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Sex-specific and pleiotropic effects underlying
kidney function identified from GWAS
meta-analysis
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Maiken E. Gabrielsen4,5, Anne Heidi Skogholt4,5,6, Ida Surakka1, Whitney E. Hornsby1, Damian Fermin7,

Daniel B. Larach8, Sachin Kheterpal8, Chad M. Brummett8, Seunggeun Lee 2, Hyun Min Kang2,

Goncalo R. Abecasis2, Solfrid Romundstad6,9, Stein Hallan6,10, Matthew G. Sampson 7, Kristian Hveem4,5,11 &

Cristen J. Willer 1,3,12

Chronic kidney disease (CKD) is a growing health burden currently affecting 10–15% of adults

worldwide. Estimated glomerular filtration rate (eGFR) as a marker of kidney function is

commonly used to diagnose CKD. We analyze eGFR data from the Nord-Trøndelag Health

Study and Michigan Genomics Initiative and perform a GWAS meta-analysis with public

summary statistics, more than doubling the sample size of previous meta-analyses. We

identify 147 loci (53 novel) associated with eGFR, including genes involved in transcriptional

regulation, kidney development, cellular signaling, metabolism, and solute transport. Addi-

tionally, sex-stratified analysis identifies one locus with more significant effects in women

than men. Using genetic risk scores constructed from these eGFR meta-analysis results, we

show that associated variants are generally predictive of CKD with only modest improve-

ments in detection compared with other known clinical risk factors. Collectively, these results

yield additional insight into the genetic factors underlying kidney function and progression to

CKD.
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C
hronic kidney disease (CKD) is a common condition
affecting ~11% of adults in Norway and ~15% in the
United States1,2. Due to specific comorbidities (namely

diabetes) and an aging population, CKD is expected to continue
to rise in global prevalence3. Estimated glomerular filtration rate
(eGFR) provides an assessment of kidney function and it is
estimated based on serum creatinine levels with adjustment for
age, race, and sex. eGFR levels below 60 mL/min/1.73 m2 gen-
erally characterize chronic kidney disease4, with varying severity
classified by both albuminuria and eGFR levels. A subset of
individuals with CKD have accelerated renal function decline and
progress to end stage renal disease (ESRD).

Several other health conditions affect kidney function. Chronic
diseases such as diabetes and hypertension directly influence the
development of CKD, with environmental factors such as
smoking accelerating disease progression5. Advanced stages of
CKD/ESRD necessitate dialysis or transplantation and are asso-
ciated with an increased risk of cardiovascular disease and death6.

It has been estimated that about one-third of the variation in
eGFR levels can be attributed to genetic factors7, with the
remaining variability due to environmental effects. Previous
genome-wide association studies (GWAS) and meta-analyses
have identified a number of loci associated with serum creatinine,
eGFR, or CKD8–18. However, the introduction of denser impu-
tation panels, including the Haplotype Reference Consortium19

(HRC), and the recent rise in large-scale biobanks has enabled
larger sample sizes and a greater number of variants than pre-
viously studied. Analysis of these new and more densely imputed
datasets are expected to identify genetic regions influencing these
traits not previously found20.

We analyze samples from the Michigan Genomics Initiative
(MGI) and the Nord-Trøndelag Health Study (HUNT), and
impute using HRC and a combined HRC and ancestry-specific
panel, respectively, for association with eGFR. Finally, we perform
a meta-analysis of eGFR associations with two other cohorts to
uncover additional genetic variants contributing to kidney func-
tion. We identify 147 loci associated with eGFR, including 53
novel loci and one locus with a significantly larger effect in
women than in men. The index variants in these loci are further
associated with related traits, including diabetes, hypertension,
and cardiovascular disease. Lastly, we demonstrate that genetic
risk scores constructed from significantly associated eGFR var-
iants are correlated with CKD on a population level.

Results
Meta-analysis of eGFR. Meta-analysis of 350,504 individuals
(26,237,160 variants) from the HUNT Study, CKDGen Con-
sortium, BioBank Japan, and the Michigan Genomics Initiative
identified 147 loci associated with eGFR, of which 53 were novel
(Table 1, Supplementary Data 1, Supplementary Fig. 1). We
prioritized genes belonging to several biological classes related to
kidney function based on: missense variants (either the lead or a
proxy variant, 34 genes), DEPICT gene prioritization results (156
genes), significantly colocalized eQTLs in either kidney (4 genes)
or non-kidney (187 genes) tissue, or nearby Mendelian kidney-
disease genes (Supplementary Tables 1–2, Supplementary Data 2–
4). We were able to prioritize genes using these annotations for
126 of the 147 loci (86%). Loci that were not able to be prioritized
through these methods were annotated as the nearest gene (21/
147 loci, 14%). Prioritized genes at novel loci included genes
involved in transcription (CASZ1, PPARGC1A, ZNF641, MED4-
AS1, ZFHX3, ZGPAT, MAFF), cellular signaling and differentia-
tion (ACVR2B, DCDC2, GRB10, THADA, TRIB1, PTPN3),
metabolism (L2HGDH, XYLB), solute carrier genes (SLC25A43,
TPCN2, KCNMA1, MFSD6), and genes related to AB antigen

