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Abstract. — We present the automated techniques we have developed for new software that optimally detects,
deblends, measures and classifies sources from astronomical images: SExtractor (Source Extractor ). We show that a
very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated

images. Salient features of SExtractor include its ability to work on very large images, with minimal human inter-
vention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the
analysis of large extragalactic surveys.
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1. Introduction

A large fraction of today’s scientific work done on astro-
nomical images is not done on the images themselves, but
rather on catalogs of objects produced from these images.
This includes, for example, studies of number counts, clus-
tering properties, or colour/magnitude distributions. Ob-
viously, in all cases, the reliability of the source extraction
process is of major importance.

Since the late 70’s and beginning of the 80’s, vari-
ous computer programs have been developped to create
automatically galaxy catalogs from astronomical images,
e.g. FOCAS (Jarvis & Tyson 1981), the APM software
(e.g. Maddox et al. 1990a), the COSMOS system (e.g.
Beard et al. 1990) and the PPP package (Yee 1991). SEx-
tractor (Source Extractor ) is new software especially de-
signed to process in batch mode large digital images (up to
60 000×60 000 pixels) similar to the ones that will be pro-
duced by future CCD arrays. As SExtractor is primarily
intended to process large amounts of survey data, special
attention has been paid to speed and robustness in the ex-
traction of objects in the image, regardless of their shape
or size.

SExtractor has been used in the reduction of several
recent photometric galaxy surveys (e.g. Smail et al. 1995;
Arnouts et al. 1995; Bertin et al. 1995). This paper de-
scribes the algorithms and the performance of the software
(note: SExtractor does have a specific “PHOTO” mode for
photographic scans that we will not describe here).

The complete analysis of an image is done in six
steps: estimation of the sky background, thresholding,
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deblending, filtering of the detections, photometry, and
star/galaxy separation. In the following, a section is de-
voted to describing each step.

2. Background estimation

Each pixel value is the sum of a “background” signal and
light coming from the objects we are interested in. To
be able to detect the faintest objects and also to mea-
sure accurately their fluxes, we need to have a precise
estimation of the background level in any place of the im-
age, i.e. a “background map”1. To construct a background
map, SExtractor makes a first pass through the pixel data,
computing an estimator of the local background in each
mesh of a grid which covers the whole frame. Several back-
ground estimators have been described in the literature
(Newell 1983; Bijaoui 1980; Beard et al. 1990; Almoznino
et al. 1993). The Bijaoui estimator is, in principle, the
most unbiased, but it proves to be very noisy with small
samples, and requires excessive computing time. Other es-
timators are based on the determination of the mode of
the histogram. From extensive simulations done with var-
ious mesh-sizes and object crowding, we have adopted for

1Strictly speaking, there should be one background map per
object; that is, what would the image look like if this specific
object was absent. Therefore using a unique background map
for all the objects implies that we assume the background does
not vary too much within the zone over which the photomet-
ric analysis is performed, i.e. ≈ 1 full-width at half-maximum
(FWHM) of the profiles. Such an assumption is no longer valid
in very crowded fields: the photometry becomes confusion-
limited.
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SExtractor an estimator which is a combination of κ.σ-
clipping and mode estimation, similar to the one employed
in Stetson’s DAOPHOT program (see e.g. Da Costa 1992).
Briefly, the local background histogram is clipped itera-
tively until convergence at ±3σ around its median. If σ is
changed by less than 20% during that process, we consider
the field to be uncrowded and we simply take as a value
for the background the mean of the clipped histogram.
Otherwise we estimate the mode with:

mode = 2.5×median− 1.5×mean (1)

This expression is different from the usual approximation

mode = 3×median− 2×mean (2)

