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Abstract

It is well known that sex steroids are involved in the growth of breast cancers, and the great majority
of breast carcinomas express estrogen (ER), progesterone (PR), and androgen (AR) receptors. In
particular, recent studies have demonstrated that estrogens and androgens are locally produced
in breast carcinoma tissues, and total blockade of in situ estrogen production potentially leads to
an improvement in prognosis of breast cancer patients. Therefore, it is important to obtain a better
understanding of sex steroid-producing enzymes in breast carcinoma tissues. In this review, we
summarize recent studies on the expression and regulation of enzymes related to intratumoral
production of estrogens (aromatase, 17b-hydroxysteroid dehydrogenase type 1 (17bHSD1), and
steroid sulfatase (STS) etc) and androgens (17bHSD5 and 5a-reductase) in human breast
carcinoma tissues, and discuss the biological and/or clinical significance of these enzymes. The
cellular localization of aromatase in breast carcinoma tissues still remains controversial. Therefore,
we examined localization of aromatase mRNA in breast carcinoma tissues by laser capture
microdissection/real time-polymerase chain reaction. Aromatase mRNA expression was detected
in both carcinoma and intratumoral stromal cells, and the expression level of aromatase mRNA
was higher in intratumoral stromal cells than in carcinoma cells in the cases examined. We also
examined an association among the immunoreactivity of enzymes related to intratumoral estrogen
production and ERs in breast carcinoma tissues, but no significant association was detected.
Therefore, the enzymes responsible for the intratumoral production of estrogen may not always be
the same among breast cancer patients, and not only aromatase but also other enzymes such as
STS and 17bHSD1 may have important therapeutic potential as targets for endocrine therapy in
breast cancer patients.
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Introduction

Biologically active hormones are produced and

secreted from the endocrine organs, transported

through the circulation, and act on their target tissues

where their specific receptors are expressed (Fig. 1A).

This system is known as the endocrine system,

and biological features of hormone-dependent target

tissues are generally considered to be influenced by

the plasma concentration of the biologically active

hormones. In addition, hormones can also act in the

same cell (autocrine) (Fig. 1B) or neighboring cells

(paracrine) (Fig. 1C) without release into the circu-

lation. A large proportion of androgens in men

(approximately 50%) and estrogens in women

(approximately 75% before the menopause, and close

to 100% after the menopause) are synthesized in

peripheral hormone-target tissues from abundantly

present circulating precursor steroids (Labrie et al.

2003), where the enzymes involved in the formation

of androgens and estrogens are expressed (Fig. 1D).

These locally produced bioactive androgens and/or

estrogens exert their action in the cells where synthesis

occurs without release into the extracellular space. This

phenomenon is different from the autocrine, paracrine

and classical endocrine action, and is called ‘intra-

crine’. In classical endocrine systems, only a small

amount of hormone is generally utilized in the target

tissues, and thereafter the great majority is metabolized

or converted to inactive forms. On the other hand,
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an intracrine system requires minimal amounts of

biologically active hormones to exert their maximum

effects. Therefore, intracrine is an efficient mode of

hormone action and plays important roles especially in

the development of hormone-dependent neoplasms. It

is also important to note that, in an intracrine system,

serum concentrations of hormones do not necessarily

reflect the local hormonal activity in the target tissues.

Sex steroids, such as estrogens and androgens, play

important roles in various target tissues including

reproductive organs. A majority of breast carcinoma

tissues express estrogen (ER) and androgen (AR)

receptors, and estrogens greatly contribute to the

growth of breast cancers. Breast carcinoma tissues

have been demonstrated to process intracrine activity.

Locally produced biologically active estrogens act in

breast carcinoma tissues. This mechanism has been

considered to play a pivotal role in the proliferation

of breast carcinoma cells. The blockade of this path-

way potentially reduces cell proliferation of breast

tumors, and it is very important to obtain a better

understanding of sex steroid-related enzymes in breast

carcinoma as potential therapeutic targets of endocrine

therapy. Therefore, in this review we summarize the

results of recent studies on the expression and regu-

lation of the enzymes related to intratumoral produc-

tion of sex steroids in human breast carcinoma tissues,

and discuss the potential biological and/or clinical

significance of intratumoral production of sex steroids

in these carcinomas.

Intratumoral production of estrogens
in breast carcinoma tissue

Circulating estrogens are mainly secreted from the

ovary in premenopausal women. However, after the
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menopause, estrogens are biosynthesized in peripheral

tissues such as adipose tissue, skin, and muscle,

through conversion of circulating inactive steroids

(Sasano & Harada 1998). Intratumoral estradiol levels

were not significantly different between premenopausal

and postmenopausal breast cancer patients, but the

intratumoral estradiol/estrone ratio was significantly

higher in postmenopausal than in premenopausal

breast cancers (Miyoshi et al. 2001). The ratio of

estradiol concentration in tumor tissue/plasma was

23 in postmenopausal breast carcinomas, but was 5

in premenopausal breast carcinomas (Pasqualini et al.

1996, Pasqualini 2004). In addition, the concentration

of estradiol was 2.3-times higher in breast cancer

tissues than in the areas considered as morphologically

normal (Chetrite et al. 2000).The great majority of

breast cancers occur after the menopause and express

ER, which suggests that the in situ production of

estrogens plays an important role in the proliferation

of breast cancer cells, especially in postmenopausal

women.

Figure 2 summarizes the representative pathways

of in situ production of sex steroids in human breast

carcinoma tissues, which are currently postulated.

High concentrations of circulating inactive steroids,

such as androsteonedione and estrone sulfate, are

considered major precursor substrates of local estro-

gen production. Briefly, aromatase catalyzes andro-

stenedione into estrone, while steroid sulfatase (STS)

hydrolyzes estrone sulfate to estrone. Estrone is sub-

sequently converted to estradiol by 17b-hydroxysteroid
dehydrogenase type 1 (17bHSD1), and locally acts on

breast cancer cells through ER. Therefore, it becomes

very important to examine these enzymes in human

breast carcinomas in order to obtain a better under-

standing of the local actions of estrogen. Several

other enzymes are also known to be involved in the

regulation of local estrogen production (Fig. 2).

