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The assumption that different genetic elements can make separate
contributions to the same quantitative trait was originally made in
order to reconcile biometry and Mendelism and ever since has been
used in population genetics, specifically for the trait of fitness. Here
we show that sex is responsible for the existence of separate genetic
effects on fitness and, more generally, for the existence of a
hierarchy of genetic evolutionary modules. Using the tools devel-
oped in the process, we also demonstrate that in terms of their
fitness effects, separation and fusion of genes are associated with
the increase and decrease of the recombination rate between them,
respectively. Implications for sex and evolution theory are discussed.

recombination | epistasis | additive effects | fitness | genetic architecture

Sex has been called “the queen of problems in evolutionary
biology” largely because its functional significance has not

been determined (1). In a recent paper, a new approach to this
problem was proposed: mixability theory (2). It was shown for-
mally that sex enables selection for alleles that perform well
across different genetic contexts (henceforth, “selection for
mixability”). Furthermore, it was argued qualitatively that
selection for mixability is responsible for the existence of sepa-
rate, identifiable contributions by genes to fitness (2). Separate
contributions to fitness are a defining characteristic of evolu-
tionary modules—modules that serve different adaptive func-
tions and that are expected to reduce evolutionary tradeoffs
between adaptations (3, 4). Thus, a connection was hypothesized
between sex, separate contributions to fitness, and genetic mod-
ularity (2, 5), the last of which has become widely appreciated for
its importance to evolution as a result of the genomic era (3, 6).
In this article, two major limitations of mixability theory are

overcome. First, although mixability theory has so far considered
only the gene as a potential evolutionary module (2), the study of
genetic modularity is concerned largely with the existence of sets
of closely interacting (but not necessarily linked) genes, with
weak interactions between these sets (3, 6). Here, we show that
sex causes the existence of evolutionary modules consisting of
such sets of genes. In addition, we show that the modularity
characteristics of strong interactions within sets, weak inter-
actions between sets, and multiple use of lower-level modules in
higher-level modules (3, 6) arise together in evolutionary mod-
ules directly from the interaction of sex and natural selection.
Second, the argument that sex causes separate genetic effects

on fitness (2) followed qualitatively from the results of mixability
theory and, due to its importance, warrants a rigorous demon-
stration. Here, such a demonstration is provided.
The implications of the argument on separate effects relate to

the foundations of evolutionary theory. For evolution to have
occurred by small, cumulative steps, Darwin proposed that nat-
ural selection acted on continuous variation. But as inheritance
turned out to be based on discrete elements, a seeming contra-
diction emerged between Darwin’s reliance on continuous
(“quantitative”) traits and the discrete nature of inheritance (see
biometry-Mendelism debate, ref. 7). This contradiction was
resolved by making the assumption that different genes could
make separate, small contributions to the same quantitative trait
(8); because, as Fisher showed (8), these separate effects allowed
the trait to vary continuously in the population. The assumption
of the existence of such separate effects has become a corner-

stone of the modern evolutionary synthesis (7) and has been
commonly applied in population genetics, specifically for the
trait of fitness.
In the context of sex, it is after this assumption of separate

effects had been made that ideas were proposed for how sex
might be beneficial. The Fisher/Muller hypothesis (9, 10) as well
as Muller’s ratchet (11) and the deterministic mutation
hypothesis (12) are ideas of this kind, and they require separate
effects on fitness (the beneficial and deleterious mutations they
invoke can exist only when alleles maintain their respective
effects on fitness to some degree in different individuals).
However, if sex causes separate effects on fitness in the first
place, then it needs to be treated as a part of the foundations of
the modern synthesis.
The present results are made possible by a sequence of

measures of the evolutionary dynamics in population genetic
models. These measures focus on the evolutionary transient (2),
which has rarely been analyzed for reasons of mathematical
tractability. They show that sex enables selection for mixability of
both single alleles as well as sets of alleles at different loci, and
that at the same time genes and sets of (not necessarily linked)
genes acquire separate effects on fitness. No contradiction exists
between separate effects and genetic interaction or “epistasis”:
What is a separate effect of a set of genes is at the same time a
tight interaction of the genes within the set. Finally, these
measures make it possible to demonstrate the fusion and sepa-
ration of genes in terms of their fitness effects with the decrease
and increase of the recombination rate between them, respec-
tively. Implications of this result for understanding genetic
interactions will also be discussed.

