lived in the second half of the twentieth century and were buried in cemeteries 

in the area of Athens [24]. Of this collection, 191 skeletons (106 males and 85 females) were 

studied in the context of this paper, excluding subadults, individuals with insufficient 

documentation and individuals with pathological lesions or taphonomic damage that could 

inhibit the correct recording of the sex traits under examination. Note that the Athens Collection 

is divided in two parts; the skeletons that formed the original core of this collection have the 

coding WLH, while the skeletons that were added in the collection subsequently received a 

code of ABH. From these data, the 132 skeletons with ABH code were used for training and 

the 59 skeletons with WLH code were used for prediction.  

The pelvic traits recorded included the ventral arc (VA), subpubic concavity (SPC), and medial 

aspect of the ischiopubic ramus (MAR) and their scoring followed the 5-grade scheme 

proposed by Klales et al. [7]. The cranial traits included the mental eminence (ME), 

supraorbital margin (ORB), supraorbital ridge/glabella (GL), nuchal crest (NC), and mastoid 

process (MA), recorded as described by Walker [8]. Part of this dataset (120 cases) is provided 

as Online Resource 3 in order to practice using the provided R code. 
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Results and Discussion 

The results obtained are presented in Tables 1 to 7 as well as in the Tables and Figures given 

as Online Resource 4. Tables 1 to 3 show the percentage of correctly classified individuals by 

means of BLR, PR, LDA and QDA, whereas Tables 4 and 5 present selected results concerning 

the classification performance of the neural networks when the number p of the nodes of the 

hidden layer is equal to 1 and when p gets its optimum value, i.e. the value that yields optimum 

sex classification. Table 6 shows the discriminant functions of LDA that result in the optimum 

sex classification for the Athens Collection and, finally, Table 7 shows the percentage of 

correctly classified individuals when two discriminant functions, one using pelvic and the other 

cranial traits, are combined. The results concerning the CPR method are presented in Tables 

S1 and S2 and Figure S1. In addition, Online Resource 4 contains the complete results obtained 

from the neural networks (Tables S3 to S5 and Figure S2). Note that in all ANN results, for the 

weights decay we used the value 0.5.  

From Tables 1 to 3 we obtain that the differences between BLR, PR, LDA, QDA are overall 

small; LDA gives slightly better results than BLR in 36% of the cases given in these tables, the 

opposite is valid in 26% of the cases, and the two methods give identical results in the 

remaining 38% of the cases. However, if we examine the sex prediction on the target sample, 

we observe that LDA generally gives better and more balanced results between sexes. For the 

differences between LDA and QDA, the above figures are 24%, 18%, and 58%, respectively. 

It is seen that although QDA includes many more terms than LDA in its discriminant function, 

Equations (12), (13), it does not give better results. In fact, given this large number of 

parameters, we readily conclude that QDA does not offer a better alternative to either LDA or 

BLR.  

From these tables we also observe that the logit model produces results very similar to probit 

regression. Therefore, the choice of probit versus logit depends largely on individual 

preferences. The same holds for the cumulative probit model. Although there are differences 

between the results obtained from BLR and CPR, these differences are random and do not 

indicate that either of these two models provides better predictions (Figure S1). Note that the 

results of the cumulative probit model are not improved, at least in the majority of the cases 

examined in this study, if we optimize the prior probabilities, PM, PF (Table S2).      

In what concerns the ANN method, its performance strongly depends upon the number p of the 

nodes in the hidden layer. Best results are usually obtained for p ranging from 10 to 40. This 

means that the discriminant functions expressed via Equation (14) include a great number of 

terms, which makes their use difficult, especially if we have to publish such equations for use 

by other scholars. If, in addition, we compare the prediction performance of ANN with that of 

LDA using the combination of traits for which LDA gives the best results, we readily conclude 

that LDA should be preferred over ANN.       