Aromatase

Aromatase (CYP19) is an enzyme located in the

endoplasmic reticulum of estrogen producing cells,

and is a key enzyme in the synthesis of estrogens,

mainly aromatization of androstenedione to estrone

(Fig. 2). In 63–72% of breast carcinoma specimens

aromatase activity was comparable with or greater

than that found in other tissues (Silva et al. 1989,
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Figure 2 Scheme representing local production of sex steroids in human breast carcinoma tissues. High concentrations

of circulating inactive steroids, such as androsteonedione, dehydroepiandrosterone (DHEA) and estrone sulfate, are precursor

substrates of local production of estrogens and/or androgens in breast carcinomas. Bioactive sex steroids, estradiol and

5a-dihydrotestosterone (DHT) are locally produced and act on the carcinoma cells through estrogen (ER) and androgen (AR)

receptors respectively. 3bHSD, 3b-hydroxysteroid dehydrogenase; EST, estrogen sulfotransferase (SULT1E1); STS, steroid

sulfatase; 17bHSD, 17b-hydroxysteroid dehydrogenase.
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Miller et al. 1990, Miller 1991, Lipton et al. 1992,

Bolufer et al. 1992). Aromatase activity was higher in

the stromal than in the epithelial component in breast

tumors (Purohit et al. 1995), but aromatase activity

was also detected in several breast carcinoma cell

lines (Kinoshita & Chen 2003, Sonne-Hansen &

Lykkesfeldt 2005). Positive correlations were reported

between aromatase activity and ER (Miller et al.

1990, Miller 1991) or tumor grade (Silva et al. 1989).

However, results of these studies have not necessarily

been confirmed by other groups, and no consistent

correlations between these two parameters have been

established (de Jong et al. 2001). In addition, no

significant association between aromatase activity and

disease-free interval or overall survival has been

reported. The level of aromatase mRNA expression

was highest in a quadrant bearing carcinoma among

four breast quadrants of mastectomy (Bulun et al.

1993), and aromatase mRNA levels in breast carci-

nomas were significantly increased compared with

those in non-malignant tissues (Utsumi et al. 1996),

which was consistent with the reported findings of

aromatase activity in breast cancers described above.

In order to examine the localization of aromatase

mRNA in breast carcinoma tissues, we examined laser

capture microdissection/real time-polymerase chain

reaction (LCM/real-time PCR) for aromatase in breast

carcinoma tissues (Fig. 3A). As shown in Fig. 3B,

mRNA expression of aromatase was detected in both

carcinoma and intratumoral stromal cells adjacent

to the carcinoma cells. The level of aromatase mRNA

expression was significantly (P=0.0040) higher in

intratumoral stromal cells than in carcinoma cells

(Fig. 3C), and no significant association was detected

in aromatase mRNA expression between intratumoral

stromal cells and carcinoma cells (data not shown).

Immunolocalization of aromatase was examined by

several groups, but reported results of aromatase

immunolocalization in breast cancers appear to be

inconsistent (Table 1). Previously, Sasano et al. (1994)

demonstrated aromatase immunoreactivity in stromal

cells such as intratumoral fibroblasts (Fig. 4A) and

adipocytes in breast carcinoma tissues. Santen et al.

(1994) also demonstrated aromatase immunoreactivity

predominantly in the stromal cells, On the other hand,

Esteban et al. (1992), Lu et al. (1996) and Brodie et al.

(2001) reported aromatase immunoreactivity in breast

carcinoma cells. Shenton et al. (1998) examined two

different antibodies for aromatase in breast carci-

nomas, and reported the different cellular immuno-

localization. Recently, Sasano et al. (2003) validated

several new aromatase antibodies for immuno-

histochemistry, and demonstrated that aromatase

immunoreactivity was detected in various types of

cells such as stromal cells, carcinoma cells (Fig. 4B)

and normal duct epithelial cells. These discrepant

results of aromatase immunolocalization in previous

studies may be due to the different nature of the

aromatase antibodies employed. Esteban et al. (1992)

reported an inverse association between aromatase

immunoreactivity and ER status in breast cancers,

but no consistent correlations between aromatase

immunoreactivity and known clinicopathological

factors have been reported. Further investigations are

required for clarification.

In addition, it remains unclear by which mechanism

aromatase expression is increased in breast carcinoma

tissues. Breast carcinoma cells secrete various factors

that induce aromatase expression in adipose fibro-

blasts (Zhou et al. 2001), and the regulation of

aromatase expression is partly considered as tumor–

stromal interactions. For instance, prostaglandin

E2 (PGE2) produced from breast carcinoma cells

markedly stimulates aromatase expression in adipo-

stromal cells (Zhao et al. 1996, Singh et al. 1999), and

PGE2 production was partly regulated by estrogenic

actions (Frasor et al. 2003). Various cytokines, such

as interleukin (IL)-1, IL-6, IL-11 and tumor necrosis

factor (TNF)-a (Reed & Purohit 2001, Simpson &

Davis 2001), which are released from carcinoma cells

and/or inflammatory cells were also demonstrated to

be capable of significant induction of aromatase

expression in breast cancers.

Previous studies also demonstrated the regulation

of aromatase expression by various transcriptional

factors. Transcription of aromatase is activated by

steroidogenic factor 1 (SF1; designated NR5A1) in

the ovary, which binds to a nuclear receptor half

site (NRE) within their promoter regions to mediate

basal transcription and, in part, cAMP-induced

transcription (Parker & Schimmer 1997). However,

SF1 is not expressed in breast carcinoma tissues

(Clyne et al. 2002). Clyne and colleagues also exam-

ined various orphan nuclear receptors known to

bind to such an NRE in 3T3-L1 preadipocytes, and

reported the induction of aromatase expression by

liver receptor homologue-1 (LRH-1; NR5A2) in the

adipose stromal cells in breast cancers (Clyne et al.

2002, Zhou et al. 2005). Significant association was

detected between LRH-1 and aromatase mRNA

levels in the adipose tissues adjacent to the carcinoma,

but not in the breast carcinoma tissues (Zhou et al.

2005), suggesting that LRH-1 may mainly regulate

aromatase expression in adipose tissue adjacent

to the breast carcinoma. Induction of aromatase

expression by CCAAT/enhancer binding protein
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(C/EBP) was also reported in adipose fibroblasts in

breast cancer (Zhou et al. 2001). On the other hand,

estrogen-related receptor-a (ERRa; NR3B1), which

was mainly immunolocalized in breast cancer cells

(Suzuki et al. 2004), had a positive regulatory func-

tion on aromatase in SK-BR-3 breast cancer cells

(Yang et al. 1998), but not in 3T3-L1 preadipocytes

(Clyne et al. 2002). In addition, Sebastian et al. (2002)

reported up-regulation of aromatase by GATA-2 in

vascular endothelial cells of breast cancer. Therefore,

aromatase expression is possibly regulated by various

transcriptional factors in breast cancer tissues, and the

key regulator may be different according to the types

of cells in breast carcinoma tissues.
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Figure 3 LCM/real-time PCR for aromatase in breast carcinoma tissues. (A) Representation of LCM. A nest of carcinoma cells

was dissected from breast carcinoma frozen tissues under a microscope using Laser Scissors CRI-337 (Cell Robotics Inc,

Albuquerque, NM, USA) (left panel), and was separately collected (right upper panel). The residual tissue is shown in the right

lower panel. (B) Localization of aromatase mRNA in breast carcinoma tissues. Expression of aromatase mRNA was detected

both in carcinoma and intratumoral stromal cells. Aromatase mRNA was also detected in MCF7 and T47D breast carcinoma cells.