Separate Effects and Modularity
In what follows, we will use the terms “locus” and “gene”
interchangeably. Consider a population of haploid genotypes
made up of alleles at three loci. The fitnesses of the three-locus
haplotypes may be represented as

wijk ¼ 1þ s1i þ s2j þ s3k þ s12ij þ s13ik þ s23jk þ s123ijk ; [1]

where wijk is the fitness of the haploid genotype with alleles i, j
and k at the first, second, and third loci respectively, and the s
terms are the separate selection coefficients associated with
alleles or interactions of alleles, with superscripts indicating the
loci (labeled 1, 2, and 3) that each term refers to and subscripts
indicating the respective alleles at those loci. Thus, s2j, for exam-
ple, represents the effect on fitness of allele j at locus 2, whereas
s23jk is the effect on fitness of the interaction between alleles j and
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k at loci 2 and 3, respectively. Notice, however, that this system
of equations, viewed as equations with the s terms as unknowns
and the wijk left-hand sides as given quantities, is severely under-
determined: We can always take s123ijk = wijk – 1, and all other s
terms equal to zero. Thus, this system becomes meaningful only
when the s123ijk are very small in absolute value — small corrections
to an otherwise accurate inference of fitness effects. We will see
that sex acts to establish this “meaningfulness” of fitness effects.
Notice that the important aspect of Eq. 1 for our purposes is not

additivity per se but separability. Although models with additive
and multiplicative effects can yield quantitatively different results,
similar principles to the ones explored here may be expected to
apply to analogous equations written with multiplication or
another associative operation as an aggregator. We use additivity
here to facilitate the handling of the multiplicity of levels.
We now notice that, when such systems of equations become

meaningful: (i) s terms come to represent genes and sets of genes
that have relatively context-insensitive effects on fitness, because
the same terms can be used in the description of different fit-
nesses (e.g., wijl includes the same s1i, s

2
j and s12ij, as wijk). This point

further implies that these genes and sets of genes operate semi-
independently of each other to produce their respective context-
insensitive effects. (ii) Strong interactions within a set of genes
and weak interactions between sets are implied by the facts that
each s term is a potentially complex function of its alleles,
whereas different s terms are added to each other regardless of
the particular identities of the alleles involved in each. (iii) The
genes and sets of genes thus represented can be embedded in a
hierarchy of modules, with repeated use of lower-level modules
in higher-level modules (Fig. 1). (iv) The effect of a gene sub-
stitution on fitness is local; e.g., a change in locus 1 from allele i
to allele i′ entails an effect on fitness limited to the modules that
gene 1 participates in (e.g., s1, s12, and s123). Because points (i)–(iv)
describe characteristics of genetic evolutionary modules (3, 4), a
connection is established between separate fitness effects and
genetic evolutionary modularity. Eq. 1 can be generalized to
include sets of many genes.

Model and Conceptualization
We use a classical population genetic framework (13) to model
the discrete time evolutionary dynamics of a large panmictic
population without mutation. We consider haplotypes ijk···, with
allele i at the first locus, allele j at the second locus, allele k at the
third locus, etc., and their frequencies at generation t, Pijk···, t.
Each genotype, namely a haplotype ijk··· in the haploid case, or

an unordered pair of haplotypes {ijk···;lmn···} in the diploid case,
has a certain fitness value wijk··· or wijk···/lmn···, respectively. To
represent selection, we multiply the frequency of each genotype
by its fitness and normalize. To represent sex, i.e., genetic mixing
due to recombination or segregation, we assume that each pair of
parental haplotypes generates a recombinant offspring haplotype
with the appropriate probability as determined by the laws of
inheritance (Methods).
To gain a geometric intuition into the system, consider the

