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Our understanding of the functions of oxytocin in mam-
mals has recently been challenged by findings in transgenic
mice in which the oxytocin gene has been knocked out.
Mammals generally have only two posterior pituitary
nonapeptide genes, for oxytocin and vasopressin, while
some marsupials do not express oxytocin but do express a
closely related peptide, mesotocin, which acts at the
oxytocin receptor (Acher et al. 1995). Birds have arginine
vasotocin and mesotocin (Acher et al. 1995), while among
other vertebrates a subclass of cartilaginous fishes evidently
produces oxytocin (Michel et al. 1993).

Mice homozygous for deletion of exon 1 of the oxytocin
gene, containing the oxytocin nonapeptide sequence,
were produced by homologous recombination in mouse
embryonic stem cells. Offspring from matings of the
heterozygotes were in the correct Mendelian frequency,
indicating no lethal developmental defects in the homo-
zygotes, which later showed normal sexual maturation,
with both males and females showing sexual behaviour and
normal fertility (Nishimori et al. 1996). Young and
colleagues (1996) used gene targeting to generate a mouse
with most of the first intron and the last two of the three
exons of the oxytocin gene eliminated. The amount of
oxytocin gene transcripts in the supraoptic and paraven-
tricular nuclei of homozygotes was 1% of the wild-type
level, with less than 0·4% of the wild-type content of
oxytocin in the pituitary gland, and no oxytocin detectable
in blood plasma by RIA. In both types of oxytocin gene
disablement, the only evident defect was a complete
failure of postpartum homozygotes to transfer milk to the
suckling young, which consequently did not survive unless
the mothers were treated with exogenous oxytocin. Thus
parturition and maternal behaviour proceeded without
oxytocin, although these processes were not studied in
detail.

These findings are surprising in view of the vast
literature on a wide range of species suggesting important
roles for oxytocin in regulating gonadal function, in
expression of sexual behaviour, in parturition and initiation
of maternal behaviour as well as in lactation. It is appro-
priate to consider whether the results from the oxytocin
knockout mice arise from peculiarities in the roles of
oxytocin in the mouse in comparison with other species, or

indicate redundancy in the mechanisms in which oxytocin
normally has an important role; apart that is, from the
milk-ejection reflex in which there is no evident
redundancy, at least in the mouse.

Evidence for a role for oxytocin in parturition

Initiation of delivery

One of the first actions of posterior pituitary extracts to be
described was the ability to stimulate contractions of the
uterus (Dale 1906). Because of this uterotonic action,
posterior pituitary extracts were soon used in clinical
practice (see Robinson & Amico (1985) for a review). In
1948 a midwife reported her observations of a woman in
labour with her second child while still in lactation
following the birth of her first child; during each uterine
contraction, beads of milk stood out from the nipples, as
from a lactating breast during milk let-down (Gunther
1948). The observant midwife speculated that ‘labour
proceeds from a series of discharges of pituitrin-like
substance which acts on the prepared uterus and which is
rapidly rendered inactive’.

Synthetic oxytocin has now been used in clinical and
veterinary practice to induce or assist parturition for many
years (see Owen & Hanth 1992, Vivrette 1994), and a role
for oxytocin is fitted into all models that seek to describe
the mechanisms involved in the onset and maintenance of
parturition in a range of placental mammals. The classic
account of parturition has it that, in late pregnancy, the
high circulating concentrations of progesterone induce
uterine quiescence while the uterus acquires contractile
ability. Shortly before term, plasma progesterone concen-
trations fall steeply, oxytocin receptor expression in the
uterus increases markedly, and uterine contractile activity
increases. At term, the contractions rise to a crescendo,
resulting in delivery as a result of two interacting positive
feedback loops. The first is a local uterine loop: within the
uterus itself, prostaglandins and other uterotonic factors are
produced and released in response to uterine contractions.
The second loop involves the hypothalamus: in response to
uterine contractions and vaginal and cervical distension,
magnocellular oxytocin neurones in the hypothalamus
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increase their activity resulting in the release of oxytocin
from their axon terminals in the posterior pituitary; the
released oxytocin acts upon the uterus both to stimulate
the further production of prostaglandins and to contribute
further to the contractions of the uterus (Fig. 1).

During parturition, elevated oxytocin secretion has
been measured in all placental mammals thus far studied,
including the rabbit (Fuchs & Dawood 1980), sheep (Glatz
et al. 1981), cow (Landgraf et al. 1983), rat (Higuchi et al.
1986), goat (Currie et al. 1988), pony (Haluska & Currie
1988), human (Fuchs et al. 1991), rhesus monkey (Hirst
et al. 1993) and pig (Gilbert et al. 1994); representing
Australian marsupials, the wallaby shows increased
secretion of mesotocin, an oxytocin-like peptide, during
parturition (Parry et al. 1996); for the birds, in the chicken
the secretion of arginine vasotocin (which is a more potent

oxytocic on chicken uterus than the other avian neuro-
hypophysial nonapeptide, mesotocin) increases abruptly at
oviposition (Koike et al. 1988).

Again, in all mammals thus far studied, there is a marked
increase in uterine responsiveness to oxytocin at term, and
oxytocin is the most powerful uterotonic agent identified
to date. In the rat, sensitivity to the contractile actions of
oxytocin of at least the circular layer of the myometrium
greatly increases at the end of pregnancy (Fuchs et al. 1983,
Crankshaw 1987), and the sensitivity of mouse and
guinea-pig myometrium to oxytocin is increased at the
end of gestation (Bell 1941, Suzuki & Kuriyama 1975b),
with a similar change and increase in maximal response to
oxytocin in the rabbit (Riemer et al. 1986). The sensitivity
of the human uterus to oxytocin increases in late preg-
nancy (Takahashi et al. 1980). Sensitivity to the uterotonic

Figure 1 Positive feedback stimulation of maternal oxytocin secretion during parturition in the rat. Schema
based on a variety of data. The initial events at term are in the uterus: withdrawal of progesterone permits
myometrial oxytocin receptor expression, gap junctions are formed between myometrial cells, oxytocin may
be released from the uterine epithelium and act locally, and prostaglandin production increases. As a result,
the myometrium is more excitable and the contractions of early labour begin. The contractions increase
afferent nerve activity, especially when the cervix is distended by the presenting part of the fetus. Via
afferents relaying in the nucleus tractus solitarii, the cell bodies of the magnocellular neurones in the
supraoptic and paraventricular nuclei of the hypothalamus receive a barrage of impulses, originating in the
uterus, cervix and, when a fetus is expelled, vagina. The increased continuous background electrical activity
(action potentials) of the oxytocin neurones drives secretion of oxytocin from the expanded store in the
nerve terminals in the posterior pituitary gland, but intermittently each of these neurones fires in a
high-frequency burst (*), synchronously with other oxytocin neurones, to cause the secretion of a pulse (†),
or bolus, of oxytocin into the circulation; this is immediately followed by the birth of a pup (Summerlee
1981). I.U.P., intrauterine pressure; OXT, oxytocin; NTS, nucleus tractus solitarii; PGF2á, prostaglandin F2á.
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action of oxytocin increases in late pregnancy in the
quokka, a macropodial marsupial (Heller 1973), and in the
wallaby (see Renfree 1994), while the endogenous meso-
tocin can be expected to have similar effects to oxytocin
(Bathgate et al. 1995). In the chicken, the sensitivity of the
uterus to contractile stimulation by arginine vasotocin,
acting via vasopressin-like receptors, peaks at oviposition
(Koike et al. 1988, Saito & Koike 1992).

