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Abstract 

Background: There are observational data suggesting an inverse association between 

circulating concentrations of sex hormone binding globulin (SHBG) and risk of 

postmenopausal breast cancer. However, causality is uncertain and few studies have 

investigated this association by tumour receptor status. We aimed to investigate these 

associations under the causal framework of Mendelian randomization (MR).   

Methods: We used summary association estimates extracted from published genome-wide 

association study (GWAS) meta-analyses for SHBG and breast cancer to perform two-sample 

MR analyses. Summary statistics were available for 122,977 overall breast cancer cases, of 

which 69,501 were estrogen receptor positive (ER+ve) and 21,468 were ER-ve, and 105,974 

controls. To control for potential horizontal pleiotropy acting via body mass index (BMI), we 

performed multivariable inverse-variance weighted (IVW) MR as the main analysis with the 

robustness of this approach further tested in sensitivity analyses.  

Results: The multivariable IVW MR analysis indicated a lower risk of overall (odds ratio 

[OR]: 0.94; 95% confidence interval [CI]: 0.90, 0.98; P: 0.006) and ER+ve (OR: 0.92; 95% 

CI: 0.87, 0.97; P: 0.003) breast cancer, and a higher risk of ER-ve disease (OR: 1.09; 95% 

CI: 1.00, 1.18; P: 0.047) per 25 nmol/L higher SHBG levels. Sensitivity analyses were 

consistent with the findings of the main analysis. 

Conclusions: We corroborated the previous literature evidence coming from observational 

studies for a potentially causal inverse association between SHBG concentrations and risk of 

ER+ve breast cancer, but our findings also suggested a potential novel positive association 

with ER-ve disease that warrants further investigation given the low prior probability of being 

true. 
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Key messages: 

 

• Using a Mendelian randomization analytical framework, we corroborated previous 

literature evidence coming from observational studies for a potentially causal inverse 

association between sex hormone binding globulin (SHBG) concentrations and risk of 

overall and estrogen receptor positive (ER+ve) breast cancer.  

• Our findings also suggested a novel positive association with ER-ve disease, which 

warrants further investigation given the low prior probability of being true.  

• Our study underlines that the role of SHBG in breast cancer development may be 

complex potentially exerting differential effects depending on ER status. 
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Introduction 

Multiple lines of observational evidence suggest that endogenous sex steroid 

hormones play a central role in the development of breast cancer. Exposures related to 

elevated lifetime circulating oestrogen concentrations, such as early age at menarche, 

nulliparity, late age at menopause and hormone replacement therapy, are well-established 

breast cancer risk factors (1, 2). Among postmenopausal women, positive associations of 

circulating oestrogens and androgens with breast cancer are consistently reported in 

observational studies (3). However, these associations are confirmed only for oestrogen 

receptor-positive (ER+ve) breast cancer and the literature is sparse and inconsistent for 

oestrogen receptor-negative (ER-ve) disease (4-10). Sex hormone-binding globulin (SHBG) is 

a glycoprotein that binds sex steroid hormones. It plays a vital role in regulating 

concentrations of free oestradiol and testosterone in circulation (11) but may also have 

biologic functions beyond sex hormone binding (12, 13). An inverse association between 

SHBG concentrations and risk of postmenopausal breast cancer has been consistently shown 

(3, 14). In contrast, associations by tumour receptor status have been inconsistent (4, 6, 8, 9) 

and for premenopausal disease they have been null (15, 16).   

Residual confounding, reverse causation and exposure measurement error occur 

frequently in observational studies and may bias their results, hindering the ability to make 

robust causal inference. An alternative approach to conventional analyses of directly assessed 

exposures in observational studies is Mendelian randomization (MR). MR uses genetic 

variants robustly associated with the exposure of interest in an instrumental variable analysis 

to make causal inferences about the effects of the exposure on an outcome (17). The random 

and fixed allocation of alleles at conception makes confounding and reverse causation less 

likely explanations for associations identified in MR studies (18).  
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Twin studies indicate that approximately half of the variance in circulating SHBG 

concentrations within populations is accounted for by genetic factors (19). A meta-analysis of 

10 genome-wide association studies (GWAS) in 21,791 individuals identified several 

genomic regions associated with circulating SHBG. These regions explained approximately 

16% and 8% of the genetic variation in SHBG in men and women, respectively (20), 

providing suitable genetic instruments to undertake MR analyses of genetically determined 

SHBG concentrations.  