Therefore, from the classification methods studied, LDA has a small but clear advantage over 

the other approaches and it may be preferred in sex estimation. However, one critical question 
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concerning the applicability of LDA is the fulfilment of the various assumptions that should be 

met for the method to give reliable results. The most important of these assumptions are the 

normality, equality of variances/covariances, and the lack of multicollinearity and outliers. 

Note that for BLR the only assumptions that should be taken into account are the lack of 

multicollinearity of the sex traits and the lack of outliers. The use of ordinal variables minimizes 

the existence of outliers in all methods. In R multicollinearity may be tested using the vif 

function of the car library. The application of this function showed that there is no 

multicollinearity among the sex traits except for ORB when it is examined in combination with 

pelvic traits. Therefore, only the results concerning the eight variables in Table 3 should be 

treated cautiously. In what concerns normality and equality of variances/covariances across 

groups, both are not valid when the predictors (sex traits) are ordinal variables. The reason is 

that ordinal data cannot be drawn from a multivariate Gaussian distribution and the Box's M 

test that is usually adopted to test the homogeneity of variance-covariance matrices, is very 

sensitive to violations of normality, leading to the rejection of this assumption. Note that in R 

the Box's M test may be performed by means of the boxM function of the biotools library and 

its application to the datasets under study showed that, indeed, the homogeneity assumption is 

violated. Thus, two basic assumptions underlying LDA application are violated. However, the 

improved prediction performance of LDA is a strong indication that the method is fairly robust 

to violations of these assumptions when classification is the primary goal. This is in line with 

Tabachnick and Fidell [18], who also point out that if a 95% accuracy in classification is 

achieved, “you hardly worry about the shape of distributions” (18; p. 381). Thus, the fact that 

the accuracy of LDA is comparable to that of BLR shows that this method can be applied for 

sex classification without tests for the underlying pattern for the data, as in the BLR and ANN 

methods. 

Table 6 summarizes the discriminant functions of LDA that result in optimum sex classification 

for the Athens Collection. As expected, pelvic traits result in higher correct sex classification 

percentages in relation to cranial traits. It is also interesting to observe that the combination of 

pelvic and cranial traits improves the predictions, especially the total sex prediction, but it gives 

rather unbalanced results per sex as it overestimates males and underestimates females.  

The combination of different sex traits is straightforward by means of the methods under study. 

The combination of discriminant functions already published in the literature may be achieved 

by means of the algorithm described in the Statistical methods section. Some of the results 

obtained are presented in Table 7. In particular, this table shows the percentage of correctly 

classified individuals by means of the Klales et al. [7] BLR discriminant function, various 

Walker’s [8] BLR discriminant functions, their combination and the corresponding LDA 

discriminant functions of the present work. We observe that Walker’s [8] equations have a very 

poor prediction performance, which in turn shows that cranial sex traits exhibit very strong 

population-specificity, as supported by previous studies [25-26]. The Klales et al. [7] 

discriminant function gives better predictions; the total sex classification rate is rather high, 

93.2%, but sex bias is also high, -10.35%, indicating unbalanced results per sex, suggesting 

some population-specificity. Similar results have been obtained from Oikonomopoulou et al. 
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[27]. However, the most interesting finding of Table 7 is the results obtained from the 

combination of discriminant functions. It is seen that in most cases the total sex classification 

rate is greater than 98%, whereas the sex bias is decreased below 4% and these figures are 

practically the same with those obtained from the LDA discriminant functions derived from 

the Athens Collection. That is, the combination of pelvic and cranial traits via their discriminant 

functions removes practically any population-specificity and yields much better predictions 

than the individual functions, especially those obtained from the literature. This is very clearly 

shown in case 14, Table 7, whereby we combined the Klales et al. [7] equation with Walker’s 
[8] equation using only the glabella and mental eminence. It can be seen that this combination 

achieved a correct sex classification of 98.9% in total, while the application of the individual 

equations achieved a correct classification in 93.2% for the pelvic traits and 75% for the cranial 

ones. In addition, the results of the combined function are identical to those obtained when we 

derive equations for sex prediction based on the Athens Collection itself (case 5, Table 7).   