blood types (ABO, FUT2). Together, these results explain 7.6% of
eGFR heritability, as calculated from LD score regression21. We
were not able to directly test these variants for replication of the
eGFR associations since a similarly-sized cohort with eGFR
measurements was not available. Instead, we tested for association
of the index variants in kidney-related traits in the UK Biobank
(CKD, hypertensive CKD, renal failure, acute renal failure, renal
failure NOS, renal dialysis, or other disorders of kidney and
ureters). Seven of the 48 novel variants (5 were lost due to poor
imputation) and 27 of the 85 lead variants in known loci that
were available in the UK Biobank were at least nominally asso-
ciated and had corresponding direction of effect with one or more
UK Biobank kidney-related phenotypes, providing initial support
for the biological validity of the eGFR results (Supplementary
Data 5, Supplementary Fig. 2). In addition, we compared the
results from the current meta-analysis with previously reported
eGFR index variants8–11,13,14,16. Excluding the previously pub-
lished datasets, 56 of the 118 available variants were at least
nominally significant in a meta-analysis of HUNT and MGI alone
(Supplementary Data 6).

Kidney-specific eQTL associations. To identify variants that may
be acting through regulation of gene expression within the kid-
neys, we examined which eGFR index variants were significant
eQTLs (p-value < 6.7 × 10−6, Bonferroni correction for 51 tissue
types and 147 index variants) for a given gene in human kidney
cortex22, glomerulus23, or tubulointerstitium. This identified 16
genes whose expression was associated with the eGFR index
variants in kidney tissues, including 7 genes identified from
normal kidney cortex tissue samples22 and 10 genes identified
from kidney glomerulus or tubulointerstitium samples23 from
individuals with nephrotic syndrome (1 gene overlapped both
datasets, Supplementary Data 7). Five of these genes had
expression levels associated with the eGFR index variants speci-
fically in kidney tissues (p-value < 6.7 × 10−6) but not in other
tissues in GTEx24: APOD, CDKL5, DPEP1, FGF5, and TFDP2. Of
the kidney eQTLs, FGF5, CDKL5, TPSAN33, and METTL10
showed significant colocalization with the eGFR association
(Supplementary Data 3). In addition, some genes demonstrated a
colocalizing eQTL association in non-kidney tissues but are also
thought to cause Mendelian kidney diseases25 when disrupted
(ALMS1, DCDC2, MUC1, RPS10, SDCCAG8, SLC34A1).

DEPICT analysis. DEPICT analysis was performed to identify
tissues and gene sets enriched for genes in the loci identified from
eGFR meta-analysis. Consistent with the role of the identified
genes in kidney function, the most significant tissues (FDR <
0.01) identified by DEPICT were the urinary tract and kidney
(Supplementary Data 8). Additional enriched tissues (FDR < 0.05)
included the exocrine glands, liver, epithelial cells, prostate, kid-
ney cortex, male genitalia, membranes, and adrenal cortex.
DEPICT analysis identified 482 significant gene sets (FDR < 0.05,
Supplementary Data 9). The top gene sets (p-value < 3.46 × 10−6,
0.05/14462 gene sets) primarily included those associated with
kidney morphology, the activity of transport channels, and with
monosaccharide metabolic processes as shown in Fig. 1 (Sup-
plementary Fig. 3).

Overlap of eGFR loci with related traits. As individuals with
CKD often have coexisting heart disease or diabetes, we examined
the identified eGFR variants for evidence of pleiotropic effects. A
PheWAS analysis of the eGFR index variants across 23 cardio-
vascular and diabetes-related phenotypes in UK Biobank, excluding
individuals with CKD, identified 7 phenotypes for which a subset of
the index variants was also significant (p-value < 1.48 × 10−5,
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Bonferroni correction for 23 phenotypes and 147 index variants):
diabetes, coronary atherosclerosis, hypertension, essential hyper-
tension, pulmonary heart disease, phlebitis and thrombophlebitis,
and ischemic heart disease (Supplementary Data 5, 10, Fig. 2).
Colocalization analysis with these phenotypes identified 7 loci

(prioritized genes: FGF5, PRKAG2, TRIB1, DCDC5/MPPED2,
L2HGDH/SOS2, UMOD, SALL1) having significantly colocalized
association signals with hypertension, essential hypertension, and/
or coronary atherosclerosis and 1 locus (prioritized gene: GCKR)
that colocalized with association of type 2 diabetes (Supplementary