P, positive control (human placental tissue); N, negative control (no cDNA substrate); M, molecular marker. About 1000

carcinoma or intratumoral stromal cells were collected separately using LCM as shown in A, and real-time PCR was performed

using a Light Cycler System (Roche Diagnostics). PCR was performed for 40 cycles, and three representative cases of breast

carcinoma tissues and two breast carcinoma cell lines (MCF7 and T47D) were represented in this agarose gel photo. PCR for

b-actin was also performed as an internal control. (C) Cellular expression of aromatase mRNA in breast carcinoma tissues.

Expression levels of aromatase mRNA were significantly (3.5-times; P=0.004) higher in intratumoral stromal cells than in breast

carcinoma cells. Data are presented as meanst95% confidence interval (n=12). The expression level of aromatase mRNA in

each sample has been summarized as a ratio of b-actin, and subsequently evaluated as a ratio (%) compared with that of the

positive control (human placental tissue).
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17bHSD1 and 17bHSD2

17bHSD catalyzes an interconversion of estrogens or

androgens. To date, 12 isozymes of 17bHSD have been

cloned, and 17b-reduction (17bHSD1, 3, 5, 7 etc) or

oxidation (17bHSD2, 4, 6 etc) of estrogens and/

or androgens is catalyzed by different 17bHSD iso-

zymes. Among these isozymes, 17bHSD1 enzyme uses

NADPH as a cofactor, and is considered mainly

to catalyze the reduction of estrone to estradiol

(Peltoketo et al. 1988, Luu-The et al. 1989). On the

other hand, the 17bHSD2 enzyme uses NAD+ as a

cofactor, and catalyzes the oxidation of both estradiol

to estrone and testosterone to androstenedione (Wu

et al. 1993) (Fig. 2). Oxidative 17bHSD activity is the

preferential direction in normal breast tissues, but

the reductive 17bHSD pathway is dominant in breast

cancers (Speirs et al. 1998, Miettinen et al. 1999).

Miyoshi et al. (2001) reported that the intratumoral

estradiol/estrone ratio was significantly higher in post-

menopausal than in premenopausal breast cancers,

and is suggestive of the relative importance of 17bHSD

reductive activity in the maintenance of high intra-

tumoral estradiol levels in postmenopausal patients.

In hormone-dependent breast cancer cell lines, such as

MCF7, T47D, R-27, and ZR75-1, 17bHSD1 was

the predominant reductive isoform, while oxidative

17bHSD activity was the preferential enzymatic

orientation in hormone-independent breast cancer

cell lines such as MDA-MB-231, NDA-MB-436, and

Hs-578S (Pasqualini 2004).

Both 17bHSD1 and 17bHSD2 mRNA expression

was detected in normal mammary glands (Gunnarsson

et al. 2001), and oxidative 17bHSD activity is

postulated to be due to 17bHSD2 (Miettinen et al.

1999). In breast carcinomas, Miyoshi et al. (2001)

reported that 17bHSD1 mRNA levels were signifi-

cantly higher in postmenopausal than in premeno-

pausal breast cancer tissue specimens. They suggested

an association between up-regulation of 17bHSD1

and intratumoral estradiol levels in postmenopausal

patients. Gunnarsson et al. (2001) also demonstrated

that breast cancer patients with high levels of

17bHSD1 mRNA or loss of 17bHSD2 mRNA ex-

pression were associated with increased risk of devel-

oping a late relapse of breast cancer.

Both 17bHSD1 and 17bHSD2 immunoreactivity

was focally detected in the epithelium of normal

mammary glands (Ariga et al. 2000). In breast cancers,

17bHSD1 immunoreactivity was detected in carci-

noma cells in 47–61% of cases (Poutanen et al. 1992a,

Sasano et al. 1996, Suzuki et al. 2000a) (Fig. 4C)

(Table 2). Suzuki et al. (2000a) reported that 17bHSD1

immunoreactivity was significantly correlated with

ERa and progesterone receptor (PR), and inversely

associated with histological grade and Ki67. No

significant association was reported between 17bHSD1

immunoreactivity and menopausal status in breast

cancers in these previous reports, although Miyoshi

et al. (2001) reported this correlation employing

quantitative real-time PCR. This discrepancy may

partly be due to the fact that immunohistochemi-

cal results do not necessarily reflect the protein

amount. Suzuki et al. (2000a) reported no 17bHSD2

immunoreactivity in 111 breast carcinoma tissues

examined.

Table 1 Summary of previous studies for aromatase immunolocalization in breast carcinoma tissues

Study Characteristics of antibody Pretreatment Predominant localization

Esteban et al. 1992 Rabbit polyclonal Trypsin Carcinoma cells

Sasano et al. 1994 Rabbit polyclonal

(provided by Dr N Harada)

None Stromal cells

Santen et al. 1994 Rabbit polyclonal

(provided by Dr N Harada)

None Stromal>carcinoma cells

and normal breast elements

Lu et al. 1996 Mouse monoclonal

(provided by Dr E Simpson)

Microwave Carcinoma>stromal cells

Shenton et al. 1998 Mouse monoclonal

(provided by Dr E Simpson)

Microwave Carcinoma and

stromal cells

Rabbit polyclonal

(provided by Dr N Harada)

None Stromal cells

Brodie et al. 2001 Mouse monoclonal

(provided by Dr E Simpson)

Microwave Carcinoma cells

Sasano et al. 2003 Mouse monoclonal (677) None Stromal, carcinoma,

and normal epithelial cells

Mouse monoclonal (F2) Autoclave Stromal, carcinoma,

and normal epithelial cells
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The gene coding for 17bHSD1 (HSD17B1) is

located at 17q12-21, and frequent genetic rearrange-

ment is known in this region (Kauraniemi et al. 2001).