To summarize the above results, the differences in the classification performance between 

BLR, PR, CPR, LDA, QDA, ANN are overall small. However, LDA is more simple and 

flexible than CPR, QDA and ANN and has a small but clear advantage over BLR/PR. Despite 

being a parametric multivariate technique, LDA is fairly robust to violations of relevant 

assumptions, and may be preferred in sex classification problems. These results concern cases 

where pelvic and cranial traits are examined independently. The most striking result of the 

current study is that the proposed method to combine pelvic and cranial traits via their 

discriminant functions, either LDA or BLR, yields better predictions than the individual 

functions (correct classification rates over 98% for pooled sexes and sex bias below 3), free 

from population-specificity issues. 

 

References 

1. Dirkmaat D (2014) A companion to forensic anthropology. John Wiley & Sons, New York.  

2. İşcan MY (2005) Forensic anthropology of sex and body size. For Sci Int 147:107-112. 

https://doi.org/10.1016/j.forsciint.2004.09.069 

3. Spradley MK, Jantz RL (2011) Sex estimation in forensic anthropology: skull versus 

postcranial elements. J Forensic Sci 56:289-296. https://doi.org/10.1111/j.1556-

4029.2010.01635.x 

4. Buikstra JE, Ubelaker DH (1994) Standards for data collection from human skeletal remains. 

Arkansas Archaeological Survey Research Series 44, Fayetteville. 

5. Phenice TW (1969) A newly developed visual method of sexing the os pubis. Am J Phys 

Anthropol 30:297-301. https://doi.org/10.1002/ajpa.1330300214 

6. Williams BA, Rogers TL (2006) Evaluating the accuracy and precision of cranial 

morphological traits for sex determination. J Forensic Sci 51:729-735. 

https://doi.org/10.1111/j.1556-4029.2006.00177.x 



15 

 

7. Klales AR, Ousley SD, Vollner JM (2012) A revised method of sexing the human 

innominate using Phenice's nonmetric traits and statistical methods. Am J Phys Anthropol 

149:104-114. https://doi.org/10.1002/ajpa.22102 

8. Walker PL (2008) Sexing skulls using discriminant function analysis of visually assessed 

traits. Am J Phys Anthropol 136:39–50. https://doi.org/10.1002/ajpa.20776 

9. Ali Z, Cox C, Stock MK, Zandee vanRilland EE, Rubio A, Fowler DR (2018) Estimating 

sex using metric analysis of the scapula by postmortem computed tomography. J Forensic Sci 

63:1346-1349. https://doi.org/10.1111/1556-4029.13751 

10. Alunni-Perret V, du Jardin P, Nogueira L, Buchet L, Quatrehomme G (2015) Comparing 

discriminant analysis and neural network for the determination of sex using femur head 

measurements. Forensic Sci Int 253:81–87. https://doi.org/10.1016/j.forsciint.2015.05.023 

11. Bidmos MA, Steinberg N, Kuykendall KL (2005) Patella measurements of South African 

whites as sex assessors. Homo 56:69–74. https://doi.org/10.1016/j.jchb.2004.10.002 

12. Blake KA, Hartnett‐McCann K (2018) Metric assessment of the pubic bone using known 

and novel data points for sex estimation. J Forensic Sci 63:1472-1478. 

https://doi.org/10.1111/1556-4029.13732 

13. Clavero A, Salicrú M, Turbón D (2015) Sex prediction from the femur and hip bone using 

a sample of CT images from a Spanish population. Int J Legal Med 129:373-383. 

https://doi.org/10.1007/s00414-014-1069-y 

14. Nikita E (2017) Osteoarchaeology: A guide to the macroscopic study of human skeletal 

remains. Academic Press, San Diego. 