Table 1 Lead variants for novel eGFR loci from meta-analysis

Chr Pos (hg19) rsID Ref Alt Freqa N P-value Directiona Prioritized genes

1 10733081 rs284316 T C 0.3331 196273 1.50 × 10−9 + CASZ1

1 100808363 rs11166440 A G 0.4119 350504 7.07 × 10−9 − CDC14A

1 180905694 rs3795503 T C 0.6017 350504 7.54 × 10−13 − KIAA1614

1 227085824 rs1800674 A G 0.5615 350504 4.23 × 10−8 − ADCK3

2 18679586 rs10856778 C G 0.8311 350504 1.04 × 10−9 + LOC105373454

2 43441169 rs35136921 T C 0.4564 177995 2.74 × 10−11 + THADA

2 54574942 rs1405833 C G 0.2733 350504 5.10 × 10−10 − C2orf73

2 178146362 rs17581525 C G 0.1889 350504 6.11 × 10−11 + AC074286.1

2 191278341 rs6725814 A G 0.261 350504 3.39 × 10−8 + MFSD6

2 230612451 rs6756038 A G 0.7353 350504 4.72 × 10−9 − TRIP12

3 38479475 rs7429308 T C 0.4951 350504 4.90 × 10−11 − ACVR2B, XYLB

3 193816778 rs10933714 A T 0.5232 350504 2.81 × 10−9 − LINC02028

3 195477791 rs2291652 A G 0.4385 347321 2.36 × 10−8 − SDHAP2, MUC20, RP11-141C7.4, SDHAP1, MUC4,

MIR570

4 23758662 rs73243607 T C 0.962 349244 3.37 × 10−8 − PPARGC1A

5 107459529 rs12652687 T C 0.1447 349666 3.61 × 10−8 − FBXL17

6 24354045 rs3765502 T C 0.2351 347321 4.01 × 10−8 − DCDC2

6 107172979 rs7766720 T C 0.1424 350503 4.13 × 10−8 − LINC02532

7 50737852 rs73116822 T C 0.9282 349244 2.71 × 10−9 + GRB10

7 56072841 rs4948100 T C 0.3796 350504 1.17 × 10−8 + ZNF713, PSPH, CCT6A, GBAS

7 128737958 rs56088330 A T 0.6814 350504 8.12 × 10−10 + RP11-286H14.4, TSPAN33

8 9074223 rs7006504 T C 0.297 206846 1.91 × 10−9 − PPP1R3B, ENSG00000254235, ENSG00000182319, RP11-

10A14.5

8 32399662 rs4489283 T C 0.6897 349668 2.47 × 10−9 + RP11-1002K11.1

8 126477978 rs2001945 C G 0.4361 350504 4.37 × 10−11 + TRIB1

8 134332960 rs10283362 T C 0.8607 350504 2.04 × 10−8 − NDRG1

9 34130435 rs61237993 A G 0.654 350501 1.85 × 10−8 − DCAF12, UBE2R2

9 112206404 rs10816812 A T 0.6295 350501 1.00 × 10−8 + PTPN3

9 136146597 rs550057 T C 0.7393 350501 1.58 × 10−9 − ABO

9 139107879 rs11103387 T C 0.7296 339928 8.07 × 10−10 − QSOX2

10 35171118 rs11010013 A G 0.6928 323766 1.50 × 10−8 − PARD3

10 79253261 rs3127447 A C 0.3283 349675 3.04 × 10−8 + KCNMA1

10 94810665 rs856534 A G 0.4342 347320 1.23 × 10−9 + EXOC6, CYP26C1

10 126418782 rs11245344 T C 0.4673 350504 3.37 × 10−11 + METTL10

11 68883556 rs7131509 T C 0.5311 350503 2.76 × 10−10 − TPCN2, LOC107984345

12 48736985 rs2732481 T G 0.2444 203655 1.82 × 10−9 − ZNF641

13 48654455 rs9534949 C G 0.6165 350503 4.84 × 10−9 + NUDT15, MED4-AS1, LINC00562

14 50735947 rs72683923 T C 0.0109 205585 2.98 × 10−8 + SOS2, L2HGDH

15 39274261 rs8026431 A C 0.6364 350504 3.13 × 10−9 − LOC105370781

15 57830151 rs117047297 T C 0.9836 205586 3.16 × 10−8 − CGNL1

15 63634405 rs1075456 T G 0.6601 350504 3.05 × 10−9 − LACTB

15 67561355 rs12443279 C G 0.3495 350504 3.03 × 10−8 − SMAD3

16 69718112 rs77944668 A G 0.6984 350504 1.45 × 10−8 − NFAT5, NQO1

16 73024276 rs1858800 T C 0.761 347323 1.82 × 10−8 − ZFHX3

16 79938996 rs35286975 C G 0.7933 350504 1.94 × 10−10 − MAF

17 34950239 rs12937411 T C 0.6134 350502 1.62 × 10−10 − MYO19, DHRS11

19 18384950 rs1075403 T G 0.6992 348391 1.57 × 10−10 − JUND, KIAA1683

19 49217305 rs281386 A G 0.591 350504 4.77 × 10−8 + RASIP1, FUT2

20 62336334 rs1758206 T C 0.8245 204319 1.51 × 10−9 + ZGPAT, LIME1

21 16582710 rs56038390 A G 0.3014 350504 1.28 × 10−9 − NRIP1

21 35356706 rs2834317 A G 0.8977 350504 1.58 × 10−8 + LOC105372790

22 38600542 rs2267373 T C 0.3949 350504 2.65 × 10−10 + MAFF

X 18597869 rs4825261 A C 0.7148 96329 1.36 × 10−9 − CDKL5

X 118630622 rs454741 A G 0.641 239987 5.15 × 10−10 − SLC25A43, CXorf56

X 133808916 rs11796053 A G 0.4934 239987 4.93 × 10−8 + HPRT1

aReported frequency and direction of effect is with respect to the alternate allele for the combined meta-analysis