The aim of the present study was to investigate associations of genetically determined 

circulating SHBG concentrations with risk of overall breast cancer and risk stratified by ER 

status of the tumour under the MR causal framework. We used publicly available summary 

association data for 28,837 individuals with measured circulating SHBG concentrations and 

122,977 breast cancer cases, adopting a two-sample MR design since the exposure and 

outcome were measured in separate non-overlapping samples (21). To control for potential 

horizontal pleiotropy acting via body mass index (BMI) (Figure 1), we performed 

multivariable MR (22), because some of the selected genetic variants for SHBG were also 

associated with BMI (23).  

 

Methods 

Data for the genetic epidemiology of SHBG and breast cancer 

We selected genetic variants for the MR analysis on the basis of a genome-wide 

significant association with circulating SHBG concentrations (i.e. p-value threshold for 

inclusion at < 510-8). We extracted summary results for 13 variants reported in a GWAS 

meta-analysis of 28,837 people (13,899 women and 14,938 men) from 16 studies, which 

were adjusted for age, sex and BMI (20). For these 13 variants (i.e. rs17496332, rs780093, 

rs3779195, rs440837, rs7910927, rs4149056, rs8023580, rs2411984, rs12150660, rs6258, 
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rs1641537, rs1625895, rs1573036), we obtained publicly available summary association 

estimates for 122,977 women with overall breast cancer, of which 69,501 women were ER+ve 

cases and 21,468 were ER-ve cases, and 105,974 controls. All women were of European 

ancestry from the Breast Cancer Association Consortium (BCAC), and the GWAS analysis 

adjusted for principal components and country or study (24). We excluded rs6258, having 

minor allele frequency <1% in the GWAS for breast cancer and exerted large effect size 

(Table 1).  

 

Statistical power 

Power calculations were performed based on a method suggested by Brion et al. (25). 

We fixed the type-I error rate at 0.05. Under the current sample size, our study has 80% 

power to detect a causal effect of a relative 4% (i.e. OR: 0.96) decrease in breast cancer risk 

per 25 nmol/L higher SHBG concentrations assuming an R2 of 8% (variance explained by the 

selected SHBG variants). Corresponding estimates for ER+ve and ER-ve disease were 5% and 

7% relative reductions. Assuming that a top to bottom quintile comparison is roughly 

equivalent to an OR per 2.8 standard deviation change (i.e. 25 nmol/L) in SHBG 

concentrations, our study had 80% power to detect ORs of 0.89, 0.87 and 0.82 or less 

comparing the top vs. bottom quintiles of SHBG concentrations for overall, ER+ve and ER-ve 

breast cancer, respectively, which are smaller than the effect sizes observed in observational 

studies (3, 14). For completeness, we depict power calculations for a range of proportions of 

SHBG variation explained (Table 2). 

 

Statistical analysis 



 

8 

 

We employed a multivariable inverse-variance weighted (IVW) MR approach (22) 

to adjust for potential horizontal pleiotropy acting through BMI (Figure 1), because some of 

the selected genetic variants for SHBG (i.e. rs12150660, rs1625895, rs7910927, rs780093 

and rs17496332) were also associated with BMI (smallest p-value 7.6410-5 for rs780093) 

(23), and BMI has been consistently associated with SHBG concentrations (26) and breast 

cancer risk (27, 28). Publicly available genetic data for BMI were retrieved from the GIANT 

consortium for 339,000 individuals, 95% of whom were of European descent (23) (Table 1). 

We also applied the multivariable MR-Egger method to investigate for potential pleiotropic 

pathways other than via BMI (29). For comparison, we employed two univariable MR 

methods, a fixed-effects IVW average of SNP-specific associations and a likelihood-based 

method (30, 31), which do not take into account potential horizontal pleiotropy. For ease of 

comparison with observational studies, we transformed beta coefficients from the logarithmic 

scale that were originally reported in the published GWAS (20) into the natural scale using a 

formula suggested by Rodriguez-Barranco et al. (32). All MR effect estimates are reported as 

odds ratios (OR) per standard deviation (i.e. 25 nmol/L) higher SHBG concentrations. 