15. Darmawan MF, Yusuf SM, Abdul Kadir MR, Haron H (2015) Comparison on three 

classification techniques for sex estimation from the bone length of Asian children below 19 

years old: An analysis using different group of ages. Forensic Sci Int 247:130.e1–130.e11. 

https://doi.org/10.1016/j.forsciint.2014.11.007 

16. Du Jardin P, Ponsaillé J, Alunni-Perret V, Quatrehomme G (2009) A comparison between 

neural network and other metric methods to determine sex from the upper femur in a modern 

French population. Forensic Sci Int 192:e1–e6. https://doi.org/10.1016/j.forsciint.2009.07.014 

17. Mahfouz M, Badawi A, Merkl B, Fatah EEA, Pritchard E, Kesler K, Moore M, Jantz R, 

Jantz L (2007) Patella sex determination by 3D statistical shape models and nonlinear 

classifiers. Forensic Sci Int 173:161–170. https://doi.org/10.1016/j.forsciint.2007.02.024 

18. Tabachnick B, Fidell L (2012) Using multivariate statistics, 6th edition. Pearson Education 

Limited, Boston. 

19. Konigsberg LW, Hens SM (1998) Use of ordinal categorical variables in skeletal 

assessment of sex from the cranium. Am J Phys Anthropol 107:97-112. 

20. Johnson RA, Wichern DW (1988) Applied Multivariate Statistical Analysis, 2nd edition. 

Prentice Hall International, London. 

21. Narsky I, Porter FC (2014)  Statistical Analysis Techniques in Particle Physics: Fits, 

Density Estimation and Supervised Learning, 1st edition. Wiley, Hoboken, NJ. 

22. Haykin S (2009) Neural networks and learning machines, 3rd edition. Prentice Hall, 

London. 



16 

 

23. Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, 

Cambridge.  

24. Eliopoulos C, Lagia A, Manolis S (2007) A modern, documented human skeletal collection 

from Greece. Homo 58:221-228. https://doi.org/10.1016/j.jchb.2006.10.003 

25. Klales AR, Cole SJ (2017) Improving nonmetric sex classification for Hispanic individuals. 

J Forensic Sci 62:975-980. https://doi.org/10.1111/1556-4029.13391 

26. Krüger GC, L’Abbé EN, Stull KE, Kenyhercz MW (2015) Sexual dimorphism in cranial 
morphology among modern South Africans. Int J Legal Med 129:869–875. 

https://doi.org/10.1007/s00414-014-1111-0 

27. Oikonomopoulou EK, Valakos E Nikita E (2017) Population-specificity of sexual 

dimorphism in cranial and pelvic traits: evaluation of existing and proposal of new functions 

for sex assessment in a Greek assemblage. Int J Legal Med 131:1731-1738. 

https://doi.org/10.1007/s00414-017-1655-x 

 

 

  



17 

 

Table 1. Percentage of correctly classified individuals by means of BLR, PR, LDA and QDA based on pelvic traits 