Study specific associations and allele frequencies are given in Supplementary Data 1

Gene names are italicized
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Data 5). Six of the seven index variants within loci that showed
significant colocalization with the cardiovascular traits were asso-
ciated with essential hypertension and/or hypertension, under-
scoring the connection between high blood pressure and CKD. In
addition, the index variants were examined for association with
1,400 traits phenome-wide (without exclusion of CKD cases). As
shown in Fig. 2, the index variants are significantly associated
(p-value < 5 × 10−8) with additional traits including hypothyroid-
ism and lipid metabolism disorders.

Construction of genetic risk scores. We developed genetic risk
scores (GRS) from the meta-analysis results to assess the rela-
tionship between the identified variants and the likelihood of
having CKD. These scores were then tested as predictors of CKD
in a white British subset of UK Biobank. Several p-value and r2

clumping thresholds were tested to select variants for inclusion in
the GRS, but all yielded relatively similar predictions of CKD
status (AUC range: 0.500–0.543). The best prediction was
obtained using all independent markers (r2 < 0.4) with p-value <
5 × 10−6 and the European subset of 1000 Genomes for LD
clumping (Supplementary Fig. 4). The 1189 variants included in
this risk score explain an estimated 25.3% of the variance in eGFR
levels, while the GRS constructed using only the significantly
associated independent variants (p-value < 5 × 10−8, r2 < 0.2) is
estimated to explain 9.4% of the variance in eGFR. The GRS alone
was associated with CKD (p-value= 1.8 × 10−15, logistic regres-
sion), but it did not improve prediction of CKD status compared
with birth year and sex alone (AUC: 0.700), or birth year, sex, and
CKD clinical risk factors (diabetes, hypertension, and hyperlipi-
demia) (AUC: 0.865). Of all the tested models, inclusion of the
GRS in addition to birth year, sex, and clinical risk factors pro-
vided the best predictor of CKD (AUC: 0.868). We also tested
prediction of CKD using the best-performing GRS from the
overall meta-analysis (without birth year or additional risk fac-
tors) separately in men and women. The GRS was slightly more
predictive in women (AUC: 0.552) than in men (AUC: 0.538),
possibly due to differing lifestyle or hormonal factors26 between
the sexes influencing the development of CKD. In summary,
these results show that the variants identified from association
studies of eGFR are correlated with the presence of CKD on a
population level (Supplementary Fig. 4). However, the results are
not sufficient to identify individuals with CKD from those
without. This is consistent with findings from prior studies
examining GRS of eGFR27.

Sex-specific analysis in HUNT. We aimed to determine whether
any of the eGFR index variants showed sex-specific association as
there are known differences in the prevalence of CKD between men
and women28. Association tests of eGFR in HUNT stratified by sex
identified one locus (Fig. 3, Supplementary Fig. 5, Supplementary
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Data 11) that was significantly associated with eGFR in women but
not in men. Interaction tests on the unrelated subset of individuals
(N= 26,235, 37.7%) in HUNT confirmed a significant sex inter-
action for this variant (p-value= 1.4 × 10−5, p-value < 0.05/147).
We obtained the summary statistics from the CKDGen consortium
sex-stratified eGFR analysis to test this variant for replication13.
Within the CKDGen results, the proxy variant of rs2440164,
(rs2453580, r2= 0.98) showed greater significance and effect in
women than in men (p-valuewomen= 3.12 × 10−5 effectwomen=

−0.0066, p-valuemen= 0.014 effectmen=−0.0055).