(e.g. Kendall & Stuart 1977), but was found, from the
simulations, to be more accurate with our clipped distri-
butions. Figure 1 shows that the expression (1) is con-
siderably less affected by crowding than a simple clipped
mean – like the one used in FOCAS or by Infante (1987)
– but is ≈ 30% noisier. This is why we turn back to the
mean for uncrowded fields.
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Fig. 1. Monte-Carlo simulations of 32× 32 pixels background
meshes polluted by random gaussian profiles. Each point cor-
responds to a background estimation inferred from a different
realization. The true background lies at 0 ADU. While being
slightly noisier, the “clipped mode” gives a more robust esti-
mate than a clipped mean in crowded regions

Once the grid is set up, a median filter can be applied
to it, in order to suppress possible local overestimations
due to bright stars. The resulting background map is then
simply a bilinear interpolation between the meshes of the
grid. The choice of the mesh size is an important step.
Too small, the background estimation is affected by the
presence of objects and random noise. Too large, it cannot
reproduce the small scale variations of the background. On
most images, a width of 32 to 128 pixels works fine.

3. Detection

With no assumption on the shape of the objects, one can
consider two classical detection techniques: peak finding
and thresholding. In both cases a second pass through the
data is required to glue (for peak finding) or split (after
thresholding) close detections. Peak finding is more appro-
priate for stars, but is not suited to the detection of Low-
Surface-Brightness (LSB) objects (Yee 1991). This is why
we have chosen thresholding. SExtractor uses Lutz’s one-
pass algorithm (Lutz 1979) to extract 8-connected con-
tiguous pixels from a “template frame”. The template
frame results from the convolution “on-the-fly” of the orig-
inal image with some appropriate convolution mask. Any
convolution mask can be used with SExtractor; the choice
depends on which type of objects one wants to detect best.
For faint unresolved sources, the Point Spread Function
gives optimum results (Irwin 1985). A larger mask is more
adapted for detecting LSB objects. A “wavelet” filter can
also be used to detect object at a specific scale, or point-
sources over a chaotic background (e.g. Coupinot et al.
1992).

4. Deblending merged objects

With the detection method described above, it is necessary
to separate neighbours that have been extracted as a single
source.

Great care has been taken in designing the deblending
routine for merged objects. On survey images, SExtractor
has often to deal with both patchy, extended Sc-d galaxies
(which have to be considered as single entities), and close
or interacting pairs of optically faint galaxies (which have
to be considered as separate objects). This is tradition-
ally a point where many extraction programs fail, leading
to catalogs containing extended galaxies split into several
smaller detections.

4.1. Finding the real components

Basically, our algorithm employes a multiple isophotal
analysis technique similar to the one designed for the COS-
MOS machine (Beard et al. 1990). Each extracted set of
connected pixels is re-thresholded at 30 levels exponen-
tially spaced between its primary extraction threshold and
its peak value. This gives us a “model” of the light distri-
bution within the object(s), which is stored in the form of
a tree structure (Fig. 2). Then the algorithm goes down-
wards, from the tips of branches to the trunk, and decides
at each junction whether it shall extract two (or more) ob-
jects or continue its way down. To meet the conditions de-
scribed earlier, the following simple decision criteria were
adopted: at any junction threshold ti, any branch will be
considered as a separate component if
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(1) the integrated pixel intensity (above ti) of the branch is
greater than a certain fraction δc of the total intensity
of the composite object.

(2) condition (1) is verified for at least one more branch
at the same level i.

Note that ideally, condition (1) is both flux and scale-
invariant; however for faint, poorly resolved objects, the
efficiency of the deblending is limited mostly by seeing and
sampling. From the analysis of both small and extended
galaxy images, we find a good value for δc of 5 10−3.