The increased responsiveness of the myometrium to
oxytocin in late pregnancy is related to increased oxytocin
receptor density, measured as specific radioligand binding.
Oxytocin receptor density in the myometrium sharply
increases at the end of pregnancy in the rat, and this is
localised to myometrial cell membranes, including the
longitudinal muscle layer (Soloff et al. 1979, Kaneko
et al. 1995, Kawarabayashi et al. 1996). Myometrial oxy-
tocin receptor density increases in the guinea-pig towards
the end of pregnancy (Alexandrova & Soloff 1980), and
similarly oxytocin receptor density increases greatly at
term in the rabbit and sheep myometrium and
endometrium (Maggi et al. 1988, 1991, Wathes et al. 1996)
and in the human myometrium and decidua (Fuchs et al.
1984). Endometrial oxytocin receptor concentration in-
creases in pregnancy in the cow (Fuchs et al. 1996). The
receptor for arginine vasotocin in the chicken uterus is
up-regulated a few hours before oviposition (Takahashi
et al. 1994).

The increased oxytocin receptor density in the uterus at
the end of pregnancy is likely to be a result of stimulated
gene expression. Thus there is a large increase in uterine
oxytocin receptor mRNA content at the end of pregnancy
in the rat (Liu et al. 1996), and in the sheep there is a clear
correlation between myometrial and endometrial oxytocin
receptor mRNA and protein expression, and with myo-
metrial contractile activity (Wu et al. 1996). Similarly,
oxytocin receptor mRNA and protein content in the
human myometrium are greatly increased at the end of
pregnancy (Kimura et al. 1996). In the cow, oxytocin
receptor mRNA expression in the myometrium and
endometrium is increased in the third trimester, although
there is no evident further increase at term (Ivell et al.
1995). Considering the bulk of the uterus, this enhanced
expression must be the most massive increase in peptide
receptor production to be seen in the mature mammal.

The temporal pattern of oxytocin receptor expression in
the uterus and cervix clearly indicates that endometrial and
myometrial oxytocin receptor expression may be a key
factor in the timing of parturition in ruminants (Wathes
et al. 1996, Wu et al. 1996). In sheep there is a progressive
increase in uterine contractile activity toward the end of
pregnancy, and, in late pregnancy, infusion of oxytocin
antagonists decreases the frequency of uterine contractures
(Owiny et al. 1992), involving a blockade of stimulation of
uterine prostaglandin production ( Jenkin et al. 1994).
Similarly in the rhesus monkey and baboon, a nocturnal
increase in uterine contractions late in gestation appears to

be caused by maternal oxytocin (Hirst et al. 1993), since a
selective oxytocin antagonist attenuates the contractions
(Honnebier et al. 1989, Wilson et al. 1990). In the rhesus
monkey, an increase in nocturnal fetal Ä4-androstenedione
production, entrained by maternal mechanisms, is pro-
posed to increase placental oestrogen secretion, and thence
to increase oxytocin secretion, and thereby myometrial
contractile activity (Mecenas et al. 1996, Nathanielsz et al.
1995, Giussani et al. 1996), with the further increase
in Ä4-androstenedione at term triggering parturition
(Mecenas et al. 1996).

For the rat, as for many species, there is little or no
evidence of a rise in oxytocin release before the first
delivery, although, since parturition in the rat is preceded
by an abrupt and dramatic increase in uterine oxytocin
receptor expression, no increase in oxytocin release may be
necessary for oxytocin to initiate delivery. Nevertheless, it
is generally recognised that, at least for many species,
parturition is not necessarily initiated by an increase in
oxytocin secretion. Thus, for instance in the guinea-pig,
oxytocin antagonist treatment does not delay the start of
parturition but does decrease uterine motility at term and
prolongs delivery (Schellenberg 1995). In the rat, even
very high doses of oxytocin antagonists do not consistently
delay the onset of birth in the rat (Chan & Chen 1992),
and the delays are relatively short (Antonijevic et al.
1995a). Indeed, in the rat, administration of low doses of
oxytocin produces a much more effective delay to subse-
quent birth than administration of high doses of antagonist
(Antonijevic et al. 1995b), possibly reflecting desensitis-
ation of uterine oxytocin receptors, with decreased recep-
tor density on myometrial cells and reduced oxytocin
receptor gene expression (Phaneuf et al. 1997), but perhaps
also reflecting fatigue of other uterotonic control mechan-
isms within the uterus. Nonetheless, the onset of partur-
ition in the rat can be advanced by several hours by
intravenous infusion of oxytocin, especially if given in
pulses (Randolph & Fuchs 1989), and labour is initiated,
with variable progression to parturition, at the end of
gestation by intermittent electrical stimulation of the
neurohypophysis in the rat or rabbit (Lincoln 1971, Boer
et al. 1975).

So what other mechanisms are known to be involved in
the initiation of parturition? In the pregnant rat, about 24 h
before term, circulating progesterone secretion falls dra-
matically, with the collapse of the corpus luteum (Sanyal
1978). This fall leads to increased intrauterine prostaglan-
din production (Chan 1983), perhaps partly through the
action of local oxytocin on decidual oxytocin receptors
(Chan et al. 1993, Larcher et al. 1995), both of which are
up-regulated by oestrogen (Lefebvre et al. 1994), and
probably involving cytokines (Rozen et al. 1995). Endo-
toxin given in vivo sensitises the pregnant uterus to
oxytocin tested in vitro (Suzuki et al. 1995). The oxytocin
gene in human, mouse and rat has an oestrogen response
element (also responding to thyroid hormone and retinoic
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acid; Richard & Zingg 1990), while the decidua contain
oestrogen receptors (Chibbar et al. 1995), but other factors
are doubtless involved (Burbach et al. 1995), especially
since the equivalent sequence in the sheep and bovine
oxytocin genes is mutated such that the oestrogen receptor
cannot bind (Ivell et al. 1990, Adan et al. 1991). The
human oxytocin receptor gene has half-palindromic
oestrogen receptor elements and interleukin-6-binding
sequences like the rat and mouse (Inoue et al. 1994,
Kubota et al. 1996); however, these half-sites are unlikely
to interact with oestrogen receptor in vivo, although the
oestrogen antagonist tamoxifen inhibits uterine oxytocin
receptor expression at the end of pregnancy in the rat and
delays parturition (Fang et al. 1996).