Discussion
In summary, analysis of the HUNT and MGI biobanks and meta-
analysis of eGFR across more than 350,000 individuals identified
147 loci, of which 53 were novel. Novel eGFR index variants were
common with relatively small effect sizes. Despite the small effect
sizes of individual variants, the identified loci give new insight
into the genes underlying kidney function and the development
of CKD. In support of this, many of the prioritized genes cluster
into known kidney associated pathways. For example, Wnt sig-
naling has been implicated in kidney development and disease29.
Variants in DCDC2 were associated with eGFR levels. Knock-
down or overexpression of DCDC2 is known to alter β-catenin
activation of TCF transcription factors30, thereby altering Wnt
signaling. Likewise, variants in a gene associated with the epi-
dermal growth factor receptor (ErbB) family were also observed.
ErbB receptors are involved in kidney development31, control of
solute levels (e.g., Ca, Na)32,33, and play a role in
hypertension34,35. Our meta-analysis results identified variants in
MUC4 associated with eGFR levels. The beta chain of Mucin-4
(MUC4) interacts with ErbB236. Lastly, we identified variants
associated with both decreased eGFR and increased tubulointer-
stitial kidney CDKL5 expression. CDKL5 overexpression has
been shown to impair ciliogenesis37. Defects in cilia are known to
cause polycystic kidney disease and nephronophthisis, among
other disorders38. In addition, prioritized genes included those
known to cause Mendelian kidney disease25: ALMS1, CNNM2,
CYP24A1, CACNA1S, DACH1, DCDC2, GNAS, LRP2, MUC1,
RPS10, SALL1, SCARB2, SDCCAG8, SHH, SLC34A1, SLC7A9,
SMAD3, and UMOD. These clues provide an initial link to how
these identified genetic regions may lead to changes in kidney
function.

Recent single-cell transcriptomic studies have classified kidney
cell types in mice based on differential expression of specific genes

relative to other cell types39. Interestingly, several of the prior-
itized genes from the present study exhibited cell-type specific
expression in mouse kidney: CDC14A, DACH1, and VEGFA in
podocytes, CGNL1, IRX1, PPP1R1B, and UMOD in the loop of
Henle, LRP2, NAT8, SLC34A1, SLC47A1, and XYLB in the
proximal tubule, RASIP1 in the endothelial, vascular, and des-
cending loop of Henle, and STC1 in collecting duct principal cells.
These findings may help to identify kidney cell types whose
function is affected by the genetic variants found in the eGFR
GWAS. Recent studies have further examined the role of gene
expression in eGFR and CKD. Xu et al., performed Mendelian
randomization analysis using gene expression data to identify a
causal role forMUC1 expression on eGFR40. Single nucleus RNA-
sequencing using cells from a human kidney donor identified
expression of DPEP1 that was specific to the proximal tubule41.
Moreover, glomerular and tubular specific gene expression
associations have been found to be significantly enriched for CKD
and eGFR GWAS results42, emphasizing the need to consider
eQTLs in kidney tissue when prioritizing genes from kidney-
related GWAS.

Experimental evidence also supports hormonal regulation of
SLC47A1 expression, the gene prioritized from the sex-stratified
analysis of eGFR. SLC47A1 is also known as MATE1 (multidrug
toxin and extrusion protein 1). Experimental studies of MATE1
identified higher levels of expression in the kidneys of 30–45-day
old male mice compared to female43. Furthermore, He at al.
found that kidney expression of MATE1 could be modified by
treatment with testosterone or estradiol, compared to olive oil as a
control44.

It is also interesting to consider the interplay between kidney
function and other related traits based on the overlap between
identified genetic regions. For example, the GCKR gene was
prioritized based on eGFR meta-analysis results. GCKR encodes
glucokinase regulatory protein, which regulates glucose metabo-
lism, and has been previously associated with the development of
diabetes45. The ABO gene, responsible for determination of an
individual’s ABO blood type, was also prioritized based on eGFR
meta-analysis results. Associations near this gene have been
previously identified for other phenotypes, including LDL and
total cholesterol46, coronary artery disease47, and type 2 dia-
betes48. As diabetes is a significant risk factor for the development
of CKD, these shared associations may help to identify potential
common mechanisms. Comparison of association results with
cardiovascular disease-related traits also identified shared
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associations with hypertension, the second major risk factor for
CKD. Six of the 147 loci identified from meta-analysis showed
significant colocalization with hypertension, which may help to
identify additional shared pathways between high blood pressure
and kidney function.