Recently, Gunnarsson et al. (2003) detected amplifi-

cation of HSD17B1 in 32 (15%) out of 221 post-

menopausal breast cancers. This gene amplification

was related to decreased breast cancer survival for

ER-positive patients who received adjuvant tamoxi-

fen. Gunnarsson et al. (2003) also demonstrated that

some carcinomas without HSD17B1 amplification

expressed 17bHSD1 mRNA at high levels, suggesting

other regulatory mechanisms for 17bHSD1 mRNA

A B

C D

E F

Figure 4 Immunolocalization of sex-steroid producing enzymes in breast carcinoma tissue. (A) Aromatase immunoreactivity

was detected in the cytoplasm of stromal cells adjacent to the carcinoma cells when the rabbit polyclonal antibody kindly

provided by Dr N Harada (same antibody as used by Sasano et al. 1994) was used. (B) On the other hand, aromatase

immunoreactivity was also detected in the cytoplasm of carcinoma cells when the mouse monoclonal (677) was used (same

antibody as used by Sasano et al. 2003). (C–F) Immunohistochemistry for 17bHSD1 (C), STS (D), 17bHSD5 (E) and

5a-reductase type 1 (F) in breast carcinoma. Immunoreactivity for these enzymes was observed in the cytoplasm of carcinoma

cells. Bars=50mm.
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expression in breast carcinomas. Retinoic acid induces

the expression of 17bHSD1 mRNA in T47D breast

cancer cells (Reed et al. 1994), and a significant

correlation was detected between retinoic acid receptor

(RAR)-a and 17bHSD1 immunoreactivity (Suzuki

et al. 2001b). In addition, Simard and Gingras (2001)

reported that IL-4 and IL-6 increased oxidative

17bHSD activity in ZR-75-1 cells, but IL-4 stimulated

the reductive 17bHSD activity in T-47D cells. The

effects of cytokines on 17bHSD activity appear to vary

in different cell lines, and cytokines are considered to

play important roles in the modulation of 17bHSD

activity in breast carcinoma tissues (Purohit et al.

2002). An induction of 17bHSD1 expression by pro-

gestins has also been reported in several breast cancer

cells (Poutanen et al. 1992b, Pasqualini 2003), which

may partly explain the proliferative effects of pro-

gestins on breast cancer cells through the accumulation

of estrogenic actions; however, further examinations

are required to establish this hypothesis (Pasqualini

2003).

STS

STS is a single enzyme that hydrolyzes several sulfated

steroids such as estrone sulfate, dehydroepiandro-

sterone (DHEA) sulfate, and cholesterol sulfate

(Reed et al. 2005). A major circulating form of plasma

estrogens in postmenopausal women is estrone sulfate,

a biologically inactive form of estrogen. Estrone sulfate

has a relatively long half-life in the peripheral blood,

and the levels of estrone sulfate are 5 to10 times higher

than those of unconjugated estrogens such as estrone,

estradiol and estriol during the menstrual cycle and

in postmenopausal women (Pasqualini 2004). STS

catalyzes estrone sulfate to estrone in breast carcinoma

(Fig. 2), which contributes to local estrogen pro-

duction. The enzymatic activity of STS is detected in

the great majority of breast tumors, and is consider-

ably higher than aromatase activity in breast tumors

(Santner et al. 1984, Evans et al. 1994). Evans et al.

(1994) reported no significant association between

STS activity and time to recurrence or overall survival

time in breast cancer patients examined in their study.

STS activity was correlated with the level of STS

mRNA expression in breast cancer cells (Pasqualini

et al. 1994). The STS mRNA expression was higher

in breast carcinoma tissues than that in normal

tissues (Utsumi et al. 1999), which is also consistent

with the findings of STS activity in breast cancers

described above. Furthermore, STS mRNA expression

has been reported to be significantly associated with

poor clinical outcome of patients (Utsumi et al. 1999,

Miyoshi et al. 2003). Reed et al. (2005) proposed that

the sulfatase pathway might be more important

than the aromatase route for intratumoral estrogen

synthesis in breast cancers, because aromatase mRNA

expression was reported to have no significant prog-

nostic value.

STS mRNA expression was detected in breast

carcinoma cells, but not in intratumoral stromal cells,

by LCM/real-time PCR (Suzuki et al. 2003), which was

consistent with immunohistochemical findings. STS

immunoreactivity was detected in carcinoma cells in

59–88% of breast carcinoma cases (Saeki et al. 1999,

Suzuki et al. 2003, Yamamoto et al. 2003) (Fig. 4D)

(Table 3), and STS immunoreactivity was significantly

associated with its mRNA level (Suzuki et al. 2003).

Table 2 Summary of immunohistochemical analysis of 17aHSD1 in breast carcinoma tissues

Study

No. of cases

examined

% of 17aHSD1
positive cases

Association between 17aHSD1 immunoreactivity

and clinicopathological parameters

Poutanen et al. 1992a 34 47% Positive association: PR

Sasano et al. 1996 41 56% None

Suzuki et al. 2000 111 61% Positive association: ERa, PR
Inverse association: Histological grade, Ki67

Table 3 Summary of immunohistochemical analysis of STS in breast carcinoma tissues

Study

No. of cases

examined

% of STS

positive cases

Association between STS immunoreactivity

and clinicopathological parameters

Saeki et al. 1999 25 88% None

Suzuki et al. 2003 113 74% Positive association: Tumor size, increased

risk of recurrence

Yamamoto et al. 2003 83 59% None
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STS immunoreactivity was correlated with tumor size,

and was significantly associated with an increased risk

of recurrence (Suzuki et al. 2003). No significant

correlation has been reported between STS and ER

status in human breast cancer tissues in these studies.

STS also allows the conversion of DHEA sulfate to

DHEA; therefore, this conversion may be partly

associated with a local accumulation of DHEA, a

precursor substrate for both active estrogens and

androgens, from circulating DHEA sulfate in breast

cancer tissue.

Little is known about the regulatory mechanism of

STS in breast cancers. IL-6 and TNFa stimulated STS

activity and acted synergistically to increase enzyme

activity, possibly via a post-transcriptional modifica-

tion of the enzyme (Newman et al. 2000). In addition,

progestins and anti-estrogens have been reported to

inhibit the expression and/or activity of STS in breast

cancer cells (Pasqualini & Chetrite 2005).