Fig. 2. A schematic diagram of the method used to deblend a
composite object. The areal profile of the object (the smooth
curve) can be described as a tree-structure (thick lines). The
decision to regard a branch as a distinct object is determined
according to its relative integrated intensity (tinted area). In
the case above, the original object is split into two compo-
nents A and B. Pixels lying below the separation threshold are
assigned to their most credible “progenitor” afterwards

4.2. Sticking the pieces again

The outlying pixels with fluxes lower than the separation
thresholds have to be reallocated to the proper compo-
nents of the merger. To do so, we opted for a statistical
approach. At each pixel we compute the contribution that
is expected from each sub-object using a bivariate gaus-
sian fit to its profile. This is turned into a probability for
that pixel to belong to the sub-object. For instance, a faint
pixel lying halfway between two close bright stars having
the same magnitude will be appended to one of these with
equal probabilities. One big advantage of this technique is
that the morphology of any object is completely defined
simply through its list of pixels.

4.3. Tests

To test the effects of deblending on photometry and as-
trometry measurements, we made several simulations of
photographic images of double stars with different sepa-
rations and magnitudes under typical observational con-
ditions (Fig. 3). It is obvious that multiple isophotal tech-
niques fail when there is no saddle point present in the
profile (i.e. for separations < 2σ in the case of gaussian
images). In the very worst cases, we measure a magnitude
error <∼ 0.2 mag and a shift in the centroid <∼ 0.4 pixels
for the fainter companion , but no other systematic effects
are noticeable.
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Fig. 3. Centroid and corrected isophotal magnitude errors for
a simulated 19th magnitude star blended with a 11, 15, 19 and
21th mag. companion as a function of distance (expressed in
pixels). Lines stop at the left when the objects are to close to
be deblended. The dashed vertical line is the theorical limit
for unsaturated stars with equal magnitudes. In the centroid
plot, the arrow indicates the direction of the neighbour. The
simulation assumes a 1 hour exposure with a 1 m Schmidt
telescope and a Moffat PSF with a seeing FWHM of 3 pixels
(2′′). The results are of course applicable to fainter objects on
deeper exposures

5. Filtering the detections

When using low thresholds, spurious detections are often
made in the wings of objects with shallow profiles (for ex-
ample, elliptical galaxies). It comes from the fact that the
background is locally higher there, leading to a lower rela-
tive threshold and thus in a higher detection rate of noise
peaks. One solution to this problem is to verify whether
or not there could have been a detection if there were no
neighbours. This is what the “cleaning” procedure does.
As detections are made, objects are put in a FIFO (First-
In First-Out) stack. When the stack is full, objects are
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examined one by one before being sent to the catalog.
SExtractor computes the contribution to the mean surface
brightness of each object from its neighbours. This is then
subtracted, and if the mean surface brightness still falls
above the detection threshold, the object is accepted into
the catalogue. The contribution from the wings of neigh-
bours is computed assuming a gaussian extrapolation of
their profiles. As real profiles have, in general, broader
wings than a pure gaussian, it is often necessary to ex-
pand their estimated width by a certain factor. Values
ranging between 1.0 and 2.0 are usually sufficient.

6. Photometry

In addition to isophotal and circular aperture magnitudes,
SExtractor has the possibility to estimate the “total” mag-
nitude of an object.

The total apparent magnitude is the most physically
relevant photometric parameter to extract directly from
pixel data. For non-stellar objects, isophotal and aperture
photometry have both their advantages and disadvantages
when used to estimate total magnitudes (e.g. Irwin & Hall
1983). Aperture photometry is known to be generally less
biased than isophotal photometry, but it only works in
non-crowded regions. These constraints, and the need of
keeping the processing as fast as possible, led us to adopt
the following scheme. For each object, 2 types of total
magnitude are computed, one uses an adaptive aperture,
and the other an isophotal correction.

Adaptive aperture magnitudes Our adaptive aperture
photometry routine is inspired by Kron’s (1980) “first mo-
ment” algorithm. (1) The second order moments of the
object profile are used to define an equivalent bivariate
gaussian profile with mean standard deviation σiso (2) An
elliptical aperture whose ellipticity ǫ and position angle θ
are defined by these moments is scaled to 6 σiso (which
corresponds roughly to 2 isophotal “radii”). (3) Within
this aperture we compute the “first moment”:

r1 =

∑

rI(r)
∑

I(r)
(3)

Kron (1980) and Infante (1987) have shown that for stars
and galaxy profiles convolved with gaussian seeing an al-
most constant fraction of the flux is expected to lie within
a circular aperture of radius kr1, independently of their
magnitude. This picture remains unchanged if we consider
an ellipse with ǫkr1 and kr1/ǫ as the principal axes. A bal-
ance between systematic and random errors is achieved for
k ≈ 2. With k = 2.5, the mean fraction of flux lost is about
6%.