While additional studies are needed to understand eGFR
associations that are specific to disease subtypes, the present
results build upon the previous studies8–18 to increase the number
of eGFR associated loci and identify pleiotropic associations with
cardiovascular disease. Limitations in the present study include
the use of both population-based cohorts and cohorts selected for
disease case status, differences in eGFR calculation and trait
transformation between studies, and the lack of direct replication.
Follow-up experimental studies are needed to validate the role of
the identified genes in kidney function, and additional genetic
studies are needed to verify these associations in more diverse
cohorts. Nevertheless, these results identify additional genes that
are likely involved in regulating kidney function and may help to
identify new therapeutic targets or diagnostic measures to reduce
the progression to CKD and need for permanent dialysis or
kidney transplant.

Methods
Description of cohorts. The HUNT study49 is a longitudinal, repetitive
population-based health survey conducted in the county of Nord-Trøndelag,
Norway in which kidney-related phenotypes have not previously been tested for
genetic association. Since 1984, the adult population in the county has been
examined three times, through HUNT1 (1984–86), HUNT2 (1995–97), and
HUNT3 (2006–08). A fourth survey, HUNT4 (2017–2019), is ongoing. HUNT was
approved by the Data Inspectorate and the Regional Ethics Committee for Medical
Research in Norway. All HUNT participants gave informed consent. Approxi-
mately 120,000 individuals have participated in HUNT1–HUNT3 with extensive
phenotypic measurements and biological samples. A subset of these participants
have been genotyped (~70,000) using Illumina HumanCoreExome v1.0 and 1.1
and imputed with Minimac3 using a combined HRC and HUNT-specific WGS
reference panel. Variants with imputation r2 < 0.3 were excluded from further
analysis. We analyzed available kidney-related phenotypes within the HUNT study,
including creatinine (N= 69,591), eGFR (N= 69,591), urea (N= 20,700), and
CKD (Ncases= 2044 and Ncontrols= 65,575). eGFR values were calculated using the
MDRD equation50,51. We also calculated eGFR using the CKD-EPI equation and
after adjustment for covariates including age, sex, and batch followed by inverse
normal transformation, the resultant eGFR phenotype values were highly corre-
lated with those derived in the same manner after eGFR was calculated using
MDRD (Supplementary Fig. 6, r2= 0.995). CKD status was derived from ICD-9
codes 585 and 586 and ICD-10 code N18. Association testing (24,961,484
variants) of quantitative traits was performed using BOLT-LMM52 v2.2 on the
inverse-normalized residuals of the traits adjusted for genotyping batch, sex, 4
principle components, and age (Supplementary Fig. 7). Association testing for
CKD was performed using SAIGE with batch, sex, 4 principle components, and
birth year as covariates. Associations stratified by sex for eGFR were also per-
formed. For the stratified analyses, phenotypes were separately inverse-normalized
and were adjusted for batch, age, and 4 principle components. Linkage dis-
equilibrium within HUNT was calculated using PLINK v1.9053. To identify
independent variants, conditional analysis for eGFR was performed within the
HUNT dataset using BOLT-LMM v.2.3.1, conditioning on the lead variant within
the identified loci until no variants with MAF > 0.5% had p-value < 5 × 10−8. To
identify sex-specific effects, eGFR index variants were examined separately in men
and women and were filtered to those that were significant in one sex but not
significant (p-value > 0.05) in the other. Differences in effect sizes between males
and females were tested using Z= (βM − βW)/(SEM2+ SEW2 – 2rSEM SEW)0.5,
where r is the Pearson correlation for male and female effect sizes across all
variants54. Interaction tests for these variants were performed on an unrelated
subset of HUNT participants (N= 26,235) in PLINK v1.9 with sex, age, batch, and
4 principle components as covariates and a sex interaction term. Significance
between sexes was determined using Bonferroni correction for the number of
tested loci. HUNT-specific results are provided in Supplementary Tables 3–4 and
in Supplementary Data 12.

BioBank Japan (BBJ) is a registry of patients from 12 medical centers across
Japan who are diagnosed with at least one of 47 common diseases55. Summary
statistics for 58 quantitative traits, including eGFR, are publicly available16.
Participating individuals were genotyped with either the Illumina
HumanOmniExpressExome BeadChip or HumanOmniExpress and HumanExome
BeadChips. Imputation was performed with Minimac using the East Asian
reference panel from 1000 Genomes phase 156. Variants with imputation r2 < 0.7

were excluded. BBJ eGFR values were calculated using the Japanese ancestry
modified version of the CKD-EPI equation57 and were available on 143,658 of
those enrolled. Individuals with eGFR values of less than 15 mL/min/1.73 m2 were
excluded from the analysis. Values were standardized using rank-based inverse
normalization. Association analysis (6,108,953 variants) was performed using
mach2qtl with sex, age, the top 10 principle components, and disease status of all
studied diseases (N= 47) included as covariates.