3b-Hydroxysteroid dehydrogenase

3b-Hydroxysteroid dehydrogenase (3bHSD) is a

membrane-bound enzyme responsible for the inter-

conversion of 3b-hydroxy- and 3-keto-5a-androstane
steroids. Two isoforms of 3bHSD, i.e. 3bHSD1 and

3bHSD2, have been characterized in humans. 3bHSD2

is mainly expressed in the adrenal glands and gonads

(Rheaume et al. 1991), and is a crucial step in the

biosynthesis of various steroid hormones such as

progesterone, estrogens, androgens, glucocorticoids

and mineralocorticoids. On the other hand, 3bHSD1

is predominantly expressed in the placenta and various

non-classical steroidogenic tissues such as skin and

breast (Rheaume et al. 1991). In the non-classical

steroidogenic tissues, 3bHSD is considered mainly to

catalyze DHEA into androstenedione, and to increase

the local tissue levels of androstenedione, a precursor

substrate for both bioactive estrogens and androgens

(Labrie et al. 2003) (Fig. 2). Therefore, 3bHSD may

also play a part in the initial step of the intracrine

transformation in breast carcinoma. Limited infor-

mation is available on the expression of 3bHSD in

breast carcinoma tissues. However, 3bHSD activity

has been detected in breast carcinomas (Gunasegaram

et al. 1998). Sasano et al. (1994) reported that 3bHSD

immunoreactivity, which recognized both 3bHSD

isoforms, was localized in breast carcinoma cells in

12 (33%) of 33 breast cancer tissues, but was not

significantly associated with the ER or PR status.

3bHSD activity has been detected widely among

peripheral tissues, although 3bHSD protein itself

was not necessarily detected (Milewich et al. 1991).

17bHSD2 also possesses 3bHSD activity, and can

catalyze DHEA to androstenedione (Suzuki et al.

2000b). 17bHSD2 expression appears to be negligible

in breast cancer tissues, but dual activity of certain

steroid-specific oxidoreductases may be associated with

3bHSD activity in breast cancers.

Previous studies demonstrated enhancement of

3bHSD2 transcription by SF1 (Leers-Sucheta et al.

1997) or LRH-1 (Sirianni et al. 2002). Expression of

3bHSD1 was also regulated by cAMP or protein

kinase-C (Tremblay & Beaudoin 1993). However, in

contrast to 3bHSD2, regulation of 3bHSD1 by SF1

has not been clarified. The regulatory mechanism of

3bHSD1 in human breast cancers is unclear, but

Gingras et al. (1999, 2000) reported induction of

3bHSD1 gene transcription by IL-4 and IL-13 in

breast cancer cells.

Estrogen-metabolizing enzymes:
estrogen sulfotransferase

The potency of steroid hormones is generally reduced

in the metabolic process towards inactive products in

the same tissue sites as the synthesis and/or action,

which contributes to the modulation of overall bio-

logical actions of steroid hormones. Therefore, it is

very important to examine the expression of estrogen-

metabolizing enzymes as well as that of estrogen-

producing enzymes to assess the local estrogen levels in

breast cancers.

Estrogen sulfotransferase (EST; SULT1E1) is a

member of the superfamily of steroid-sulfotransferases;

it sulfonates estrogens to biologically inactive estro-

gen sulfates (Aksoy et al. 1994, Falany et al. 1995)

(Fig. 2). EST has the lowest Km values for estrogens

of the 10 known human sulfotransferase (SULT)

isoforms (Adjei et al. 2003), and is also considered to

be involved in the regulation of in situ estrogen levels

in human breast carcinoma. The concentration of

estrone sulfate was significantly (7–11 times) higher in

breast cancer tissues than in plasma (Pasqualini et al.

1996), and the enzymatic activity of EST was detected

in some breast cancer cell lines (Falany & Falany 1996,

Chetrite et al. 1998), breast carcinoma tissues, and

normal breast tissues (Adams et al. 1979, Tseng et al.

1983). EST enzymatic activity was associated with

ER status in breast cancer tissues (Adams et al. 1979,

Tseng et al. 1983). MCF7 breast cancer cells trans-

fected with EST possess EST activity at levels similar

to normal human mammary epithelial cells, and are

associated with much lower estrogen-stimulated DNA

synthesis or cell proliferation than control MCF7

cells that do not possess EST, suggesting that the
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loss of EST expression in the transformation of normal

breast tissues to breast cancer may be an important

factor in increasing the growth responsiveness of pre-

neoplastic or tumor cells to estrogen stimulation (Qian

et al. 1998, Falany et al. 2002).

EST mRNA expression was detected in breast

cancer tissues (Suzuki et al. 2003, Yoshimura et al.

2004), and was significantly associated with EST

immunoreactivity (Suzuki et al. 2003). EST immuno-

reactivity was detected in carcinoma cells in 44% of

human breast carcinomas, and was also present in the

epithelial cells of normal glands (Suzuki et al. 2003).

EST immunoreactivity was inversely correlated with

tumor size or lymph node status, and was significantly

associated with a decreased risk of recurrence or

improved prognosis (Suzuki et al. 2003). However,

EST immunoreactivity was not significantly correlated

with ER status in breast cancer tissues (Suzuki et al.

2003), which was inconsistent with the results of the

EST enzymatic activity described above (Adams et al.

1979, Tseng et al. 1983). It may be partly due to the

fact that other members of the steroid-sulfotransferase

superfamily, such as thermostable phenol sulfo-

transferase (P-PST; SULT1A1) and the monoamine

sulfating form of phenol sulfotransferase (M-PST;

SULT1A3) can also sulfonate estrogens to estrogen

sulfates. Spink et al. (2000) reported expression of

P-PST and M-PST in several breast cancer cell lines,

but the biological significance of P-PST and M-PST in

breast cancer tissues remains largely unclear at this

juncture.

Other estrogen-metabolizing enzymes:
CYP1A1, CYP1B1, and CYP3A4

The CYP superfamily is classified into families and

subfamilies based on amino acid similarity, and 14

families have been reported in mammals. CYPs are

involved in synthesis of steroid and bile acids and

hydroxylation of fatty acids, or elimination of xeno-

biotics and steroids from the body (Bistolas et al.

2005). Among the CYP superfamily, CYP1A1,

CYP1B1, and CYP3A4 oxidatively metabolize estra-

diol, and these findings suggest the possible association

with regulation of local estrogen levels in breast cancer

tissues.

CYP1A1 catalyzes C-2, C-6a and C-15a hydroxyl-

ation of estradiol. CYP1A1 mRNA expression was

detected in 25–46% of normal breast tissues (Huang

et al. 1996, Iscan et al. 2001) and 5–53% of breast

carcinoma tissues (Huang et al. 1996, Hellmold et al.

1998, Iscan et al. 2001). Using quantitative RT-PCR

analysis, Modugno et al. (2003) reported that CYP1A1

mRNA expression was elevated in non-tumor tissue

among pairs in which the tumor expressed ER. In

immunoblotting analysis, CYP1A1 protein was

detected in 36% of breast cancer tissues (Hellmold

et al. 1998), and the CYP1A1 protein level was

significantly lower in breast cancer tissue as compared

with morphologically normal adjacent tissues (El-

Rayes et al. 2003).