Dataset Accuracy BLR / PR LDA QDA 

  VA,SPC,MA

R 

VA,SPC VA,SPC,M

AR 

VA,SP

C 

VA,SPC,M

AR 

VA,SP

C 

Original 

Original 

Original 

Original 

Original 

Original 

Training 

Training 

Training 

Training 

Training 

Training 

Target 

Target 

Target 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

94.74 

96.19 

92.94 

96.32 

96.19 

96.47 

96.18 

96.97 

95.38 

96.95 

96.97 

96.92 

91.53 

92.31 

90.00 

96.32 

97.14 

95.29 

96.32 

97.14 

95.29 

96.95 

98.48 

95.38 

96.95 

98.48 

95.38 

91.53 

92.31 

90.00 

96.84 

99.05 

94.12 

96.84 

99.05 

94.12 

96.95 

98.48 

95.38 

96.95 

98.48 

95.38 

94.92 

94.87 

95.00 

96.32 

97.14 

95.29 

96.32 

97.14 

95.29 

96.95 

98.48 

95.38 

96.95 

98.48 

95.38 

94.92 

94.87 

95.00 

96.84 

99.05 

94.12 

96.84 

99.05 

94.12 

96.95 

98.48 

95.38 

96.95 

98.48 

95.38 

94.92 

94.87 

95.00 

95.79 

97.14 

94.12 

95.79 

97.14 

94.12 

96.95 

98.48 

95.38 

96.95 

98.48 

95.38 

94.92 

94.87 

95.00 

Target Sex bias 2.31 2.31 -0.13 -0.13 -0.13 -0.13 

 

Key: T = total, M = male, F = female; sex bias is the difference between male and female percentage correct predictions. 
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Table 2. Percentage of correctly classified individuals by means of BLR, PR, LDA and QDA based on cranial traits 

Dataset Accuracy BLR / PR LDA QDA 

  

All 5 vars GL,MA,NU 

GL,MA,OR

B All 5 vars 

GL,MA,N

U 

GL,MA,OR

B All 5 vars 

GL,MA,N

U 

GL,MA,OR

B 

Original 

Original 

Original 

Original 

Original 

Original 

Training 

Training 

Training 

Training 

Training 

Training 

Target 

Target 

Target 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

88.70/89.83 

87.50/88.54 

90.12/91.36 

90.40 

89.58 

91.36 

90.76/91.6 

89.66 

91.80/93.44 

94.12 

91.38 

96.72 

84.48 

89.47 

75.00 

89.27 

87.50 

91.36 

89.27 

87.50 

91.36 

90.15/91.67 

86.57/88.06 

93.85/95.38 

91.67 

88.06 

95.38 

84.75 

87.18 

80.00 

89.53 

86.79 

92.94 

89.53 

86.79 

92.94 

90.15 

88.06 

92.31 

91.67/90.15 

88.06 

95.38/92.31 

83.05/84.75 

87.18/89.74 

75.00 

89.83 

87.50 

92.59 

89.83 

87.50 

92.59 

92.44 

87.93 

96.72 

92.44 

87.93 

96.72 

86.21 

86.84 

85.00 

89.27 

87.50 

91.36 

89.83 

87.50 

92.59 

92.44 

87.93 

96.72 

92.44 

87.93 

96.72 

84.48 

84.21 

85.00 

88.48 

84.91 

92.94 

88.48 

84.91 

92.94 

91.67 

86.57 

96.92 

92.42 

88.06 

96.92 

81.36 

82.05 

80.00 

89.27 

87.50 

91.36 

90.96 

88.54 

93.83 

90.76 

89.66 

91.80 

92.44 

89.66 

95.08 

86.21 

89.47 

80.00 

88.70 

87.50 

90.12 

90.40 

87.50 

93.83 

91.60 

89.66 

93.44 

93.28 

89.66 

96.72 

84.48 

86.84 

80.00 

89.01 

85.85 

92.94 

89.53 

86.79 

92.94 

92.42 

88.06 

96.92 

92.42 

88.06 

96.92 

83.05 

84.62 

80.00 

Target Sex bias 14.47 7.18 12.18/14.74 1.84 -0.79 2.05 9.47 6.84 4.62 
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Table 3. Percentage of correctly classified individuals by means of BLR, PR, LDA and QDA based on combinations of cranial and pelvic traits 

Dataset Accuracy BLR / PR LDA QDA 

  