The CKDGen consortium includes meta-analysis results from 33 individual
studies of European ancestry (N= 110,527) that were imputed with the 1000
Genomes phase I reference panel8. Summary statistics for eGFR were taken from
the published dataset [ckdgen.imbi.uni-freiburg.de]. Detailed descriptions of
individual cohorts are available8. Briefly, each group generated association statistics
based on the natural log of eGFR using age and sex as covariates. eGFR was
estimated from creatinine levels using the MDRD equation50,51. Variants with
imputation quality ≤ 0.4, and those found in less than half of individuals were
excluded from further analysis. Meta-analysis (10,154,908 variants) was performed
using the inverse-variance method in METAL58. Pre and post-meta-analysis
genomic control (GC) correction was performed.

The Michigan Genomics Initiative (MGI) is a repository of electronic medical
record and genetic data at Michigan Medicine59 (N= 26,738). MGI participants
are enrolled during pre-surgical encounters at Michigan Medicine and consent to
linkage of genetic and clinical data for research. MGI was approved by the
Institutional Review Board of the University of Michigan Medical School. DNA
was extracted from blood samples and then participants were genotyped using
Illumina Infinium CoreExome-24 bead arrays. Genotype data was then imputed to
the Haplotype Reference Consortium using the Michigan Imputation Server,
providing 17 million imputed variants after standard quality control and filtering.
Unrelated European individuals were used for analysis. eGFR values were
computed using the CKD-EPI equation from creatinine values. The mean eGFR
value was used for individuals having more than one eGFR measurement (median
number of measurements per individual was 7 and the median time between first
and last measurements was 2.4 years). 3% of individuals in MGI had a diagnosis of
CKD. Due to the recruitment strategy of MGI, laboratory measurements are highly
skewed towards more recent values, with 80% of laboratory values collected in 2010
or later. Mean eGFR was then regressed on sex, current age, array version, and
PC1-4 and the subsequent residuals were inverse-normalized. Single-variant
association testing of the inverse-normalized residuals was performed in epacts
using a linear regression model for variants with MAF > 0.001 (12,560,917
variants).

Meta-analysis. Meta-analysis was performed using the p-value based approach in
METAL58. This approach was chosen to account for differing units between the
effect sizes of the CKDGen (log-transformed) and MGI/BBJ/HUNT (inverse-
normalized) summary statistics. This approach was validated by comparison to
traditional standard error-based meta-analysis of the cohorts with available
inverse-normalized summary statistics; the results showed an extremely high
correlation of p-values (Pearson r= 0.966, Supplementary Fig. 8). Summary sta-
tistics from contributing studies were GC corrected prior to meta-analysis and were
not filtered by minor allele frequency or sample size. Lead index variants were
determined as the most significant variant in ±1Mb windows that were found in at
least 2 studies. Adjacent windows were merged if the LD r2 between lead variants
was ≥ 0.2. Identified variants were considered to be novel if the most significant
variant was more than 1Mb away from previously reported lead variants. Linkage
disequilibrium between variants was calculated using LDlink60 or PLINK with the
European and East Asian 1000 Genomes Phase III reference panels61. LD Score
regression intercepts and heritability were calculated using LDSC version 1.0.021

with the European 1000 Genomes reference LD Scores using variants with minor
allele frequency greater than 1%.

Variant and gene annotation. Variants were annotated using WGSA62 and
dbSNP63. Annotation of variants with associated biological processes was per-
formed using the UniProt64 and NCBI gene [https://www.ncbi.nlm.nih.gov/gene]
databases. Genes for identified loci were prioritized based on the consensus
between significantly colocalized eQTLs, missense variants within 1 Mb and in LD
(r2 > ~ 0.8) with the lead variant, and the gene prioritized by Data-driven
Expression-Prioritized Integration for Complex Traits (DEPICT)65. In cases where
there was no gene identified from the different annotation methods, the gene was
prioritized as the nearest gene. DEPICT analysis was performed using the DEPICT
1.1 1000 Genomes version. Variants from meta-analysis that were found in two or
more studies with p-value < 5 × 10−8 were included. LD information from the
European and East Asian subsets of 1000 Genomes was used to construct loci
within DEPICT. DEPICT results with FDR < 0.05 were considered significant.
Gene sets with more than 25% overlap were collapsed into a single set for con-
struction of the network diagram, as previously done66.

eQTL analysis. Publicly available eQTL association datasets from GTEx V724,
NephQTL23, and Ko et al.22 were each used separately to identify overlap between
gene expression and identified eGFR association results. Specific tissue types,
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sample sizes, and links to public datasets included in the analysis are given in
Supplementary Table 2. Kidney eQTL results were taken from only NephQTL and
the Ko et al. datasets due to the small sample size of the GTEx kidney dataset.
NephQTL includes kidney samples from individuals with nephrotic syndrome and
the Ko et al. dataset includes normal kidney samples from the Cancer Genome
Atlas (TCGA). Lookup of individual variants for association with gene expression
was performed using a Bonferroni-corrected p-value threshold of 6.7 × 10−6