The fall in progesterone will also remove progesterone’s
influence on the inhibitory paths within the myometrial
cells (Elwardy-Merezak et al. 1994, Cohen-Tannoudji
et al. 1995, Tezuka et al. 1995, Orsino et al. 1996), and
reduced NO production may also help to activate the
myometrium (Izumi & Garfield 1995). In the human,
changes in a paracrine network within the fetal mem-
branes and especially the decidua may initiate parturition
(Mitchell & Chibbar 1995). Within these tissues a shift to
progesterone inactivation and to synthesis of more potent
oestrogens will both increase local synthesis of prostaglan-
dins, stimulating contractions, and sensitise the myometrial
cells. This sensitisation is achieved by induction of gap
junctions between the myometrial cells by oestrogen or
relaxin (Tabb et al. 1992, Burghardt et al. 1996), or, in the
guinea-pig, blockade of progesterone action thereby
increasing gap junction expression (Chwalisz et al. 1991).
The marked increase in the expression of the oxytocin
receptor gene in the myometrium to greatly increase
receptor Bmax will also increase sensitivity to oxytocin
(Fuchs et al. 1984). In addition, both oxytocin and the
oxytocin receptor gene are expressed in the human
decidua (Mitchell & Chibbar 1995), and the release of
oxytocin from the luminal surface may act in an autocrine
or paracrine fashion to stimulate production of prostaglan-
dins (Wilson et al. 1988), which may then act on the
underlying myometrium. A further consequence of the
decline in local progesterone production is decreased
expression of Gás protein in the myometrial cells (Europe-
Finner et al. 1994), thus weakening inhibitory pathways
acted on by â-adrenergic agonists, for example. It is also
likely that cytokines, produced by cells in the decidua, act
on the decidua or the myometrial cells to stimulate
prostaglandin production (Mitchell et al. 1990, 1991, Todd
et al. 1996). Other mechanisms involving, inter alia,
endothelin, NO and relaxin (Goldsmith et al. 1995, Dong
& Yallampalli 1996) may also regulate myometrial con-
tractility. In the rat, a decline in luteal relaxin production
will contribute to increased excitability, removing
relaxin’s inhibitory actions, mediated by protein kinase A,
on myometrial cells (Meera et al. 1995); this may involve
interference with Gáq/11 which mediates oxytocin actions

(Sanborn et al. 1995). Thus, while oxytocin may play some
role in the initiation of labour, there are certainly other
uterine mechanisms that can substitute for it in its absence,
and which indeed may play a more dominant role.
However, prostaglandins are less effective than oxytocin at
inducing parturition in rats at term (Fuchs 1972).

Progress of delivery

Thus it is broadly recognised that oxytocin is not generally
essential for the initiation of labour, but there is much
stronger evidence that it plays an important role in the
progress of labour in many species. In the rabbit, oxytocin
secretion is maximal with delivery of the first fetus (Fuchs
& Dawood 1980). In generally monotocous species, peak
oxytocin secretion is seen at the birth of the singleton
(sheep (Glatz et al. 1981), cow (Landgraf et al. 1983),
rhesus monkey (Hirst et al. 1993)). In ruminants, enhanced
pulsatile oxytocin secretion is readily demonstrable during
parturition (Fuchs 1985, Fuchs et al. 1995). In the pig, a
pulse of oxytocin is secreted at the birth of each piglet
(Gilbert et al. 1994), while environmental disturbance
during parturition both decreases oxytocin secretion and
slows down the birth of the piglets (Lawrence et al. 1992).
Again though, it is clear that parturition is not necessarily
disrupted by the absence of oxytocin: in the rat, oxytocin
antagonists have a consistent and marked effect on the
progress of parturition when administered after the birth of
the first pup (Fig. 2), but, when administered after the
birth of the fourth pup, they have no effect in about half
of the animals studied (Antonijevic et al. 1995a).

In the human, cystine aminopeptidase from the decidua
breaks down oxytocin, and circulates as oxytocinase (Burd
et al. 1987), supposedly protecting the myometrium from
all but large pulses of oxytocin from the maternal posterior
pituitary, and ensuring intermittent stimulation of the
myometrium. As in the rat, pulsatile infusion is the most
efficient way to stimulate the myometrium with exogen-
ous oxytocin (Cummiskey & Dawood 1990). The power
of oxytocin is demonstrated by the association of uterine
rupture in multiparae with its inappropriate use to pro-
mote labour (Golan et al. 1980). Because of the pulsatile
secretion of oxytocin (Fuchs et al. 1991), coupled with the
action of the circulating oxytocinase, it has been difficult to
consistently show increased oxytocin secretion in women
in labour; however, this has been shown in some studies,
including early in pre-term labour (Vavra et al. 1993), with
a pattern of increasing frequency of pulses (Fuchs et al.
1991), with the most consistent increases measured during
the expulsive phase, when the sustained distension of the
uterine cervix and vagina leads to strong reflex stimulation
of oxytocin secretion (Vasicka et al. 1978, Leake et al.
1981, Thornton et al. 1992). Nonetheless, the importance
of oxytocin even in early labour is suggested by the
effectiveness in clinical trials of an oxytocin antagonist
(Atosiban) in threatened pre-term labour (Goodwin et al.
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1996). In the baboon in labour, intravenous oxytocin
antagonist greatly decreases uterine contractile force
(Wilson et al. 1990).

Since the pituitary oxytocin content is dramatically
depleted during parturition in rat, mouse and guinea-pig,
the major source of oxytocin release is generally likely to
be the maternal pituitary, but it may also be released from
the fetal posterior pituitary gland in some species, includ-
ing the sheep (Dawood et al. 1983), pig (Sander-Richter
et al. 1988) and human (Chard 1989), although not the rat
(Higuchi et al. 1985). In some species, oxytocin may also
be released from the subjacent endometrium or decidua
where the gene is strongly expressed at the end of
pregnancy, although the amount of peptide produced is
very small relative to the posterior pituitary content
(human, rat, but not bovine, mouse or sheep: Chibbar
et al. 1993, Lefebvre et al. 1993, Ivell et al. 1995, Murphy
& Ho 1995, Wathes et al. 1996).