All 8 

vars 

GL, VA, 

SPC, 

MAR 

GL, VA, 

SPC 

MA, VA, 

SPC All 8 

vars 

GL, VA, 

SPC, 

MAR 

GL, VA, 

SPC 

MA, 

VA, 

SPC 

All 8 

vars 

GL, VA, 

SPC, 

MAR 

GL, VA, 

SPC 

MA, 

VA, 

SPC 

Original 

Original 

Original 

Original 

Original 

Original 

Training 

Training 

Training 

Training 

Training 

Training 

Target 

Target 

Target 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

97.16 

97.89 

96.30 

100.0 

100.0 

100.0 

98.3/97.5 

98.25 

98.4/96.7 

100.0 

100.0 

100.0 

87.93 

89.47 

85.00 

98.95 

99.05 

98.82 

100.0 

100.0 

100.0 

99.24 

98.48 

100.0 

100.0 

100.0 

100.0 

94.92 

100.0 

85.00 

97.89 

98.10 

97.65 

97.89 

98.10 

97.65 

100/99.2

100/98.5 

100.0 

100.0 

100.0 

100.0 

94.92 

100.0 

85.00 

96.8/96.3 

97.1/96.2 

96.47 

96.84 

97.14 

96.47 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

91.53 

92.31 

90.00 

98.86 

100.0 

97.53 

98.86 

100.0 

97.53 

100.0 

100.0 

100.0 

100.0 

100.0 

100.0 

96.55 

100.0 

90.00 

98.95 

100.0 

97.65 

98.95 

100.0 

97.65 

98.47 

96.97 

100.0 

99.24 

98.48 

100.0 

96.61 

100.0 

90.00 

97.89 

98.10 

97.65 

97.89 

98.10 

97.65 

98.47 

96.97 

100.0 

98.47 

96.97 

100.0 

96.61 

100.0 

90.00 

96.84 

97.14 

96.47 

96.84 

97.14 

96.47 

99.24 

100.0 

98.46 

99.24 

100.0 

98.46 

91.53 

92.31 

90.00 

98.30 

98.95 

97.53 

100.0 

100.0 

100.0 

98.31 

96.49 

100.0 

100.0 

100.0 

100.0 

96.55 

100.0 

90.00 

99.47 

100.0 

98.82 

99.47 

100.0 

98.82 

98.47 

96.97 

100.0 

100.0 

100.0 

100.0 

98.31 

100.0 

95.00 

97.37 

98.10 

96.47 

97.37 

98.10 

96.47 

98.47 

96.97 

100.0 

98.47 

96.97 

100.0 

96.61 

100.0 

90.00 

96.84 

97.14 

96.47 

96.84 

97.14 

96.47 

99.24 

98.48 

100.0 

100.0 

100.0 

100.0 

91.53 

92.31 

90.00 

Target Sex bias 4.47 15 15 2.31 10 10 10 2.31 10 5 10 2.31 
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Table 4. Percentage of correctly classified individuals when using pelvic and cranial variables by means of ANN when p = 1 and p gets its optimum value. 

 

Dataset Accuracy Pelvic variables Cranial variables 

  VA,SPC,MA

R 

(p=1 / p=10) 

VA,SPC 

(p=1 / p=20) 

GL,MA,NU,ME,OR

B 

(p=1 / p=15) 

GL,MA,NU 

(p=1/ p=30) 

GL,MA,OR

B 

(p=1 / p=10) 