(correction for 51 tissue types and 147 index variants). The resulting associations
were considered to be kidney-specific if an index variant was significantly asso-
ciated with expression of a given gene in any of the kidney-specific datasets but not
in other tissues available (from GTEx, Supplementary Fig. 9). Colocalization
analysis was performed using the R package coloc67. Priors for p1, p2, and p12
within the coloc analysis were set to 1 × 10−4, 1 × 10−4, and 1 × 10−6, respectively.
Variants in the ±500 kb region surrounding each eGFR index variant were used for
input into coloc. Within this region, we required at least one genome-wide sig-
nificant (p-value < 5 × 10−8) eQTL variant prior to testing for colocalization. Fol-
lowing the criteria published by Giambartolomei et al.67, eQTLs were considered to
colocalize with the eGFR association results if the posterior probability (PP) for a
shared variant was > 80%.

Determination of nearby Mendelian kidney disease genes. Genes associated
with Mendelian forms of kidney disease were taken from those identified by
Groopman et al.25 and from genes included in the KidneySeq v3 testing panel
(Iowa Institute of Human Genetics). Nearby genes were identified as all genes
having any overlap with the ± 250 kb region surrounding the index variants. Gene
start and end positions were taken from the HAVANA gene annotations from the
GENCODE consortium68.

Comparison with related traits. Association results for phenome-wide lookups
were taken from the publicly available analysis of UK Biobank69 using SAIGE70,
which accounts for relatedness and population stratification by using a relationship
matrix [http://pheweb.sph.umich.edu:5003/]. Phenotypes were grouped for analysis
based on ICD-9 and 10 codes into phecodes following a similar strategy used by
other groups for phenome-wide studies71,72. Additionally, we re-analyzed cardio-
vascular and diabetic traits in the white British subset of UK Biobank excluding
CKD cases as has been previously suggested for identifying pleiotropic effects59.
We performed analysis using individuals in the white British subset of UK Biobank
that were included in the kinship calculation, excluding those identified as outliers
based on the missingness rate and heterozygosity, and those missing from the UK
Biobank phasing calculations. At the genotype level, we included all variants used
for calculation of the kinship matrix and excluded variants after imputation with
INFO score < 0.3 and variants not in the HRC imputation panel. Association
testing was performed using SAIGE with sex, birth year, and 4 PCs as covariates.
Sample sizes for all related traits are given in Supplementary Data 10. Colocali-
zation analysis was performed using the R package coloc, with the priors for p1, p2,
and p12 set to 1 × 10−4, 1 × 10−4, and 1 × 10−6, respectively. Genetic regions for
colocalization testing were defined as the most significant variant for eGFR in each
locus ±500 kb. Within this region, we required at least one genome-wide significant
(p-value < 5 × 10−8) variant for each trait prior to testing for colocalization. Var-
iants were considered to colocalize if the probability for a common variant was
greater than 80%.

Genetic risk scores. Variants were selected for inclusion in the genetic risk score
(GRS) using the clumping procedure in PLINK with varying r2 thresholds of 0.2,
0.4, 0.6, and 0.8 and p-value thresholds of 5 × 10−8, 5 × 10−6, 5 × 10−4, and 5 × 10−3

on the meta-analysis results from all cohorts. Because the meta-analysis included
both European and East Asian samples, but the validation set included primarily
European samples, we separately constructed the GRS using either the European
only or European and East Asian subsets of 1000 Genomes Phase 3 for clumping in
PLINK. Effect sizes were estimated from meta-analysis of the BioBank Japan, MGI,
and HUNT results only due to the differing effect size units of the CKDGen con-
sortium results. The proportion of variance explained by the GRS was calculated as
the sum of β2(1− f)2f across all variants included in the risk score, where β and f are
the effect size and frequency from meta-analysis of BioBank Japan, MGI, and
HUNT. GRS were then calculated within UK Biobank as the sum of risk alleles
carried by each individual weighted by the effect size of each variant. As decreased
eGFR is predictive of increased CKD, the negative value of the resulting risk score
was used for further analysis. GRS were then tested as predictors of CKD, either
alone or as a logistic model including birth year, sex, and GRS or birth year, sex,
GRS, diabetes, hypertension, and hyperlipidemia status (2625 cases and 396,923
controls). When fitting the logistic model for prediction of CKD, individuals in UK
Biobank were randomly split into two halves, with one-half of individuals used for
model fitting and the other half used for testing the model. Prediction ability was
assessed by the area under the ROC curve (AUC).

Data availability
Data generated during analysis is available from the corresponding author upon

reasonable request. Meta-analysis eGFR summary statistics are available here: http://csg.

sph.umich.edu/willer/public/eGFR2018/.
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