So is the massive release of oxytocin from the maternal
pituitary at term an anachronism? A remnant perhaps of an
evolutionary history in which the ancestral hormone from

which oxytocin evolved played an important role in egg
laying, a role played by arginine vasotocin in modern
birds (Takahashi et al. 1994). Australian marsupials pro-
duce mesotocin rather than oxytocin, and mesotocin in
Australian marsupials may not be an ancestor of mam-
malian oxytocin, but a descendant, since South American
marsupials have oxytocin (Acher et al. 1995).

Marsupials such as the tammar wallaby secrete meso-
tocin in circumstances, including parturition and lactation
(see Bathgate et al. 1995, Parry et al. 1996), when
eutherian mammals secrete oxytocin, and with similar
consequences (Lincoln & Renfree 1981a). Selection pres-
sure has thus been for a neutral mutation in the peptide
ligand for the oxytocin receptor. Mesotocin differs from
oxytocin by the substitution of isoleucine for leucine at
position 8, and involving a single nucleotide substitution,
unlike vasopressin which differs from oxytocin by two
amino acids (Chauvet et al. 1984, Acher et al. 1995), and
furthermore acts via a receptor that has a similar pharma-
cological profile to the mammalian oxytocin receptor.
In the tammar wallaby, mesotocin secretion is elevated

Figure 2 Progress of parturition in the rat and the slowing actions of oxytocin antagonist or morphine. All
rats were fitted with a jugular venous cannula 1 or 2 days before term for injections after birth of the
second pup. The control group was given i.v. vehicle, and the differently shaded bars indicate the duration
of each subsequent interbirth interval. The i.v. injection of a peptide oxytocin antagonist (Ferring 382;
30 µg/kg) prolonged the intervals between the births of the subsequent four pups, thus doubling the time to
deliver five pups after injection. The i.v. injection of morphine sulphate (1 mg/kg) markedly prolonged the
interval to the birth of pup 3, and lengthened the next interval, thus also extending the time to deliver five
pups after injection. Pulsatile i.v. injection of oxytocin (OXT 1 mU (2 ng; 2 pmoles) every 10 min) after a
single injection of morphine after the birth of pup 2 fully restored the progress of normal parturition;
continuous infusion (not shown) of the same total dose of oxytocin was ineffective (data from Luckman
et al. 1993, Antonijevic et al. 1995a). The prolonged inhibitory action of the oxytocin antagonist clearly
indicates an important role for oxytocin in promoting parturition. The inhibitory effects of morphine are a
consequence of inhibition of the secretion of oxytocin from the posterior pituitary gland: morphine inhibits
the firing of magnocellular oxytocin neurones via µ-opioid receptors on their cell bodies or inputs, and like
other opiates it decreases oxytocin secretion in parturition (Russell et al. 1989, Douglas et al. 1993). The
restoration of the normal progress of parturition by i.v. pulses of oxytocin supports both a singular action of
morphine to inhibit oxytocin secretion and the conclusion that it is secretion of oxytocin from the posterior
pituitary in a pulsatile pattern that is important in driving parturition.
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immediately after delivery of the neonate, consistent with
release during or immediately after delivery (Parry et al.
1996), and again, as in eutherian mammals, uterine
sensitivity to oxytocin is maximal at term (see Renfree
1994). In the tammar wallaby, oxytocin antagonists delay
the onset of parturition, suggesting that this mechanism is
crucially important (Renfree et al. 1996). Parturition in the
tammar wallaby (Hearn 1973) and possum (Hinds 1990) is
prevented by hypophysectomy, and this is a consequence
of loss of posterior rather than anterior pituitary hormones
(see Bathgate et al. 1995).

Parturition in the rat

Probably the most complete account of the role of oxy-
tocin during parturition comes from studies in the rat.

During pregnancy in the rat, the posterior pituitary
content of oxytocin increases by about 50%; during the
90 min or so of normal parturition, this accumulated
excess of some 2 µg (1000 mU, sufficient for 1000 to
2000 milk ejections) is secreted into the circulation. Par-
turition is thus the most powerful physiological stimulus
known for the release of oxytocin (Fuchs & Saito 1971).
Parturition normally begins, and is completed, during the
second half of the light cycle on day 21 of gestation (mated
on day 0), otherwise the onset will tend to be delayed until
the late morning of the following day; for example,
meta-analysis of the start times of 293 parturitions in our
laboratory (lights off 1900 h, on 0500 h) shows a mode
between 1500 and 1700 h on day 21 (n=59) and a second
mode between 0900 and 1100 h (n=15) on day 22, with a
nadir between 0300 and 0500 h (n=3) on day 22 (Fig. 3).