space of haplotypes, which in the three-locus case becomes a
3D space with points representing combinations of alleles at
three genes, lines parallel to the axes representing combinations
of alleles at two genes, and planes parallel to the axes repre-
senting single alleles. Now, the mating between two haplotypes
can be conceptualized as a transfer of frequencies from these
haplotypes to the other points in the Cartesian closure that these
two haplotypes define. For example, the mating between ijk and
lmk transfers frequencies from Pijk,t and Plmk,t to Pimk, t+1 and
Pljk, t+1; and the mating between ijk and lmn transfers frequencies
from Pijk, t and Plmn, t to Pijn, t+1, Pimk, t+1, Pimn, t+1, Pljk, t+1, Pljn, t+1,
and Plmk, t+1. Taking all matings together, we see that sex tends to
homogenize the frequencies within each plane parallel to the
axes, each line parallel to an axis, and other such entities in
higher-dimensional systems, to the degree that all such entities
can be homogenized simultaneously. This process, which we call
“rebalancing” (2), changes the multigenerational growth-rate of
the sum total of the frequencies within a given entity from being
determined largely by the maximal fitness value in that entity
toward being determined by the various fitness values in it. Thus,
sex enables haplotypes made up of combinations of alleles at
different loci (including the single locus case, ref. 2) to compete
with each other based on how well they perform across different
genetic contexts, whereas in asexual populations only whole
genotypes can be meaningfully said to be competing with each
other. In population genetic terms, rebalancing reduces linkage
disequilibrium, which has the effect of favoring mixability. This
geometric view amounts to a generalization of the concept of
rebalancing in mixability theory (2).

Mixability Measures and Results
Key to our methodology is decomposing the classical population
mean fitness measure into a new sequence of measures,M1, t,M2, t,
. . ., Mm, t. The first measure in the sequence, M1, t, is analogous to
the mixability measure �Mt (2), and the last,Mm, t, is identical to the
population mean fitness, �wt. Thus, this sequence explores the large
middle area between �Mt and �wt left unexplored in ref. 2.
For haploids, the measures are calculated as follows. Given all

n fitness values wijk··· for a system of m loci, we find single-
superscript parameters s1i, s

2
j, s

3
k. . . that minimize the error in the

prediction of wijk··· in the form: wijk··· = s∅ + s1i + s2j + s3k. . ., where
s∅ ¼ ∑ijk···wijk···=n. These parameters are ones that minimize
∑ijk···ðwijk··· − s∅ − s1i − s2j − s3k . . .Þ2. Having fixed those, we find
two-superscript parameters s12ij, s

13
ik, s

23
jk. . . that minimize the error

further, i.e., that minimize ∑ijk···ðwijk··· − s∅ − s1i − s2j − s3k . . .
− s12ij − s13ik − s23jk . . .Þ2; and so on for s terms with 3, 4, . . ., m
superscripts. (Strictly speaking, one could use bs1i , bs2j , etc. to dis-
tinguish between the variables and the optimizing solutions; in
what follows, the s terms will refer to these optimizing solutions.)
At generation t, we then calculate, for the level of single alleles,
the measure:

M1;t ¼ ∑
ijk···

Pijk···;tðs∅ þ s1i þ s2j þ s3k . . .Þ; [2]

for the level of pairs of alleles, the measure:

1 2

12 13

123

23

3

Fig. 1. A hierarchy of genetic modules in a three-locus haploid model. The
bottom nodes represent genes 1, 2, and 3 and are the first-level modules.
The center nodes represent the interactions of genes 1 and 2, 1 and 3, and 2
and 3 (denoted 12, 13, and 23, respectively) and are the second-level mod-
ules. The top node represents the interaction of all three genes and is the
third-level module. Notice that a correspondence can be drawn between the
s terms in Eq. 1 and the modules in Fig. 1 based on the former’s superscripts
and the latter’s labels, and that in such a hierarchy of modules, lower-level
modules are multiply used in higher-level modules.
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M2;t ¼ ∑
ijk···