Original 

Original 

Original 

Original 

Original 

Original 

Training 

Training 

Training 

Training 

Training 

Training 

Target 

Target 

Target 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

96.8 / 97.4 

100 / 100 

92.9 / 94.1 

97.4 / 97.4 

100 / 100 

94.1 / 94.1 

96.2 / 97 

98.5 / 98.5 

93.9 / 95.4 

97 / 97 

98.5 / 98.5 

95.4 / 95.4 

94.9 / 94.9 

94.9 / 94.9 

95 / 95 

93.7 / 95.8 

97.1 / 97.1 

89.4 / 94.1 

94.7 / 96.3 

99.1 / 97.1 

89.4 / 95.3 

97 / 97 

98.5 / 98.5 

95.4 / 95.4 

97 / 97 

98.5 / 98.5 

95.4 / 95.4 

94.9 / 94.9 

94.9 / 94.9 

95 / 95 

87.8 / 90 

86.5 / 88.5 

89.3 / 91.7 

90 / 91.1 

88.5 / 89.6 

91.7 / 92.9 

90.1 / 91.7 

86.2 / 86.2 

93.7 / 96.8 

90.9 / 93.4 

87.9 / 89.7 

93.7 / 96.8 

74.6 / 84.8 

65.8 / 84.2 

90.5 / 85.7 

88.1 / 89.2 

87.7 / 87.7 

88.6 / 90.9 

89.2 / 90.2 

87.7 / 88.7 

90.9 / 92.1 

89.6 / 91 

85.1 / 86.6 

94 / 95.5 

91 / 91.8 

86.6 / 88.1 

95.5 / 95.5 

83.3 / 86.7 

87.2 / 89.7 

76.2 / 81 

89.2 / 89.2 

87.7 / 87.7 

90.9 / 90.9 

89.2 / 89.2 

87.7 / 87.7 

90.9 / 90.9 

88.8 / 91.8 

86.6 / 88.1 

91 / 95.5 

91 / 91.8 

86.6 / 88.1 

95.5 / 95.5 

73.3 / 81.7 

69.2 / 84.6 

81 / 76.2 

Target Sex bias -0.1 -0.1 -1.5 8.7 8.4 
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Table 5. As in Table 4 when using combinations of pelvic and cranial traits. 

Dataset Accuracy Pelvic + cranial variables 

  All 8 vars 

(p=1 / p=40) 

GL,MA,VA,SPC,MAR 

(p=1 / p=30) 
GL,VA,SPC 

(p=1 / p=10) 

MA, VA, SPC 

(p=1 / p=30) 

Original 

Original 

Original 

Original 

Original 

Original 

Training 

Training 

Training 

Training 

Training 

Training 

Target 

Target 

Target 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

CV (T) 

CV (M) 

CV (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

Prediction (T) 

Prediction (M) 

Prediction (F) 

91.5 / 98.3 

95.8 / 100 

86.4 / 96.3 

93.8 / 98.9 

96.8 / 100 

90.1 / 97.5 

92.4 / 97.5 

94.7 / 96.5 

90.2 / 98.4 

95.8 / 98.3 

96.5 / 98.3 

95.1 / 98.4 

81 / 96.6 

81.6 / 100 

80 / 90 

95.8 / 98.4 

99.1 / 100 

91.8 / 96.5 

96.3 / 99 

99.1 / 100 

92.9 / 97.7 

96.2 / 99.2 

97 / 98.5 

95.4 / 100 

96.2 / 100 

97 / 100 

95.4 / 100 

93.2 / 96.6 

94.9 / 100 

90 / 90 

97.9 / 98.4 

100 / 100 

95.3 / 96.5 

98.4 / 98.4 

100 / 100 

96.5 / 96.5 

99.2 / 100 

98.5 / 100 

100 / 100 

100 / 100 

100 / 100 

100 / 100 

96.6 / 96.6 

100 / 100 

90 / 90 

94.7 / 96.3 

97.1 / 99.1 

91.8 / 92.9 

94.7 / 96.8 

97.1 / 99.1 

91.8 / 94.1 

95.4 / 97 

98.5 / 98.5 

92.3 / 95.4 

96.2 / 97 

98.5 / 98.5 

93.9 / 95.4 

93.2 / 94.9 

94.9 / 94.9 

90 / 95 

Target Sex bias  10 10 10 -0.1 
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Table 6. Linear discriminant equations and percentage of correctly classified individuals.  