Figure 3 Diurnal rhythm in time of onset of parturition in the rat. Meta-analysis of observations on
parturition in 293 rats, caged singly and housed under controlled conditions, with lights on for 14 h and off
for 10 h each day. The time of birth of the first pup shows a clear bimodal distribution across days 21 and
22 of pregnancy, with fewest first births in the lights-off phase. Litter size does not seem to be an important
factor in determining time or day of birth. Since the time of birth can be advanced by shifting the lighting
cues in mid-pregnancy (Lincoln & Porter 1976), events early in pregnancy do not determine the time of
birth. The likely explanation for the diurnal variation in the timing of the first birth is that a maternal signal
late in pregnancy triggers the process. In primates, there is a diurnal variation in uterine contractile activity
that follows a diurnal rhythm in oxytocin secretion from the maternal posterior pituitary (Hirst et al. 1993,
Giussani et al. 1996), and this is proposed as the explanation for the pattern of timing of first births seen in
the rat. Oxytocin infusion can advance the onset of parturition by a few hours, and oxytocin antagonist
infusion can delay the onset by a few hours (Antonijevic et al. 1995a,b). Infusion of an ineffective dose
of oxytocin also delays the onset of parturition (Antonijevic et al. 1995b), probably by desensitising the
myometrium. In the mouse, in contrast with the rat, most births occur during the dark phase (around
day 19), but a similar explanation may hold (i.e. diurnal variation in maternal oxytocin secretion), although
in the oxytocin knockout mouse the precise timing of parturition has not yet been reported (Nishimori
et al. 1996).
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The mechanisms underlying this timing are not known,
but the supraoptic and paraventricular nuclei both receive
a direct afferent projection from the suprachiasmatic nu-
cleus (Cui et al. 1997), which is the principal circadian
oscillator in mammals (Hastings 1995). Oxytocin secretion
is continuously elevated throughout parturition, and super-
imposed on this elevated baseline secretion are large pulses
of oxytocin release (Higuchi et al. 1986). There is clear
evidence that the pulsatile pattern of oxytocin secretion is
important in driving parturition. The pulsatile secretion
derives from the synchronised intense bursting activity of
oxytocin neurones in the hypothalamus in the rat and
rabbit (Summerlee 1981, O’Byrne et al. 1986), activity
similar to that in the rat during reflex milk ejection in
response to suckling. The increased electrical activity is
accompanied by induction in these neurones of the
immediate-early gene c-fos, an indicator of trans-synaptic
activation of the neurones, and consequent prominent
expression of the protein product Fos in the nuclei of oxy-
tocin cells (Luckman et al. 1993). Furthermore, expression
of the oxytocin gene in supraoptic neurones is stimulated at
parturition (Douglas et al. 1998), while it is controversial
whether expression is increased in pregnancy (Horwitz et al.
1994, Douglas et al. 1998). Fos is also expressed during
parturition in brainstem neurones, which project to the
oxytocin cells, and these brainstem neurones are activated
by uterine contractions even in the absence of parturition
itself (Antonijevic et al. 1995b). The secreted oxytocin enters
the circulation at a time when uterine responsiveness to
oxytocin is maximal as a result of a rapid increase in oxytocin
receptor expression in the myometrium at the end of preg-
nancy (Rozen et al. 1995). Inhibition of oxytocin secretion
by exogenous opiates (which act to inhibit the oxytocin
neurones directly) slows down the early progress of partur-
ition, and this can be reversed by oxytocin infusion (Russell
et al. 1989), with pulsatile delivery of oxytocin being par-
ticularly effective (Luckman et al. 1993, Antonijevic et al.
1995b) (Fig. 2). Similarly, mild environmental stress slows
down the early progress of parturition and reduces oxytocin
secretion, and these effects are fully reversed by the opioid
antagonist naloxone, which increases oxytocin secretion and
restores the normal progress of parturition (Leng et al. 1988).
Blocking the actions of oxytocin by specific antagonists
similarly leads to impaired early progress of parturition
(Chan & Chen 1992, Antonijevic et al. 1995a).

However, notably, magnocellular vasopressin neurones
are also activated during parturition (Lin et al. 1995), and
vasopressin release from the posterior pituitary is enhanced
during parturition in the rat (Hartman et al. 1986) and in
other species (e.g. cow (Landgraf et al. 1983), sheep
(Kendrick et al. 1991), pig (Lawrence et al. 1995)).
Vasopressin may act weakly at myometrial oxytocin recep-
tors in the rat (Chan et al. 1996), while in the human and
rabbit an action on myometrial vasopressin (V1a) receptors
is also possible (Bossmar et al. 1994, Maggi et al. 1988,
1990). Since vasopressin can activate oxytocin receptors,

its actions would be expected to supplement those of
oxytocin during parturition. Is it possible then that, in the
absence of oxytocin, vasopressin would be an effective
substitute? One might think this unlikely given the much
lower potency of vasopressin at the oxytocin receptor
(Berde & Boissonas 1968), but vasopressin is quite effec-
tive at stimulating prostaglandin F2á (PGF2á) production
by the decidua (Chen et al. 1994). Furthermore, if in the
absence of endogenous oxytocin the uterine oxytocin
receptors are up-regulated, then the actions of vasopressin
alone might indeed provide an effective substitute for the
absent oxytocin.

In the oxytocin knockout mouse, vasopressin mRNA
content in the supraoptic and paraventricular nuclei is
normal (Nishimori et al. 1996) or reduced (Young et al.
1996), although this has not been measured in pregnancy.

Parturition in the mouse

Strictly, the outcome of studies on the oxytocin knockout
mice ought to be considered in the context of previous
experiments on the role of oxytocin in parturition in the
mouse. As in the rat and other species, the content of
oxytocin in the posterior pituitary decreases during par-
turition in the mouse (Fuchs 1985), but other than this little
is known. Parturition can be interrupted by environmental
disturbance, indicating a central mechanism influencing
parturition (Newton et al. 1968), but it is not known if this
is due to inhibition of oxytocin secretion as it is in the rat.
Yet transgenic mice lacking oxytocin have no obvious
defects in parturition (Nishimori et al. 1996, Young et al.
1996). In both lines, the expected numbers of live young
were delivered, but few details are given on the timing of
parturition, although one of the studies (Nishimori et al.
1996) reports that homozygous females mated with
homozygous males delivered 18·5–19·5 days post coitum,
which is approximately as expected of normal mice.

The sequences of the human, rat, mouse, bovine and
sheep oxytocin receptor genes are known (Kimura et al.
1992, Adan et al. 1995, Kubota et al. 1996, Ivell et al. 1995,
Riley et al. 1995, Rozen et al. 1995), and there is a striking
conservation of the extracellular sequences of the receptor
between species so far studied. The mouse oxytocin
receptor gene, detected with a specific probe or probe for
the rat receptor mRNA, is expressed in the uterus and in
particular in the myometrium in pregnancy, peaking just
before parturition (Kubota et al. 1996, Mahendroo et al.
1996). Functional receptor is expressed since contractile
activity is stimulated by oxytocin, to which the mouse
uterus becomes more sensitive by the end of pregnancy
(Suzuki & Kuriyama 1975b), and comparison of actions of
oxytocin and vasopressin in vitro are consistent with
expression of, and action through, the oxytocin receptor
(Stepke et al. 1994); sensitivity to vasopressin is also
increased at the end of pregnancy (Stepke et al. 1994).
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Unlike the rat or human (but like the cow and sheep), the
uterus of the pregnant mouse does not express the oxytocin
gene (Murphy & Ho 1995).

In other respects, parturition in the mouse involves
mechanisms identified or proposed for other mammals.
Progesterone secretion falls sharply on the day before
parturition, presumably triggering events leading to par-
turition (Soares & Talamentes 1984). A synthetic gestagen
(Org 5933) prolongs pregnancy (Gao & Short 1993). For
reasons that are not clear, transgenic mice overexpressing
the oestrogen receptor have prolonged gestation and
dystocia (Davis et al. 1994). In late gestation, enzymes
synthesising the 5á-reduced androgen, 3á-Adiol, (5á-
androstan-3á,17â-diol) are induced in the uterus, and
transgenic mice with disruption of the gene of the key
enzyme 5á-reductase type 1 also have a prolonged preg-
nancy, then a long labour with dystocia: the patterns of
uterine oxytocin receptor gene expression and plasma
progesterone and oestrogen profiles are normal and
these animals can be rescued by injection of either
progesterone antagonist (RU486) or oxytocin (Mahendroo
et al. 1996).