Pijk···;tðs∅ þ s1i þ s2j þ s3k . . .þ s12ij þ s13ik þ s23jk . . .Þ; [3]

and so on for M1,t, M2,t, . . ., Mm,t, adding s terms of one more
superscript at each level. Finally, we obtain the difference meas-
ures: Δ1,t = M1,t – s∅, Δ2,t = M2,t – M1,t, . . ., Δm,t = Mm,t – Mm–1,t.
For diploids, we assume for now no position effects (SI Text)

and allow each set of alleles represented by an s term to include
alleles from either haplotype (SI Text). The resulting measures
are similar in essence to the ones above.
Mℓ,t and Δℓ,t show the extent to which, in a sexual population,

there is selection for sets of alleles representing haplotypes of up
to size ℓ (Mℓ,t) and of size ℓ (Δℓ,t), including ℓ = 1, that have high s
terms (in diploids, these sets may also include two alleles from the
same locus; see SI Text). These sets of alleles are ones that both
perform well across different genetic contexts and for which it is
meaningful to impute separate effects on fitness, as follows from
the definition of the s terms. If Δℓ,t is more often larger in sexual
than in asexual populations, then the s terms of level ℓ are more
appropriate for describing fitnesses in sexual than in asexual
populations, subject to the considerations below.
First, selection for mixability is inherently multigenerational

and dependent on the existence of variation (2) and, therefore,
as explained in (2) for �Mt and extended here to Mℓ,t, Mℓ,t func-
tions best during the evolutionary transient. Therefore, we
expect that, where Mℓ,t is more often larger with sex than with
asex, this difference would be observed most clearly during the
evolutionary transient.
Second, as ℓ increases, Mℓ,t comes to approximate more closely

�w, which corresponds to the level which we know a priori to be the
only level selected in asexual populations and which is selected
more strongly there than in sexual populations (2). Thus, although
we expect M1,t to be more often larger with sex than with asex
during the evolutionary transient, at some ℓ we expect this rela-
tionship to reverse so that Mℓ,t will be more often larger with asex
than with sex. We expect a similar reversal for Δℓ,t.
Third, since this reversal occurs because Mℓ,t approaches Mm,t

(as ℓ approaches m), we expect that by increasing the number of
loci and/or increasing the number of alleles per locus, thereby
making the approximation ofMm,t byMℓ,t improve more slowly in
ℓ, the reversal would occur at higher ℓ.
To test our predictions, we calculated Mℓ,t and Δℓ,t for several

combinations of locus number and allele number per locus under
both haploidy and diploidy. If aL is the case of L loci and a alleles
per locus, we considered the cases 23, 33, 43, 53, 63, 24, 34, 44, 25,
and 26 for haploidy and 22, 32, 42, 52, 62, 72, 23, 33, 43, and 53 for
diploidy. In each case, we ran a computer program that per-
formed the equivalent of iterating Eq. 4 for 300 generations for
both a recombination rate r = 0 (asex) and free recombination
between any two loci, r ¼ 1

2 (sex), 30 separate times or “trials” in
the haploid case and 100 separate trials in the diploid case. At
each trial we started both the sexual and asexual populations

with the same random set of fitness values drawn independently
from a uniform distribution on the interval [0.5,1.5] and the same
initial genotypic frequencies drawn independently from a uni-
form distribution and normalized (the frequencies and fitnesses
differed across trials). We then calculated Mℓ,t and Δℓ,t for each
population at each generation. To summarize the results across
trials, we calculated for each case: (i) the average Mℓ,t across
trials (〈Msex

ℓ,t 〉 and 〈Masex
ℓ,t 〉), (ii) the percentage of trials in which

the sexual population had a higher Mℓ,t than the asexual pop-
ulation (%Msex

ℓ,t > Masex
ℓ,t ), (iii) the percentage of trials in which the

sexual population had a higher Δℓ,t than the asexual population
(%Δsex

ℓ,t > Δasex
ℓ,t ), and (iv) the percentage of trials in which the

peak of the Δℓ,t curve, Kℓ, was higher in the sexual than in the
asexual population (%Ksex

ℓ > Kasex
ℓ ) and vice versa (%Ksex

ℓ < Kasex
ℓ ).