On the other hand, CYP1B1 shows activity towards

the C4-hydroxylation of estradiol. Expression of

CYP1B1 mRNA was detected in 100% of breast

carcinoma tissues (Hellmold et al. 1998, Iscan et al.

2001), and the level of expression was significantly

higher in non-tumor tissues than in tumor tissues

(Modugno et al. 2003). CYP1B1 immunoreactivity

was detected in carcinoma cells in 77–82% of breast

cancers by immunohistochemistry (McFadyen et al.

1999, Oyama et al. 2005). McFadyen et al. (1999)

found no significant association between CYP1B1

immunoreactivity and clinicopathological factors,

including tumor grade and ER status in the breast

carcinomas, while Oyama et al. (2005) reported an

inverse correlation between CYP1B1 immunoreactivity

and clinical stage in breast cancers.

CYP1A1 and CYP1B1 metabolize not only estro-

gens but also some environmental carcinogens. It is

well known that CYP1A1 and CYP1B1 are under the

regulation of aryl hydrocarbon receptor (AhR), and

these two enzymes are induced by AhR agonists

such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

(Angus et al. 1999, Kristensen & Borresen-Dale 2000).

However, CYP1B1 expression is constitutively de-

tected in breast carcinoma tissues as described above,

and CYP1B1 is considered as a major form of the

CYP1 family in breast cancer. Regulation of CYP1A1

and CYP1B1 expression by estrogen has also been

reported in breast cancer cells (Angus et al. 1999).

Recently, Tsuchiya et al. (2004) demonstrated the

induction of CYP1B1 mRNA expression by estradiol

in ER-positive MCF7 cells, but not ER-negative

MDA-MB-435 cells, and suggested that the induction

of CYP1B1 mRNA was caused by the ER-mediated

pathway rather than the AhR-mediated pathway.

CYP3A4 plays a pivotal role in activating and

detoxifying various xenobiotics and endobiotics.

CYP3A4 also catalyzes the C2, C4, C6ab, C12,

C15a, and C16ab-hydroxylation of estrogen. Several

groups reported the expression of CYP3A in breast

carcinoma tissues, but these results appear to be

inconsistent. Hellmold et al. (1998) detected CYP3A4

mRNA expression in 73% of breast carcinoma tissues,

and Modugno et al. (2003) reported that the expression

level of CYP3A4 mRNA was significantly higher in
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non-tumor tissues than in tumor tissues. However,

Iscan et al. (2001) reported no mRNA expression of

CYP3A4 in breast tumor tissues or normal breast

tissues. In immunoblotting analysis, El-Rayes et al.

(2003) reported that CYP3A4 protein levels were

significantly lower in breast carcinoma tissues than

in morphologically normal adjacent tissues, while

Hellmold et al. (1998) did not detect CYP3A protein

in 15 breast carcinoma tissues. In immunohistochem-

ical analysis, CYP3A4 immunoreactivity was detected

in 84–100% of breast carcinoma tissues, and normal

mammary epithelium was focally positive (Galant

et al. 2001, Kapucuoglu et al. 2003). Galant et al.

(2001) reported an inverse association between CYP3A

immunoreactivity and the proliferation index. On the

other hand, Oyama et al. (2005) did not detect CYP3A

immunoreactivity in 34 cases of Japanese patients

with breast cancers, and suggested that, based on

their findings, CYP3A expression in breast cancer was

possibly dependent on the ethnicity of the patient.

CYP3A4 gene expression is induced by nuclear

receptors such as steroid and xenobiotic receptor/

pregnane X receptor (SXR/PXR; NR1I2) and con-

stitutive androstane receptor (CAR; NR1I3), and is

repressed by proinflammatory cytokines in hepatocytes

(Raunio et al. 2005). Masuyama et al. (2003, 2005)

reported induction of CYP3A4 by SXR/PXR in

endometrial cancer, but the regulation mechanism of

CYP3A4 in breast cancer still remains unclear.

4-Hydroxy-estradiol, which is metabolized by

CYP1B1 or CYP3A4 from estradiol, is further con-

verted to the 3,4 estradiol quinone. This compound

is recognized as a genotoxic mutagenic carcinogen,

and possibly induces breast cancer (Liehr 2000).

Therefore, metabolism of estradiol by CYP1B1 and

CYP3A4 may not necessarily be associated with re-

ducing the progression of breast tumors. Further

examinations are required to clarify the biological

significance of CYP1B1 and CYP3A4 in human breast

cancer tissues.

Intratumoral production of androgens
in breast cancer

Various previous studies demonstrated that androgens

predominantly exerted anti-proliferative effects on the

mitogenic effects of estrogens in breast cancer cell lines,

although some divergent findings have been reported

according to the specific cell line used, the androgen

used and its dose, and estrogen status (Ortmann et al.

2002, Somboonporn & Davis 2004). This inhibitory

effect is mediated by AR, and is partly associated with

increased levels of p21 and/or p27 (Lapointe & Labrie

2001, Greeve et al. 2004). Previously, Isola (1993)

reported that approximately 80% of breast carcinomas

expressed AR, suggesting the presence of androgenic

actions in human breast carcinoma tissues. Plasma

concentrations of potent androgens such as 5a-
dihydrotestosterone (DHT) are very low in normal

women and in breast cancer patients (Labrie et al.

2003). However, DHT concentrations were signifi-

cantly (threefold) higher in breast cancer tissues than

in plasma (Recchione et al. 1995), suggesting the

possible local production of DHT and an important

biological role of DHT in breast carcinoma tissues.

Two steroidogenic enzymes, namely 17bHSD5 and

5a-reductase, are considered to be the main enzymes

involved in local androgen production in human breast

cancer tissues (Fig. 2).

17bHSD5

It is well known that testosterone is mainly secreted

from the Leydig cells of the testis, and it is bio-

synthesized from androstenedione by 17bHSD3

(Geissler et al. 1994). However, testicular Leydig cells

provide approximately 50% of the total amount in

men, and the rest of the amount is converted from

circulating androstendione in peripheral tissues (Labrie

et al. 2003). 17bHSD3 is predominantly expressed

in the testis, while the same enzymatic reaction in

peripheral tissues is catalyzed by different enzymes,

namely 17bHSD5 (Dufort et al. 1999). 17bHSD5

is identical to 3aHSD2. 17bHSD5 is a member of

the aldo-keto reductase (AKR) superfamily, and is

formally termed AKR1C3, while 17bHSD1 to 3 are

members of the short-chain dehydrogenase/reductase

(SDR) superfamily (Penning et al. 2001).

mRNA expression of 17bHSD5 was detected in

65–83% of breast carcinoma tissues (Ji et al. 2004,

Vihko et al. 2005). In particular Vihko et al. (2005)

reported that 17bHSD5 mRNA expression was sig-

nificantly higher in breast tumor specimens than in

normal tissues. They also demonstrated that a group

of patients with overexpression of 17bHSD5 mRNA

had a worse prognosis than other patients (Vihko

et al. 2005). 17bHSD5 immunoreactivity was detected

in normal mammary gland (Pelletier et al. 1999) and

breast carcinoma cells in 53% of cases (Suzuki et al.