Other local uterine mechanisms involved in the onset
of parturition in the mouse bear comparison with other
species. Uterine cytokines, especially interleukin 1 or 2,
probably acting via stimulation of decidual PGE2 produc-
tion (Dudley et al. 1993), are implicated in the initiation of
parturition in the mouse (Romero et al. 1991, Romero &
Tartakovsky 1992, Fidel et al. 1994, Hirsch et al. 1995,
Kaga et al. 1996), particularly in pre-term parturition
provoked by bacterial endotoxin (Kaga et al. 1996);
although not via direct acute actions on the myometrium
(Oshiro et al. 1993), there is circumstantial evidence for a
role for neutrophils in the uterus in parturition onset (Kasik
& Rice 1995). The pregnant mouse uterus contracts
in response to PGE2, and depolarisation sensitivity is
much greater in late pregnancy than in early pregnancy
(Suzuki & Kuriyama 1975a). PGF2á, histamine and
5-hydroxytryptamine, all potentially from uterine mast
cells, together stimulate uterine contractions (Rudolph
et al. 1992) and so does endothelin 1, although sensitivity
does not change in pregnancy, unlike the large increase in
sensitivity to oxytocin (Gong et al. 1994). Uterine hista-
mine content increases prepartum, and is abruptly reduced
postpartum (Padilla et al. 1990). Adrenergic agonists
inhibit uterine contractions, via the â2-adrenoreceptor
(Chen et al. 1994), becoming less effective near term
(Cruz et al. 1990). Relaxin from the corpora lutea inhibits
contractions of the mouse uterus via a selective receptor
(Fields et al. 1980, Yang et al. 1992, Evans et al. 1993).

An important role for PGF2á in the initiation of partur-
ition in the mouse is indicated by a study of parturition in
mice with knockout of the receptor for PGF2á (Sugimoto
et al. 1997). These homozygous mice are fertile, but do not
deliver their young spontaneously, do not show luteolysis
at term (and thus have high circulating levels of proges-

terone) and the uterus is insensitive to oxytocin, not show-
ing the normal increase in oxytocin receptor mRNA
expression at term. However, ovariectomy on day 19,
precipitating a fall in circulating progesterone, is followed by
induction of uterine oxytocin receptor mRNA expression
12 h later, and by parturition after a further 12 h. Clearly
any action of PGF2á on the myometrium is not essential for
parturition, provided that oxytocin is secreted to act on
up-regulated oxytocin receptors in the myometrium. In-
stead, PGF2á, or rather its receptor, is essential in mice to
induce luteolysis at term, which then allows, through en-
hanced oxytocin receptor expression, uterine sensitisation to
oxytocin. If a myometrial action of PGF2á compensates for
oxytocin in the oxytocin knockout mice, and oxytocin
compensates for lack of any uterine actions of PGF2á in the
PGF receptor knockout mice, then study of crosses between
these two knockout strains should provide information
about whether there are other redundant mechanisms
regulating parturition in mice.

Despite some differences between the mouse and other
species studied, it seems unlikely that species differences
really explain the lack of apparent effect of the oxytocin
knockout on parturition. What is clear though, from work
across many species, is that several mechanisms concur-
rently regulate myometrial contractility in parturition,
providing a high degree of redundancy among these
mechanisms.

Given this, is there likely to be any single aspect of
parturition in which oxytocin plays an essential role which
cannot be compensated for by other known systems?
Parturition as described above is regulated by both a
uterine feedback loop and a hypothalamic feedback loop,
of which oxytocin is normally the effector molecule.
Clearly the uterine loop alone can effect successful partur-
ition; however, without oxytocin, it seems likely that the
progress of parturition may be largely outside the control of
the maternal central nervous system. This control seems
likely to be important in the circadian timing of partur-
ition, and in regulating the initiation and progress of
parturition with regard to environmental circumstances.
In many species the onset and progress of parturition are
critically influenced by environmental stress (dog (Bleicher
1962), mouse (Newton et al. 1968), rat (Leng et al. 1988),
pig (Lawrence et al. 1992, 1995)). It would certainly be
instructive to establish whether the knockout mouse shows
any alterations in the pattern or progress of parturition in
these respects. However, as suggested above, it is possible
that vasopressin may, in the chronic absence of oxytocin,
be an effective substitute. It is notable that mice hypophy-
sectomised in mid-pregnancy were observed to start
parturition at the appropriate day, but almost half
(of sixteen) had a ‘difficult and prolonged parturition’
(Gardner & Allen 1942). Studies of the effects of hypophy-
sectomy in pregnancy on parturition in several other
eutherian species have produced similarly variable results
(Amoroso & Porter 1966).
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Lactation

Clearly, the failure of the oxytocin knockout mice to
transfer milk to the suckling young, and the repair of this
deficit by oxytocin injection (Nishimori et al. 1996, Young
et al. 1996), is powerful evidence for an essential role for
oxytocin in effecting the milk-ejection reflex. This finding
is entirely consistent with many previous studies in several
species. In marsupials, mesotocin has this role (Bathgate
et al. 1995), substituting for oxytocin (Lincoln & Renfree
1981b).

In particular, oxytocin is effective in the rat when
secreted during suckling in pulses a few minutes apart, and
this is a consequence of synchronised burst-firing of the
magnocellular oxytocin neurones projecting into the
posterior pituitary gland (Belin & Moos 1986). Although
bolus injection of vasopressin can elicit milk ejections, it is
much less potent than oxytocin (Bisset et al. 1967), and
vasopressin neurones do not show synchronised burst-
firing, and few otherwise respond, during suckling
(Lincoln & Wakerley 1974). For this reason, vasopressin,
or rather vasopressin neurones, cannot substitute for oxy-
tocin in lactation. To do so in the oxytocin knockout
mouse would require altered ‘wiring’ of vasopressin
neurones, and expression of the distinctive and specialised
electrophysiological properties normally only seen in oxy-
tocin neurones. Evidently, and not surprisingly, these
adaptations do not occur in the oxytocin knockout mice.
Furthermore, it is obvious that, at least in the knockout
mouse, there are no other mechanisms that can effect milk
transfer in the absence of oxytocin. This may reflect the
fact that lactation, or specifically milk ejection, is recent in
evolution, in contrast with egg laying, the precursor of
parturition.