A series of statistical tests were performed to investigate the potential violation of MR 

assumptions (33, 34). The first assumption (i.e. that the genetic variants are strongly 

associated with circulating SHBG concentrations) was very likely satisfied by employing 

genetic variants associated with circulating SHBG concentrations at a genome-wide 

significance level. To test for potential violation of the second and third MR assumptions (i.e. 

that the genetic variants are not associated with any confounder of the SHBG-breast cancer 

association and are conditionally independent of breast cancer given SHBG concentrations 

and all confounders), we acquired information for the association of the selected SHBG SNPs 

with other traits from the GWAS Catalogue (35). To further statistically probe for existence 

of horizontal pleiotropy, which means that the selected variants have an effect on other traits 
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outside of the pathway of SHBG and have an impact on breast cancer risk violating the third 

MR assumption, we employed the Cochran's Q statistic that quantifies the heterogeneity in 

effect sizes attributed to the selected genetic variants. When there was evidence for 

heterogeneity, we performed a random effects IVW approach in order to take into account 

this source of uncertainty (36). MR-Egger regression was also used, where values away from 

zero for the intercept term are an indication of horizontal pleiotropy (37). The slope of the 

MR-Egger regression (37) and the estimator from the weighted median (38) and weighted 

mode (39) approaches were used to estimate causal effects accounting for potential violations 

of the second and third MR assumptions. The MR pleiotropy residual sum and outlier test 

(MR-PRESSO) was also used to identify pleiotropic variants (p-value threshold set at 0.05) 

and if there was evidence for pleiotropy, those variants were excluded (40). The weighted 

median, weighted mode and MR-PRESSO analyses were performed only in the univariable 

MR approach, as these methods have not been extended in multivariable MR.  

Further, sensitivity analyses were performed to test the robustness of the genetic 

instrument for SHBG concentrations after: i) excluding one SNP (i.e. rs780093) due to 

potential pleiotropy with several other traits (e.g. urate levels, triglycerides, Crohn's disease, 

breast size (41-44)); ii) excluding 3 SNPs (i.e. rs1641537, rs1625895 and rs3779195) that 

were derived from conditional analyses (i.e. adjusting for other genetic variants) in the 

GWAS for SHBG; iii) using only 3 SNPs (i.e. rs12150660, rs7910927, rs780093) that were 

genome-wide significant in the GWAS analysis only among women; iv) using female-

specific estimates for the SNP-SHBG associations (for 3 SNPs i.e. rs1641537, rs1625895 and 

rs3779195 estimates were only reported in males and females together); v) using only two 

SNPs in the SHBG gene as instruments (i.e. rs12150660 and rs1641537) and vi) excluding 

five SNPs (i.e. rs12150660, rs1625895, rs7910927, rs780093 and rs17496332) associated 
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with BMI. Sensitivity analyses (v) and (vi) were performed only in the univariable MR 

framework. 

All the statistical analyses were implemented in the Mendelian randomization R 

package (45), apart from the weighted mode approach where we used the MR robust package 

in STATA (46). 

 

Results 

Mendelian randomization estimates 

Figure 2 shows the multivariable IVW MR analysis adjusting for the potential 

horizontal pleiotropy via BMI. A 6% decreased risk for overall breast cancer was observed 

per 25 nmol/L higher SHBG concentrations (OR: 0.94; 95% confidence interval [CI]: 0.90, 

0.98; P: 0.006) and an 8% decreased risk for ER+ve disease (OR: 0.92; 95% CI: 0.87, 0.97; P: 

0.003). In contrast, there was a 9% increased risk for ER-ve disease per 25nmol/L higher 

SHBG concentrations (OR: 1.09; 95% CI: 1.00, 1.18; P: 0.047). There was little evidence of 

heterogeneity in the effect sizes attributed to each of the genetic variants for associations with 

overall (Cochran’s Q P: 0.74), ER+ve (P: 0.75) and ER-ve breast cancer (P: 0.55). The 

multivariable MR-Egger analysis yielded large P-values for the intercept term indicating low 

probability of horizontal pleiotropy; the point estimates of the slope were consistent with our 

main MVMR IVW analysis but the confidence intervals were wider for overall breast cancer 

(OR: 0.97; 95% CI: 0.88, 1.08; P: 0.572; P-intercept: 0.385) and by tumour receptor status 

(ER+ve OR: 0.97; 95% CI: 0.86, 1.10; P: 0.564; P-intercept: 0.325 and ER-ve disease OR: 

1.00; 95% CI: 0.83, 1.21; P: 0.970; P-intercept: 0.294), but this method is known to have low 

power when few genetic instruments are used (47). 