As an example, Fig. 2 shows these measures for the haploid
three-locus case with five alleles per locus. We see that M1,t and
M2,t are more often larger with sex than with asex—a difference
which peaks during the evolutionary transient—whereas M3,t
(¼ �wt) is more often larger with asex (Fig. 2A). These relation-
ships are seen also in the across-trial averages (Fig. 2B). The
extension of mixability theory from single alleles to sets of alleles
of size ≥ 1 is seen here in the fact that Δ2,t is also more often
larger with sex than with asex during the transient (Fig. 2C).
Thus, in this case, sex selects more efficiently than asex not only
for single alleles that have high s terms but also for pairs of
alleles at different loci that have high s terms. Comparing how
often the peak of Δℓ,t was larger with sex than with asex and vice
versa clearly shows the advantage to sex in the lower levels and
the advantage to asex in the highest level (Fig. 2D).
Fig. 3 shows this peak comparison for all conditions studied

and therefore shows all of the main results together. Although
asex has an advantage in one or more of the higher levels (with
an exception to be discussed), sex has an advantage in one or
more of the lower levels. Furthermore, the number of levels in
which sex has an advantage increases with the number of alleles
and/or with the number of loci. Thus, all predictions mentioned
above—the better applicability of the measures during the evo-
lutionary transient, the existence of a reversal point, and the
relation of this reversal point to the gene and allele numbers—
are confirmed.
Importantly, the reversal from advantage of sex in lower levels

to advantage of asex in higher levels does not mean that higher
levels are not selected for mixability by sex nor that they are
selected for mixability by asex. This reversal is due to the
approximation of �wt by Mℓ,t, where �wt is the measure that is
actively increased with asex. Moreover, for large enough ℓ, this
approximation can be closer in the asexual population, in which
case an advantage of sex can be seen in Δℓ,t (Fig. 3; six-locus
haploid case) that is not accompanied by an advantage in Mℓ,t
and is therefore another artifact of the comparison method.
Thus, our comparison of sex and asex confirms the prediction
that sex selects for mixability on multiple levels by revealing that
selection at lower levels and, at the same time, that comparison
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Fig. 2. Across-trial summary measures for the haploid three-locus case with five alleles per locus. For ℓ = 1 (solid), ℓ = 2 (dashed), and ℓ = 3 (dot-dash), the
graphs show: (A) %Msex

ℓ,t >Masex
ℓ,t , (B) 〈Msex

ℓ,t 〉 (gray) and 〈Masex
ℓ,t 〉(black). (C) %Δsex
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shows sex to be the cause of the appropriateness of separate
effect terms. However, it is not designed to compare the strength
of the selection for mixability between levels.
On this important point we propose a qualitative argument. In

the geometric space of haplotypes described in Model and
Conceptualization, with free recombination between any two loci,
higher-level entities (i.e., larger sets of genes) are more homo-
geneously rebalanced than lower-level entities, because for
example, more transfers occur between two points that are on
the same line (e.g., ijk, ljk) than between two points that are on
the same plane but not on the same line (e.g., ijk, lmk). At the
same time, higher-level entities experience more exchange of
frequencies per genotype between the genotypes within them
and the genotypes outside of them, which weakens the feedback
between the fitnesses within the entity and the evolutionary
change of the sum total of the frequencies in that entity. These
trends represent opposing influences on the strength of the
selection for mixability and suggest that it is not the lowest-level
entities (genes) but rather middle-level entities (sets of genes)
that are most strongly selected for mixability and that acquire the
strongest separate effects on fitness—a conjecture that cannot be
examined by the present comparison of sex and asex and that will

require new methodology to be examined. In agreement with it,
though, a verbal argument by Schlosser (14) that is based on
opposing trends and that is akin to our analysis suggests that
middle-level units are the best-delimited units of evolution (14).
Importantly, our iterations started with random genotypic fit-

nesses and frequencies. Hence, there was no justification for the
use of separate effect terms in describing genotypic fitnesses
initially. The appropriateness of these terms emerged a poste-
riori from the interaction of sex and natural selection, as indi-
cated by the increase in the Δℓ,t measures at low ℓ. Thus, our
results establish formally that sex causes the existence of separate
effects on fitness at multiple levels.
Two remarks are useful. First, although it is the erasure of

initially meaningless small s terms that shows the emergence of
separate genetic effects here, once separate effects are assumed
to exist they can be recalculated by weighing the genotypic fit-
nesses by genotypic frequencies, which would then allow the s
terms to be both positive and negative. Second, because the
genes in our models are symmetric, our models give equal rep-
resentation to all possible modules (sets of closely interacting
genes) and, thus, do not address the sparsity of gene interaction
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networks. They address the existence of a hierarchy of genetic
evolutionary modules.