There is evidence from studies in the rat that oxytocin,
possibly from the posterior pituitary although it is also
secreted from magnocellular axons in the median emi-
nence into the hypothalamohypophysial portal blood
(Horn et al. 1985), stimulates prolactin secretion in lac-
tation. Thus the consequences of removal or denervation
of the posterior pituitary include reduced stimulation of
prolactin secretion by suckling (Murai & Ben-Jonathan
1987, Vecsernyés et al. 1997). Furthermore, there is a
dramatic increase in oxytocin receptor mRNA expression
in lactotropes at the end of pregnancy (Breton et al. 1995).
Suppression by suckling of the release of dopamine into
portal blood and the stimulation of vasoactive intestinal
peptide (VIP) or thyrotrophin-releasing hormone secretion
are also involved in regulation of prolactin secretion (see
Mogg & Samson 1990), so the evident capacity to produce
milk in the oxytocin knockout mice (demonstrated by
milk transfer when injected with oxytocin) implies
adequate prolactin secretion through action of these
mechanisms, a clear case of redundancy, and involving
differential expression of receptors by subsets of lacto-
tropes, so that the subset of lactotropes expressing oxytocin

receptors also expresses VIP receptors (Samson & Schell
1995). However, this has not been studied in detail:
reduced prolactin secretion in response to suckling could
be a feature of the knockout mouse. This leads to
consideration of the usefulness of the oxytocin knockout
mice to analyse the importance of other factors in mech-
anisms in which oxytocin has a role, but in which there is
redundancy. Thus, in lactation, appropriate experiments
could address the issue of the relative importance of
suppression of dopamine secretion or stimulation of
VIP secretion in suckling stimulation of prolactin
secretion. Similarly, the importance of other factors in
parturition, freed from contamination by any effects of
oxytocin, can be examined, for example, assessing a role
for vasopressin.

Oxytocin and maternal behaviour

Whereas all mammalian species express oxytocin receptors
at high levels in the term pregnant uterus (see above), the
distribution of oxytocin receptors in the brain shows very
wide interspecies variation (Tribollet et al. 1992, Insel et al.
1993), and considerable variation is apparent even
between rat and mouse. In the rat, oxytocin, produced and
acting in the brain, is important in stimulating the expres-
sion of female receptive behaviour (Caldwell et al. 1990)
and in penile erection in the male (Melis et al. 1994); in
particular, centrally administered oxytocin facilitates
lordosis by acting in the ventromedial nucleus of the
hypothalamus, through specific oxytocin receptors posi-
tively regulated by oestrogen or testosterone ( Johnson
1992, McCarthy et al. 1994, Bale & Dorsa 1995). By
contrast, in the normal (and homozygous oxytocin knock-
out) mouse, there is a low density of oxytocin receptors in
the ventromedial nucleus (Nishimori et al. 1996), and in
the male mouse testosterone negatively regulates oxytocin
receptor binding in the ventromedial nucleus, the reverse
of the effects of gonadal steroid in the rat (Insel et al. 1993).
Also, adult male mouse brain has fewer immunoreactive
oxytocin neurones than the female, consistent with a
suppressor action of testosterone (Haussler et al. 1990), and
again unlike the rat, which shows no sex difference in
neuronal oxytocin expression.

Notwithstanding considerable species variability in the
suggested central actions of oxytocin, there is evidence
across distantly related species of a role for central oxytocin
in maternal behaviour. Lactating rats display a range of
behaviours, together described as maternal behaviour,
which are not normally shown by virgin rats, unless they
are exposed to young over many days (Numan 1994).
These component behaviours include nest building, gath-
ering young into the nest, and licking and crouching over
the young, and lactating rats will readily extend these
attentions towards alien foster pups as well as to their own
young. Maternal behaviour in the rat appears abruptly
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immediately after parturition, and is maintained subse-
quently throughout lactation. Oxytocin, released within
the brain at parturition, is thought to be involved in
stimulating the rapid onset of maternal behaviour acting on
up-regulated oxytocin receptors (Insel 1986), and i.c.v.
injections of oxytocin antagonists are effective in prevent-
ing the induction of maternal behaviour (van Leengoed
et al. 1987), in particular acting through the ventral
tegmental and medial preoptic areas and olfactory bulbs
(Pedersen et al. 1994, Yu et al. 1996). In contrast, once
maternal behaviour has been induced, i.c.v. injection of
oxytocin antagonists has generally been found to be
ineffective, although olfactory signals are of key import-
ance (Kolunie & Stern 1995), and antagonist admin-
istration into the olfactory bulbs does reduce maternal
behaviour (Yu et al. 1995). Similar actions of oxytocin
have been demonstrated in sheep, in which the central
release of oxytocin is triggered by stimulation of the
uterine cervix and vagina (Kendrick et al. 1988). Rapid
expression of maternal behaviour can be induced in virgin
rats by oestrogen treatment (‘priming’) followed by i.c.v.
oxytocin (Pedersen & Prange 1979), provided that the
testing is in a novel environment (Fahrbach et al. 1985). In
this model, i.c.v. oxytocin antiserum disrupts maternal
behaviour (Pedersen et al. 1985).

Against this background, what is already known about
the expression of maternal behaviour in the mouse? There
is an important difference between the rat and the
laboratory mouse. ‘Only a few studies have been directed
at examining the hormonal basis of pup-directed maternal
behaviour in mice, and this is because the virgin laboratory
mouse usually shows spontaneous maternal responsiveness to
test pups’ (Numan 1994; our italics), and full maternal
behaviour is shown by virtually all late-pregnant laboratory
mice (Gandelman 1973). In the light of this, it is less
surprising that postpartum maternal behaviour is normal in
the oxytocin knockout mouse, since its induction in the
laboratory mouse clearly cannot depend on oxytocin
release during parturition. Nonetheless, there are detect-
able quantitative differences in maternal behaviour
between virgin and primiparous mice (Laviola et al. 1994).
Such subtleties have evidently not been sought in the
oxytocin knockout mice. Because lactating mice share the
nursing of their litters under natural conditions, unlike rats
(Gandelman et al. 1970, see Numan 1994), it is likely that
oxytocin deficiency in an individual lactating mouse could
be compensated for by this social behaviour. Thus, in the
mouse’s natural social context, oxytocin could be consid-
ered to be redundant for an individual, even with respect
to its role in milk ejection. Disabling natural mutations of
the oxytocin gene may be prevalent in such communal
nursing species.

In marked contrast with the behaviour of virgin lab-
oratory mice, virgin wild mice usually cannibalise strange
pups. Infanticide by pregnant wild mice ceases at the birth
of the young, and returns only after the young are weaned.

Interestingly, infanticide in virgin wild mice is suppressed
after systemic or i.c.v. oxytocin injection (McCarthy et al.
1986, McCarthy 1990). Olfactory processing is again
implicated, since prepartum destruction of the noradren-
ergic input to the olfactory bulbs induces postpartum
cannibalism in laboratory mice (Dickinson & Keverne
1988); the mouse olfactory bulb is rich in oxytocin
receptors (Insel et al. 1993).