2001a) (Fig. 4E). Immunoreactivity of 17bHSD5 was

significantly associated with that of 5a-reductase
type 1 and type 2 (Suzuki et al. 2001a), but was not

significantly associated with other clinicopathological

factors such as patient age, menopausal status, clin-

ical stage, tumor size, lymph node status, histological
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grade, ER, PR, AR, Ki67, and HER2, examined

in 60 breast carcinoma tissues (T Suzuki, Y Miki,

Y Nakamura, T Moriya, K Ito, N Ohuchi, H Sasano,

unpublished data).

17bHSD5 also possesses 3aHSD and 20aHSD

activities (Luu-The et al. 2001). The 3aHSD and

20aHSD activities are involved in the inactivation of

progesterone (Wiebe et al. 2000, Luu-The et al. 2001,

Suzuki et al. 2002). The biological significance of

17bHSD5 in these activities, however, still remains

unclear in breast cancer tissues.

5a-Reductases

5a-Reductase catalyzes the conversion of testosterone

to a more potent androgen DHT (Russell & Wilson

1994) (Fig. 2), and is considered as an important

regulator of local actions of androgens. Two isoforms

of 5a-reductase have been cloned and characterized in

mammals. 5a-Reductase type 1 is located on the distal

short arm of chromosome 5, and is mainly expressed

in the liver and skin (Russell & Wilson 1994, Jin &

Penning 2001). On the other hand, type 2 5a-reductase
is located in band p23 of chromosome 2, and is

expressed in the liver, prostate, seminal vesicle, and

epididymis (Russell & Wilson 1994, Jin & Penning

2001).

Activity of 5a-reductase was previously detected

in human breast carcinoma cell lines (MacIndoe &

Woods 1981), and 5a-reductase activity was elevated

4–8 times in breast cancer tissues compared with

non-tumorous breast tissues (Wiebe et al. 2000).

mRNA expression of 5a-reductase type 1 was detected

in all the breast carcinoma tissues examined (Suzuki

et al. 2001a, Lewis et al. 2004, Ji et al. 2004), while

that of 5a-reducatase type 2 was detected in 38–100%

of the tumors ((Suzuki et al. 2001a, Lewis et al. 2004).

Lewis et al. (2004) also demonstrated that mRNA

expression levels of 5a-reductase type 1 and type 2

were significantly higher in the tumors than in corres-

ponding normal tissues. Immunoreactivity for 5a-
reductase type 1 was detected in 58% of breast

carcinomas (Fig. 4F), while that of 5a-reductase
type 2 was detected in only 15% of breast carcinomas

(Suzuki et al. 2001a), suggesting that 5a-reductase
type 1 may mainly determine 5a-reductase activity

in breast carcinoma tissues. 5a-Reductase type 1

immunoreactivity was significantly correlated with

AR, and inversely associated with histological grade

or tumor size in breast carcinoma tissues (Suzuki et al.

2001a). Therefore, breast carcinomas positive for

5a-reductase type 1 may partly maintain some andro-

gen regulatory mechanisms.

5a-Reductase metabolizes progesterone to 5a-
dihydroprogesterone (5a-DHP) (Russell & Wilson

1994), suggesting that this enzyme is also involved in

the local regulation of progesterone actions. Wiebe

et al. (2000) reported that in breast cancer progester-

one was metabolized to 5a-DHP and 3a-hydroxy-
progesterone (3a-HP) by 5a-reductase and 3a-HSD

respectively, and the ratio of 5a-DHP : 3a-HP was

nearly 30-fold higher in tumorous than in non-

tumorous breast tissues. They also reported that

5a-DHP stimulated, whereas 3a-HP inhibited, prolif-

eration and detachment of breast cell lines in vitro

(Wiebe et al. 2000). These findings suggest that some

progesterone metabolites exhibit different bioactive

properties from progesterone, and 5a-reductase may

be partly associated with the proliferation effect of

progesterone in breast cancer cells (Wiebe et al. 2005).

Regulation of in situ estrogen
production in breast carcinomas as
an endocrine therapy

It is well known that estrogen deprivation therapy is

an effective treatment for breast cancer, and various

types of endocrine therapy are currently available in

breast cancer patients (Fig. 5). Ovarian suppression is

important for the treatment of premenopausal breast

Proliferation
of breast cancer

ER

Ovarian ablation
LH-RH agonists

Aromatase
inhibitors

Anti-estrogens
(Tamoxifen etc)

Progestins (MPA etc)
(Androgens)

Vessel

Breast carcinoma

Estrogen-
producing
enzymes

Figure 5 Scheme representing local estrogen actions and

endocrine therapies in human breast carcinoma. Bioactive

estrogen promotes proliferation of breast carcinoma through

several pathways, and these pathways are targets of the

endocrine therapies. , inactive hormone; , bioactive

hormone; , receptor; , promoter region of the

target gene; , estrogen-responsive gene.

MPA, medroxyprogestrone acetate.
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cancers, and ovarian ablation or treatment with

luteinizing hormone releasing hormone (LH-RH)

agonists is frequently considered in premenopausal

patients (Robertson & Blamey 2003). On the other

hand, since biological effects of estrogens are mediated

through ER, anti-estrogens such as tamoxifen have

been used as endocrine therapy in hormone-receptor-

positive breast carcinomas of both pre- and post-

menopausal women (Eneman et al. 2004).

The importance of in situ estrogen production has

been demonstrated in breast carcinomas, as described

in the above sections of this review, and the inhibition

of this pathway is considered clinically useful for

reducing the progression of breast tumors especially

in postmenopausal women. The third-generation

aromatase inhibitors, such as anastrozole, letrozole

and exemestane, are currently available (Brueggemeier

et al. 2005). Results of large multicenter trials such

as the ATAC trial, the NCIC MA-17 trial, and the

Intergroup Exemestane Study, all demonstrated that

aromatase inhibitors are significantly associated with

the improved disease-free survival and good toler-

ability in breast cancer patients (Baum et al. 2002,

2003, Goss et al. 2003, Baum 2004, Coombes et al.