Fusion and Separation Measures and Results
If sex entails separate fitness effects on genes, then the lack of
recombination between two adjacent loci would mean that, as far
as fitness is concerned, these two loci should be considered as
one. In this sense, the decrease and increase of recombination
rates can make one gene from two and two genes from one. This
point can be demonstrated by varying the recombination rate
between 0.5 and 0 in the haploid three-locus model or in the
diploid two-locus model and observing its effect on components
of the Δ measures. In the haploid three-locus model, we break
Δ1 into its components: D1

t ¼ ∑ijkPijk;ts1i , D2
t ¼ ∑ijkPijk;ts2j and

D3
t ¼ ∑ijkPijk;ts3k, and Δ2 into its components: D12

t ¼ ∑ijkPijk;ts12ij ,
D13

t ¼ ∑ijkPijk;ts13ik and D23
t ¼ ∑ijkPijk;ts23jk . We expect that, if the

recombination rate r2 between loci 2 and 3 is fixed at 1
2, and the

recombination rate r1 between loci 1 and 2 is decreased, then loci
1 and 2 will fuse in terms of fitness effects, which would be
observed as a decrease in D1 and D2 relative to D3, along with an
increase in D12 relative to D13 and D23 (Fig. S1).
In the diploid two-locusmodel, we nowallow for position effects

(where wij/kl = wkl/ij, but wij/kl = wil/kj need not apply) and dis-
tinguish in the second level between three types of pairs of alleles:
cis, trans, and within-locus, as follows (see SI Text for the second-
level entities without this distinction). For genotype ij/kl, the cis
fitness contribution terms are s12

c

ij and s12
c

kl ; the trans terms are s12
t

il
and s12

t

kj, and the within-locus terms are s11ik and s22jl (repetition of
superscripts means that the respective alleles belong the the same
locus; SI Text). After fixing the first-level terms, we take these
second level terms to minimize∑ijklðwij=kl − s∅ − s1i − s1k − s2j − s2l −
s12

c

ij − s12
c

kl − s12
t

il − s12
t

kj − s11ik − s22jl Þ2, and then calculate the following
components of the Δ2 measure: Dc

2;t ¼ ∑ijklPij=kl;tðs12cij þ s12
c

kl Þ,
Dt

2;t ¼ ∑ijklPij=kl;tðs12til þ s12
t

kj Þ and Dw
2;t ¼ ∑ijklPij=kl;tðs11ik þ s22jl Þ. We

expect that, as the recombination rate r between the two loci is
decreased, these loci will fuse in terms of their fitness effects and,
therefore,Δ1will decrease, whileD2

cwill increase relative toD2
t and

D2
w (Fig. S2). These trends mean fusion, while the opposite trends

for increasing r1 or r mean separation.
Fig. S3 and Fig. 4 confirm these trends for the haploid 3-locus

model with 4 alleles per locus and the diploid two-locus model
with three alleles per locus, respectively. We observed these trends
at various strengths also for 2, 3, . . ., 6 alleles per locus. Thus,
fitness effects fuse with decreasing recombination rates and sep-
arate with increasing recombination rates. In fact, at r1 or r= 0 the

two fused loci are better understood as a single locus with the
number of alleles being the product of the number of alleles in the
two original loci (15), with corresponding s terms.