When we performed the univariable IVW MR analysis that does not account for 

potential horizontal pleiotropic effects via BMI (Supplemental Table 1), the results were 
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similar to the multivariable IVW analysis but they were slightly attenuated for overall (OR: 

0.96; 95% CI: 0.92, 1.00; P: 0.07) and ER+ve breast cancer (OR: 0.95; 95% CI: 0.91, 1.00; P: 

0.06). The results were almost identical for ER-ve breast cancer (OR: 1.09; 95% CI: 1.01, 

1.18; P: 0.03). The maximum likelihood univariable MR approach yielded almost identical 

results. 

 

Sensitivity analyses 

The multivariable IVW results for overall and ER+ve breast cancer did not change in 

sensitivity analyses that removed genetic variants from the instrument of SHBG to test its 

robustness (Figure 2). The association for ER-ve disease remained after excluding rs780093 

(sensitivity analysis 1) and when using female specific SNP-SHBG association estimates 

(sensitivity analysis 4), but it was not observed in other sensitivity analyses (Figure 2).  

We applied several statistical tests and sensitivity analyses in the univariable IVW 

MR approach to further test the robustness of MR assumptions (Supplemental Table 1). 

There was some evidence of heterogeneity for associations of SHBG with overall (Cochran’s 

Q P: 0.01) and ER+ve (P: 0.02) breast cancer. However, the random effects IVW analyses 

provided similar estimates with only slightly wider confidence intervals for overall (OR: 

0.96; 95% CI: 0.90, 1.02) and ER+ve disease (OR: 0.95; 95% CI: 0.88 1.02). The MR-Egger 

intercept yielded large p-values suggesting absence of horizontal pleiotropy, but this analysis 

was likely underpowered due to the relatively small number of genetic variants 

(Supplemental Table 1). When we applied the MR-Egger regression slope approach, the 

weighted median and weighted mode approaches, the point estimates were on the same 

direction as the IVW approach but the p-values were large (Supplemental Table 1). The MR-

PRESSO test indicated one SNP, rs7910927, as an outlier for overall and ER+ve disease, 

which was also evident when we estimated and plotted MR results by each separate SNP 
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(Supplemental Figures 1-3). When this variant was excluded from the multivariable IVW 

analysis, the results were very similar with the multivariable analysis including all SNPs 

(overall breast cancer, OR: 0.95; 95% CI: 0.90, 1.00; P: 0.045; ER+ve, OR: 0.94; 95% 

CI: 0.88, 1.00; P: 0.046; ER-ve, OR: 1.10; 95% CI: 1.00, 1.22; P: 0.051).  In addition, when 

rs7910927 variant was excluded along with other four variants associated with BMI 

(sensitivity analysis 6) and univariable MR was run, we observed evidence for association for 

overall (OR: 0.93; 95% CI: 0.86, 1.00; P: 0.04), ER+ve (OR: 0.91; 95% CI: 0.83, 0.99; P: 

0.03) and ER-ve breast cancer (OR: 1.15; 95% CI: 1.00, 1.32; P: 0.04) in agreement with the 

results from the multivariable IVW analysis. Similar evidence for association was observed 

in most other sensitivity analyses that removed genetic variants from the instrument of SHBG 

to test its robustness (Supplemental Table 1). 

  

Discussion 

We conducted a large MR study using summary statistics based on 122,977 women 

with breast cancer, of which 69,501 cases had ER+ve disease and 21,468 cases had ER-ve 

disease. We demonstrated for the first time under the MR causal framework an inverse 

association of genetically determined SHBG concentrations with risk of overall and ER+ve 

breast cancer, but a positive association for ER-ve disease.  

 A substantial number of observational studies have assessed the association of 

circulating SHBG concentrations with risk of postmenopausal breast cancer. A meta-analysis 

of 26 prospective studies involving 5,172 postmenopausal breast cancer cases and 10,939 

controls estimated an OR of 0.64 (95% CI; 0.57, 0.72) comparing the highest versus the 

lowest concentrations of SHBG, and had low between-study heterogeneity and little evidence 

of small-study effects (14). Similar results were observed in a pooled analysis of 9 

prospective studies (3). These findings are concordant with the results of the current MR 
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study. Assuming that a top to bottom quintile comparison is roughly equivalent to an OR per 

2.8 standard deviations (i.e. 25 nmol/L), our MR study estimated an OR equal to 0.84 (95% 

CI: 0.74, 0.95) for overall breast cancer risk, 0.80 (95% CI: 0.69, 0.93) for ER+ve and 1.26 

(95% CI: 1.00, 1.58) for ER-ve breast cancer.  