Dataset LDA discriminant equations Accuracy Total Males Females Sex bias 

Pelvis 

 

 

 

Cranium 

 

 

 

 

 

Pelvis-cranium 

y= 22.1513-3.4643*VA-2.6502*SPC-1.7547*MAR 

 

y= 18.5549-3.6464*VA-3.1649*SPC 

 

y= 11.7529 -2.3944*GL-0.7448*MA-0.1265*ORB-

0.0656*ME-0.6657*NU 

y= 11.3849-2.4138*GL-0.7479*MA-0.6933*NU 

 

y= 10.0779-2.414*GL-0.893*MA-0.1568*ORB 

 

y= 34.0444-2.0697*GL-1.3527*MA-

0.2024*ORB+0.1032*ME-0.5395*NU-3.7313*VA-

2.4763*SPC-1.4778*MAR 

y= 34.3576-2.08*GL-1.6251*MA-3.8325*VA-2.4818*SPC-

1.7434*MAR 

y= 24.8873-2.4469*GL-3.7121*VA-2.9414*SPC 

 

y= 26.766-1.9489*MA-4.0197*VA-3.1869*SPC 

 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

Original 

Cross-validated 

96.84 

96.84 

96.32 

96.32 

89.83 

89.83 

89.83 

89.27 

88.48 

88.48 

98.86 

98.86 

98.95 

98.42 

97.89 

97.89 

96.84 

96.84 

99.05 

99.05 

97.14 

97.14 

87.3 

87.3 

87.5 

87.5 

84.91 

84.91 

100 

100 

100 

100 

98.1 

98.1 

97.14 

97.14 

94.12 

94.12 

95.29 

95.29 

92.59 

92.59 

92.59 

91.36 

92.94 

92.94 

97.53 

97.53 

97.65 

96.47 

97.65 

97.65 

96.47 

96.47 

4.93 

4.93 

1.85 

1.85 

-5.29 

-5.29 

-5.09 

-3.86 

-8.03 

-8.03 

2.47 

2.47 

2.35 

3.53 

0.45 

0.45 

0.67 

0.67 
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Table 7. Percentage of correctly classified individuals when two discriminant functions, one based on pelvic and the other on cranial traits, are combined. 

No Function Total Males Females Sex bias 

 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

10 

11 

12 

13 

14 

15 

16 

17 

18 

LDA functions from present work 

y=22.1513-3.4643*VA-2.6502*SPC-1.7547*MAR 

y=10.3637-2.5315*GL-0.9168*MA-0.0445*ME 

1+2 

y=7.3023-2.7024*GL+0.0104*ME 

1+4 

y=9.8342-2.4391*GL-0.9168*MA 

1+6 

y=5.566-1.3719*MA-0.2379*ME 

1+8 

 

BLR functions by Klales et al. [7] and Walker [8] 

y=16.312-2.726*VA-1.073*SPC-1.214*MAR 

y= 9.128-1.375*GL-1.185*MA-1.151*ME 

10+11 

y= 7.372-1.525*GL-1.485*ME 

10+13 

y= 7.434-1.568*GL-1.459*MA 

10+15 

y= 7.382-1.629*MA-1.415*ME 

10+17 

 

96.59 

89.77 

98.86 

89.77 

98.86 

88.95 

98.95 

74.43 

97.73 

 

 

93.18 

77.27 

98.3 

75 

98.86 

81.58 

98.42 

58.52 

97.73 

 

98.95 

87.37 

100 

88.42 

100 

85.71 

100 

87.37 

100 

 

 

88.42 

95.79 

100 

94.74 

100 

97.14 

100 

88.42 

100 

 

93.83 

92.59 

97.53 

91.36 

97.53 

92.94 

97.65 

59.26 

95.06 

 

 

98.77 

55.56 

96.3 

51.85 

97.53 

62.35 

96.47 

23.46 

95.06 

 

5.12 

-5.22 

2.47 

-2.94 

2.47 

-7.23 

2.35 

28.11 

4.94 

 

 

-10.35 

40.23 

3.7 

42.89 

2.47 

34.79 

3.53 

64.96 

4.94 

 

 

 