Discussion
In evolutionary theory, genes are depicted both as units of
recombination and as units that contribute to phenotypes and,
ultimately, to the fitness, of their carriers. Here, we saw that
these two meanings of a gene are intimately interrelated: that it
is due to recombination that the fitness of an organism can be
meaningfully decomposed into separate genetic effects.
The assumption that different genes make separate con-

tributions to fitness is normally made a priori in population
genetics. Particularly in the context of sex, the Fisher/Muller
hypothesis (9, 10) as well as Muller’s ratchet (11) and the
deterministic mutation hypothesis (12) rely on this assumption,
as said. Here, we did not make this assumption a priori. Instead,
we found that separate genetic effects on fitness emerged a
posteriori from the interaction of sex and natural selection.
Notably, the existence of such effects is an important con-

sequence of sex. The reconciliation of evolution and genetics
relies on it (7) and, similarly, if only the interaction of all alleles
together determined fitness, then small genetic changes would
affect the whole organism profoundly, preventing evolution. It is
not necessary to ask, then, how mixability supports the Fisher/
Muller hypothesis, the deterministic mutation hypothesis, or
other hypotheses that rely on separate effects.
Evidence relating sex to separate genetic effects of single loci

was mentioned in ref. 2. In particular, bacteriophage T4 pop-
ulations selected for drug resistance evolved stronger single-locus
separate effects on fitness and weaker whole-genotype epistasis at
higher recombination rates (16). In light of mixability theory,
however, evidence of this kind requires more attention. Fur-
thermore, the present analysis suggests that experiments could be
conducted to see whether not only single loci but also pairs or even
larger sets of loci up to some size may develop stronger, higher-
level separate effects at higher recombination rates.
The present results substantially extend the connection

between sex and genetic modularity recently proposed (2, 5).
Although it has been suggested that sex endows single loci with
relatively context insensitive effects on fitness (2) (a character-
istic of evolutionary modules; refs. 3 and 4), here we found sex to
be a cause of the existence of a hierarchy of genetic evolutionary
modules. Importantly, a “module” here includes not only the
elementary module that is a gene or a block of absolutely linked
genes but also a set of closely interacting but not necessarily
linked genes.
Semi-independent operation, repeated use, and tight internal

interactions are often-cited characteristics of modules (3, 6). We
saw that, in genetic evolutionary modules, they arise together
directly from the interaction of sex and natural selection. For
example, in a four-locus haploid system, module 12 (consisting of
genes 1 and 2) has its own separate effect, s12, and therefore
operates independently of other modules, but it also participates
in the next-level modules s123, s124, and is therefore repeatedly
used, and it consists of a tight interaction between genes 1 and 2.
Thus, these different aspects of a genetic evolutionary module
are inherently related to each other.
In addition to the above, we saw that the lower the recombi-

nation rate between sequences the more they are able to fuse and
act as one. Thus, as will be explained shortly, our findings connect
two general observations. First, the sexual recombination appa-
ratus is such that the rate of recombination between two points
increases with the distance between those points. Second, the
meaning of genes comes from the context of the genetic apparatus
in its entirety (including transcription, translation, and regulation
machinery), which entails that bases that together constitute a
coding or regulatory region of a gene are near each other on the
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Fig. 4. Varying r in the diploid two-locus model with three alleles per locus.
(Upper) The across-trial averages 〈Δsex

1 〉 for r=0.5 (Left), r=0.05 (Center), and r=
0 (Right). (Lower) The across-trial averages 〈Dc

2〉 (solid), 〈D
t
2〉 (dashed) and 〈Dw

2 〉
(dot-dash) for the same values of r. Results are based on 500 trials. With
decreasing r, Δ1 decreases, and D2

c increases relative to D2
t and D2

w.

1456 | www.pnas.org/cgi/doi/10.1073/pnas.0910734106 Livnat et al.