2004, Howell et al. 2005), and anastrolozole demon-

strated superior efficacy to tamoxifen in the ATAC

trial. ER status in the breast carcinoma is the most

influential parameter to determine the administration

of aromatase inhibitors at this juncture. However, it is

true that additional factors are required to improve the

clinical effects of aromatase inhibitor in breast cancer

patients. Previous studies reported an association

between aromatase activity in breast carcinoma tissues

and the response to treatment with aromatase inhibi-

tors (Bezwoda et al. 1987, Miller & O’Neill 1987), but

it may not necessarily be a useful surrogate marker

to determine clinically the treatment of aromatase

inhibitor, because of the lack of robust assays for

tumor aromatase (Miller et al. 2003). In this regard,

immunohistochemistry for aromatase is expected

to be the attractive routine method, considering the

great success in detecting ER, PR and HER2 in

breast cancer tissues. However, further examinations

are certainly required to establish a standardized

approach, including the determination of aromatase

antibody, the immunohistochemical procedure and

the evaluation system. Cyclooxygenase-2 (COX2) is

partly associated with the synthesis of PGE2, a potent

stimulator of aromatase, in breast cancers (Diaz-Cruz

et al. 2005), and therefore, clinical trials are currently

underway to examine synergistic effects between

COX2 inhibitor and aromatase inhibitor in postmeno-

pausal women (Arun & Goss 2004).

Aromatase is a key enzyme of intratumoral pro-

duction of estrogen in breast cancers. However,

Yamaguchi et al. (2005) reported that estrogen signals

in breast cancer cells were not always correlated with

aromatase expression in stromal cells of carcinoma

tissues, suggesting that even complete suppression of

aromatase does not fully block the estrogenic actions

in breast cancer tissues. When we examined an associ-

ation among the immunoreactivity of enzymes related

to intratumoral production and ERs in breast carci-

noma tissues, no significant association was detected

(Table 4). Therefore, enzymes responsible for the

intratumoral production of estrogen may not always

be the same among breast cancer patients, and other

estrogen-producing enzymes, with the exception of

aromatase, including STS and 17bHSD1 may also

have important therapeutic potential as endocrine

therapy for total blockade of local estrogen in breast

cancer tissues. STS inhibitors were reported to be

effective in suppressing the proliferation of estrogen-

dependent MCF7 cells when estrone sulfate was the

source of estrogen, and STS inhibitors are currently

being developed by several groups (Nussbaumer &

Billich 2004, Reed et al. 2005). The design of 17bHSD1

inhibitors has also been attempted (Qiu et al. 2002,

Poirier 2003).

Sakamoto et al. (2002) showed that proliferation

of ER-positive breast cancer cells increased in medium

to which average levels of postmenopausal plasma

steroids had been added, but the growth was not

stimulated in the transformed cells overexpressing

17bHSD2 or EST in the same medium. These find-

ings suggest that induction of 17bHSD2 or EST can

also effectively contribute to the decrement of intra-

tumoral estrogen production in breast cancer. In

addition, Pasqualini (2003) reported that the progestin,

Table 4 Association among immunoreactivity of enzymes

related to intratumoral estrogen production and ERs in breast

carcinoma tissues

Immunoreactivity 17aHSD1 STS EST ERa ERa

Aromatase NS NS NS NS NA

17aHSD1 NS NS <0.05 <0.05*

STS NS NS NS

EST NS NS

ERa <0.01*

ERa

Data were taken from a series of our examinations (Sasano
et al. 1994, Sasano et al. 1996, Suzuki et al. 2000a, Suzuki
et al. 2003), and adapted.
*; unpublished data, and NA; data not available.
17aHSD2 immunoreactivity was not detected in all the cases
examined (Suzuki et al. 2000a).
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medrogestone, stimulates EST in breast cancer cells

through decreasing estrogen-dependent cell prolifera-

tion. Therefore, induction of estrogen-metabolizing

enzymes is also considered to result in a decrement of

estrogenic actions in breast carcinoma tissues, which

may eventually contribute to an improvement in the

prognosis of breast cancer patients.

Activation of ER by growth factors, such as

epidermal growth factor (EGF), insulin-like growth

factor-I (IGF-I), and transforming growth factor-a
(TGFa) (Surmacz & Bartucci 2004, Osborne et al.

2005) has also been demonstrated. HER2-overexpres-

sing breast cancers frequently become resistant to

tamoxifen (Osborne et al. 2003), and aromatase

inhibitors were more effective in these patients (Ellis

et al. 2001). Cross-talk between ERa and growth

factor receptor signals is postulated to be important

especially in the mechanism of tamoxifen resistance

in breast cancer, and double blockade using both

ER-targeted therapies and therapies targeting the

growth factor receptor cascade is currently being tested

in clinical trials (Osborne et al. 2005).

In contrast to estrogens, androgens are generally

known to inhibit the proliferation of breast carcinoma

cells. A strong correlation between AR and ER was

detected in breast cancer tissues (Isola 1993, Suzuki

et al. 2001a), and frequently estrogen-dependent breast

cancers are also dependent on androgenic actions.

When androgens were combined with anti-estrogens

in breast cancer patients, a higher response rate and a

longer time to disease progression have been reported

compared with the administration of an anti-estrogen

alone, and the additive inhibitory effects of androgens

and anti-estrogens on breast carcinoma are exerted,

in part, by different mechanisms (Labrie et al. 2003).

On the other hand, Sonne-Hansen and Lykkesfeldt

(2005) recently reported that proliferation of MCF7

cells was significantly stimulated by testosterone,

and the testosterone-mediated growth effect was com-

pletely inhibited by aromatase inhibitors. They also

reported that androstendione did not significantly

stimulate MCF7 cell proliferation, and suggested that

the preferred substrate for aromatase in MCF7 cells

is not androstendione but testosterone (Sonne-Hansen

& Lykkesfeldt 2005). 17bHSD5 locally produces

testosterone from androstenedione, and also converts

progesterone to its inactive metabolite 20a-hydro-
progesterone. Therefore, 17bHSD5 may partly be

associated with a pro-estrogenic state (Penning et al.

2001) in addition to the in situ androgen production

in breast carcinoma, and may also become a ther-

apeutic target to decrease the intratumoral estrogen

production in breast cancer.

The clinical significance of aromatase inhibitors

demonstrated that inhibition of estrogen-producing

enzymes is effective in reducing the progression of

breast carcinomas, and the endocrine therapy for

breast cancer could be improved if inhibitors for other

related enzymes become clinically available. Therefore,

it will become very important accurately to evaluate

the expression of various sex-steroid producing

enzymes in resected surgical pathology specimens, to

determine the treatment by appropriate inhibitors for

the enzymes in individual breast cancer patients.
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