 The literature on the association of circulating SHBG concentrations with breast 

cancer risk stratified by tumour receptor status is limited. The largest available study utilizing 

data from 382 postmenopausal ER+ve (602 controls) and 172 ER-ve breast cancer cases (219 

controls) suggested an inverse association for ER+ve disease (OR: 0.71, 95% CI: 0.51, 1.00) 

and a similar but imprecise association for ER-ve disease (OR: 0.73, 95% CI: 0.43, 1.25) 

comparing the top vs. bottom tertiles of SHBG concentrations (6). A case-cohort analysis in 

the Melbourne Collaborative Cohort that included 132 ER+ve and 45 ER-ve women with breast 

cancer observed inverse associations for SHBG concentrations with both ER+ve (HR per 

doubling of SHBG: 0.41; 95% CI: 0.27-0.63) and ER-ve disease (HR: 0.44; 95% CI: 0.23-

0.83) (4). Results from the Nurses' Health Study nested case-control study that included 147 

women with ER+/progesterone receptor positive (PR+) postmenopausal breast cancer and 622 

controls yielded an OR of 0.50 (95% CI: 0.30, 0.80) comparing women in the highest versus 

the lowest quartile of SHBG concentrations. However, there was little evidence of 

associations for ER-/PR- (N=38 cases) and ER+/PR- (N=33 cases) disease (8). No associations 

of circulating SHBG concentrations with ER+ve (N=127 cases) and ER-ve(N=30) 

postmenopausal breast cancer were recorded in the ORDET cohort (9). Our MR investigation 

observed an inverse association between genetically determined SHBG concentrations and 

risk of ER+ve breast cancer in agreement with the direction of the majority of the existing 

observational literature, but we also observed an increased risk for ER-ve disease, which is a 

novel finding and warrants further investigation given the wider observed variability in this 

analysis and the low prior probability of being true (48). 
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Breast cancer is a complex and heterogeneous disease with a variety of 

histopathologic and molecular subtypes that have diverse risk factors and clinical outcomes 

(49). The associations of oestrogens and androgens with a higher risk of postmenopausal 

ER+ve breast cancer are well established, but the literature is sparse and inconsistent for ER-ve 

disease. The observed positive association between genetically determined circulating SHBG 

concentrations and risk of ER-ve breast cancer, which was qualitatively different from the 

association observed for ER+ve disease, does not have a straightforward explanation, but it is 

biologically plausible given the pleiotropic actions of SHBG (12, 13). For many years, SHBG 

was believed to serve exclusively as a transporter or reservoir for sex steroids. However, in 

the last two decades it became clear that cell membranes of many tissues express a receptor 

for SHBG and that SHBG is found intracellularly (12, 13). Binding of SHBG to its receptor 

has been shown to activate cyclic adenosine monophosphate (cAMP) (13), an intracellular 

signal transduction pathway important for many biological processes including cancer growth 

(50, 51). It has been also shown that the ligand-bound SHBG receptor can activate the 

androgen receptor in the prostate in the absence of androgens (52). Preclinical evidence 

indicates that testosterone has antiproliferative effects on mammary cell growth regulated by 

the androgen receptor (53). A case-cohort study in the Women’s Health Initiative 

Observational Study showed that higher serum concentrations of bioavailable testosterone 

were associated with lower risks of ER-ve postmenopausal breast cancer (54), providing 

indirect evidence in accordance with our findings for SHBG and ER-ve disease. Additional 

studies on SHBG and ER-ve breast cancer are required to delineate potential mechanisms 

linking SHBG to this subtype. 

This is the first study, to our knowledge, that investigated the potential causal 

association between SHBG concentrations with risk of overall breast cancer and cancer by 

ER status overcoming the potential limitations of observational studies. Our MR study was 
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powered to detect the effect sizes that we found. The F-statistic was 208.9, assuming that the 

variance explained by the genetic instrument is approximately 8%, indicating a strong 

instrument. Nevertheless, several limitations should be also considered in interpreting our 

findings. MR estimates have a causal interpretation only if the assumptions of the method 

hold. Though it is not possible to prove the validity of some of these assumptions, we 

performed sensitivity analyses and used several statistical tests to investigate potential 

violations. One out of the 12 variants associated with SHBG concentrations (i.e. rs12150660) 

has been also associated at a genome-wide significance level with testosterone concentrations 

in men (55), but this variant is located in the SHBG gene, and will likely lead to vertical (not 

horizontal) pleiotropy not violating thus the results of the present study (56). In addition, 

most known genetic signals for oestradiol and testosterone have only captured variability in 

men, precluding an MR analysis for these hormones in relation to breast cancer (55, 57-59). 