http://www.pnas.org/cgi/data/0910734106/DCSupplemental/Supplemental_PDF#nameddest=sfig01
http://www.pnas.org/cgi/data/0910734106/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0910734106/DCSupplemental/Supplemental_PDF#nameddest=STXT
http://www.pnas.org/cgi/data/0910734106/DCSupplemental/Supplemental_PDF#nameddest=sfig02
http://www.pnas.org/cgi/data/0910734106/DCSupplemental/Supplemental_PDF#nameddest=sfig03
www.pnas.org/cgi/doi/10.1073/pnas.0910734106


genome, whereas sequences that are far apart interact indirectly
through the products they produce. In this comparison of local and
global interactions, the genes are composed of local interactions,
and modules of unlinked genes consist of global interactions.
According to our theory, these observations are related as

follows. The lower the recombination rate between sequences,
the more these sequences fuse, meaning that the interactions
between them become local—of the nature of interactions within
a gene—and that they interact with the rest of the organism as
one, as through a common product; whereas at high recombi-
nation rates, a hierarchy of modules emerges, where each
sequence has its own identity and is able to serve in several
modules. Thus, a deep consistency exists between the physical
nature of sexual recombination and the physical nature of genes
and their mechanisms of action: Sexual recombination seems to
be causally related to both the nature of local interactions and
the nature of global interactions in the genome. Of course,
asexual forms pose no contradiction to this consistency if they
inherited their genetic systems from sexual ancestors.
Sex and natural selection were often thought of in two steps,

where, first, natural selection was formalized in terms of the
increase in population mean fitness and, second, sex was
assumed to be an adaptation that facilitated that increase. Thus,
the breaking down of highly favorable gene combinations by sex
(17) has been perceived as a problem (18). However, our models
reveal that, when sex and natural selection interact, they are
particularly efficient in increasing mixability. Furthermore, the
breaking down of highly favorable combinations of genes is part
of the rebalancing mechanism, and is therefore necessary for the
generation of mixability (see also ref. 2). And mixability has
implications for separate effects and modularity.
If sex is tied to the nature of genes, then one may reconsider

the question of the origin of sex. Although it is common to
imagine evolution as an originally asexual process that became
sexual at some point, it is possible that sex had existed in a
primitive sense of mixing before the emergence of genes as we
know them, and that the interaction of sex and natural selection
played a role in the shaping of the genetic architecture.

Methods
Let N = {1, 2, . . ., m} be the set of loci. Each haplotype h has, at each locus i ∈
N, an allele hi from the set Ai of alleles that belong to that locus. Thus, if h =
ijk··· defined in the text, then h1 = i, h2 = j, h3 = k, etc. Let I ⊆ N be a set of loci,
�I be the set of all other loci (the complement of I in N), and X(I) be the
probability of inheriting the alleles in loci I from one parent and the alleles in
loci �I from the other parent. For example, in a two-locus case with free
recombination, N = {1, 2} and Xðf1gÞ ¼ Xðf2gÞ ¼ Xðf1; 2gÞ ¼ Xð∅Þ ¼ 1

4.
Finally, let F I

h be the set of all haplotypes that have the same alleles as
haplotype h at loci I; i.e., FIh = {f:fi = hi ∀i ∈ I}. The haplotype frequencies at
generation t+ 1 in terms of the frequencies at generation t can be written as:

Ph;tþ1 ¼ 1
�wt

∑
I∈N

 
XðIÞ ∑

h′∈FI
h ;h″∈F

�I
h

Ph′;tPh″;twðh′; h″Þ
!
; [4]

where w(h′, h″) = w′hw″h for haploidy and w(h′, h″) = wh′/h″ for diploidy, and �wt

is the sum of the numerators of the right-hand sides of Eqs. 4 over all h. This
equation accords with Geiringer (13), except that it includes selection in
addition to recombination. As an example, in the haploid three-locus case
with free recombination between any two loci, Eq. 4 takes the specific form:

Pijk;tþ1 ¼ 1
4

 
~Pijk;t ∑

ĭ j̆ k̆

~Pĭ j̆k̆;t þ∑
ĭ

~Pĭjk;t ∑
j̆ k̆

~Pi j̆k̆;t

þ∑
j̆

~Pij̆k;t ∑
ĭ k̆

~Pĭ j k̆;t þ∑
k̆

~Pijk̆;t ∑
ĭ j̆

~Pĭ j̆k;t

!
; [5]

where ~Pijk;t ¼ Pijk;t
wijk
�wt
, and �wt is the sum of the numerators of the right-hand

sides of Eq. 5 for all ijk. This equation can be compared to the asexual three-
locus haploid case, where Pijk;tþ1 ¼ ~Pijk;t.
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