Postpartum mice (including laboratory strains) display
aggression toward conspecific intruders. The aggressive
behaviour is suckling-dependent (Garland & Svare 1988),
but not dependent on prolactin secretion (Mann et al.
1980). Lactational aggressiveness towards intruders is seen
also in the rat; in neither rat nor mouse has a role for
central oxytocin in this behaviour been tested, but micro-
injection of oxytocin into the amygdala in the hamster
increases aggressiveness of lactating females toward
intruder males (Ferris et al. 1992). In the rat, maternal
aggression is independent of suckling (Mayer et al. 1987),
prolactin secretion (Erskine et al. 1980) and probably
oxytocin secretion (Factor et al. 1992), but is dependent on
somatosensory inputs to the snout and ventral body
surface, and is influenced by volatile odours acting via the
olfactory epithelium and olfactory bulb (Ferreira et al.
1987, Stern & Kolunie 1993, Kolunie & Stern 1995). This
behaviour in the rat also involves lateral connections of the
ventromedial nucleus, a region rich in oxytocin receptors
(Bale & Dorsa 1995), which are not involved in
pup-directed behaviour (Hansen 1989).

In male oxytocin knockout mice, there is reduced
aggressiveness toward intruder males, with no evident
sensorimotor deficits in the homozygous knockouts,
although reversal by centrally administered oxytocin has
not been tested (De Vries et al. 1997).

With regard to this group of actions of oxytocin, in
facilitating receptive or copulatory or maternal and related
behaviours, for the knockout mice, the fact that the
oxytocin knockout is lifelong leaves the possibility for
compensation by recruitment of other neuropeptides
acting on oxytocin receptors; an obvious candidate is
vasopressin. With respect to actions in the brain, matching
of oxytocin receptor distribution to sites of vasopressin
release, but under appropriate conditions, would be
required, while oxytocin receptors in the brain bind
vasopressin with a similar affinity for oxytocin (see Barberis
& Tribollet 1996). In the rat, centrally administered
vasopressin can, like oxytocin, induce maternal behaviour
in appropriately primed virgin rats (Pedersen et al. 1982).

In short, the studies to date on normal or oxytocin
knockout mice do not allow a critical evaluation of the role
of central oxytocin in the expression of maternal behaviour
in the mouse. This is made difficult by the facility with
which the neural circuitry for this behaviour is activated
even in virgin female laboratory mice: in wild mice, and
other species, facilitation by release of oxytocin within the
brain is likely to be important, with a broad spectrum of
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necessity, while the oxytocin gene product will interact
with other neurotransmitters in shaping and evoking
maternal behaviour.

Oxytocin and gonadal function

In ruminants, oxytocin from the corpus luteum provides
an essential signal to the non-pregnant endometrium to
trigger PGF2á release, which in turn initiates luteolysis and
drives further luteal oxytocin secretion in a positive
feedback circuit (Flint et al. 1990); in early pregnancy in
the sheep, suppression of endometrial oxytocin receptor by
interferon ô from the embryo is essential to prevent
luteolysis (Lamming et al. 1995). Many species show some
evidence of gonadal expression of either vasopressin or
oxytocin; in the human, oxytocin and oxytocin receptors
are expressed in cumulus cells around the oocytes (Furuya
et al. 1995), and oxytocin is expressed in Sertoli cells of the
bovine testis (Ang et al. 1991). However, there are
considerable interspecies differences in the regulation of
luteolysis, and there is no evidence that gonadal oxytocin
plays a role in rodents similar to that documented for
ruminants. Previous studies in the mouse on the role of
oxytocin in gonadal function indicate a capacity to stimu-
late ovulation (Robinson et al. 1985) and weak expression
in granulosa cells; at the anterior pituitary, oxytocin can
advance the luteinizing hormone preovulatory surge in the
rat (Robinson & Evans 1990). Evidence has also been put
forward that oxytocin can stimulate blastocyst develop-
ment in vitro (Furuya et al. 1995), act on seminiferous
tubule motility (Nicholson et al. 1986) and possibly
stimulate, via vasopressin receptors, testosterone produc-
tion (Tahri-Joutei & Pointis 1989), although the oxytocin
gene is not naturally expressed in the mouse testis (Ang
et al. 1991).

Reconciliation

If the above accounts of studies on the roles of oxytocin in
mice and other mammals appear to be inconsistent with
observations on oxytocin knockout mice, the inconsistency
may be more apparent than real. Specifically, with regard
to parturition, it is perfectly reasonable to affirm that
oxytocin is released from the pituitary in large pulses,
which act upon a uterus that is expressing an abundance of
oxytocin receptors, and thereby influences uterine con-
tractility and the progress of parturition, while at the same
time affirming that, in the absence of oxytocin, other
mechanisms may be substituted to ensure ultimately
successful parturition. Indeed, it would have been brave to
deny the likely truth of any part of this, for there have been
many previous well-described examples of normal labour
in humans and experimental animals with apparently
complete posterior pituitary dysfunction (Amoroso &

Porter 1966). Even in birds, egg laying has been observed
to occur after acute neurohypophysectomy (Nakada et al.
1993). With regard to other reproductive roles of oxy-
tocin, it seems clear that species differences are consider-
able and obscure the interpretation of results from the
knockout mouse.

Conclusion

Despite the reservations expressed in this review, there is
much that can be learned about the roles of oxytocin in the
oxytocin knockout mouse. In particular, even if the results
from the knockout mouse can tell us little about the role
played by oxytocin in reproductive functions, they can
certainly be invaluable in telling us how these are fulfilled
in the absence of oxytocin.

If nothing else, it is now evident that oxytocin has
physiological actions that are strictly redundant. Natural
selection is harsh in culling features that are counter-
adaptive, but clearly the actions of oxytocin on the uterus
at term, which involve co-ordinated up-regulation of
uterine oxytocin receptor expression, if not essential are
not counteradaptive. Indeed, we may expect that any local
uterine, neural or endocrine mechanism that will tend to
favour successful delivery at term will be preserved by
selection, provided that the costs of maintaining a redun-
dant mechanism do not exceed the costs of eliminating
it. The neurohypophysial system regulates the delivery
of progeny in all vertebrates, and, during its long
evolutionary history, other mechanisms may have evolved
convergent roles simply by a process of exclusion. When
everything that opposes the actions of oxytocin in par-
turition is excluded, the things that remain are neutral,
assist oxytocin or, in dogging the footsteps of oxytocin, can
substitute for it. What these key substitutes are in the
oxytocin knockout mouse are at present not known.
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