The summary level data that we used did not allow for stratified analyses by covariates of 

interest, such as menopausal status, exogenous hormone use or according to breast cancer by 

progesterone and HER2 receptor status. Information on menopausal status was not available 

in the large genetic network that we used, but approximately 85% of breast cancer cases in 

the sample were postmenopausal at diagnosis (24). Moreover, summary statistics for all 

genome-wide significant SNPs for BMI (60) were not available in the respective GWAS for 

SHBG (20), and thus these could not be incorporated in a unified multivariable MR 

framework as was performed for other traits (61). Consequently, the potential causal 

association of BMI with breast cancer cannot be quantified by this study or compared with 

estimates from another MR study (62). Future large pooling consortia, genome-wide 

association studies of oestradiol, testosterone and SHBG concentrations in women with 

expanded sample size, and MR studies with individual level data could provide improved 

understanding of the role of sex steroids in breast tumorigenesis. 
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 In summary, using a comprehensive MR analytical framework, we corroborated the 

previous literature evidence coming from observational studies for a potentially causal 

inverse association between SHBG concentrations and risk of ER+ve breast cancer. At the 

same time, our findings suggested a novel positive association with ER-ve disease, which 

warrants further investigation given the low prior probability of being true, but might indicate 

that the role of SHBG in breast cancer development is complex exerting differential effects 

depending on ER status. 
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Figure legends 

Figure 1. Graphical diagram of the Mendelian randomization analysis between sex hormone-

binding globulin (SHBG) concentrations and risk of breast cancer 

Abbreviations: BMI, body mass index; G, gene or genetic instrument. 

 

Figure 2. Multivariable inverse-variance weighted mendelian randomization estimates 

between sex hormone-binding globulin (SHBG) concentrations and risk of breast cancer 

adjusting for the genetic effects of  

body mass index (BMI). 

Main analysis: The odds ratios represent increase/decrease of risk per 25nmol/L increase in SHBG levels (N=12 

SNPs). 

Sensitivity analysis 1: We used 11 SNPs after excluding rs780093 due to potential pleiotropy with several other 

traits (41-44). 

Sensitivity analysis 2: We used 9 SNPs after excluding rs1641537, rs1625895 and rs3779195 derived from 

conditional analyses in the GWAS of SHBG (20). 

Sensitivity analysis 3: We used as instruments only the 3 SNPs (i.e. rs12150660, rs7910927, rs780093), which 

were significant in the GWAS analysis for SHBG only in women (20). 

Sensitivity analysis 4: We used female-specific estimates for the SNP-SHBG associations (for 3 SNPs i.e. 

rs1641537, rs1625895 and rs3779195 estimates were only reported in males and females together) (20). 

 

Table legends 

Table 1. Characteristics of genetic variants associated with sex hormone-binding globulin 

(SHBG) and breast cancer in published GWAS. 
Footnotes: 

a Beta units are per-allele effect estimates in natural logarithm transformed SHBG concentrations (nmol/L) (20). 

To enable better comparison with results from observational studies, we run MR analyses after transforming 

these beta coefficients into the natural scale (nmol/L) using a formula suggested by Rodriguez-Barranco and 

colleagues (32). 
b Beta units are per standard deviation increase of body mass index (kg/m2) (23).  
c Per-allele logarithm of the odds ratios between breast cancer cases and controls (24). 

Abbreviations: GWAS, genome-wide association studies; SNPs, single nucleotide polymorphisms; Chr, 

Chromosome; pos, position; SHBG, sex hormone-binding globulin; ER, oestrogen receptor; SE, standard error; 

NA, non available;  

 

Table 2. Number of cancer cases and controls and statistical power in Mendelian 

randomization study of SHBG and breast cancer risk. 

 
Abbreviations: ER: estrogen receptor.  

Footnotes: 

aMinimum detectable odds ratio per 25nmol/L increase/decrease in SHBG levels: assume 80% power, 5% alpha 

level, and that 6% to 10% of SHBG variance is explained by the twelve SNPs used in the MR analysis. 
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