Corrected isophotal magnitudes . If we make the assump-
tion that the intensity profiles of the faint objects recorded
on images are roughly gaussian because of atmospheric

blurring, then the fraction η = Iiso
Itot

of the total flux en-
closed within a particular isophote reads (see Maddox et
al. 1990b):

(1−
1

η
) ln(1 − η) =

A.t

Iiso
(4)

where A is the area and t the threshold related to this
isophote. Equation (4) is not analytically invertible, but a
very good approximation to η (error <∼ 10−3 for η > 0.4)
can be made with the second-order polynomial fit:

η ≈ 1− 0.1961
A.t

Iiso
− 0.7512

(

A.t

Iiso

)2

(5)

A “total” magnitude mtot estimate is then

mtot = miso + 2.5 log η (6)

Clearly this simple correction works best with stars; but
it proves to give quite accurate results with disk galaxies.
Still, the broad wings of spheroidal galaxy profiles can lead
to large errors when a high isophotal threshold is used.

Fig. 4. Lost flux (expressed as a mean magnitude difference)
with SExtractor’s total magnitudes as a function of true total
magnitude on simulated R-band CCD frames. The parameters
of the simulations are the same as in Sect. 7.6.1; the com-
pleteness limit arises at R ≈ 24. Open and filled circles are
for (unsaturated) stars and galaxies, respectively. The dashed
and continuous curves represent the difference with isophotal
magnitudes at the extraction threshold (26 mag.arcsec−2) for
stars and galaxies

SExtractor uses the following procedure to give the
best estimate of the total magnitude for an object: the
adaptive aperture method is taken, except if a neighbour
is suspected to bias the magnitude by more than 0.1 mag.
In these cases (which are normally less than 20% in high
galactic latitude fields on moderately deep exposures), the
corrected isophotal magnitude is taken. The behaviour
of SExtractor total magnitudes, estimated on simulated
CCD images, is shown in Fig. 4. One can see by this ex-
ample that the fraction of lost flux is remarkably constant
for both stars and galaxies (less than 2% variations rms),
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nearly down to the completeness limit. With k = 2.5, we
measure a mean offset of 0.06 mag for galaxies and 0.03
mag for stars (although the latter depends on the exact
shape of the PSF, and doesn’t lead to any improvement
compared to the standard, fixed aperture magnitude also
provided by SExtractor).

7. Star-galaxy separation

A good discrimination between stars and galaxies is essen-
tial for extragalactic studies. The common assumption is
that galaxy images look more extended or fuzzy than those
of stars (or QSO’s). The reliability of such an approach has
been spectroscopically confirmed by Colless et al. (1990)
for COSMOS data from faint objects (bj ≈ 22 mag). A
great number of different star/galaxy classifiers has been
described and applied so far. Simple estimators in a 2-
parameter space like magnitude-isophotal area (e.g. Reid
& Gilmore 1982), magnitude-peak intensity (e.g. Jones et
al. 1991), or magnitude-surface brightness (e.g. Harmon
& Mamon 1993) provide the simplest way of separating
the two classes. These simple estimators do not use all
the information available in the intensity profile. Other,
more sophisticated estimators have been developed to do
so. This includes the Sebok (1979) classifier, the r−2 “mo-
ment” of Kron (1980), the Q classifier from Lefèvre et al.
(1986) and the ψ parameter of Maddox et al. (1990b). All
these estimators share one common default: a lack of ro-
bustess, especially when confronted with merged objects,
or objects having close neighbours (see e.g. Slezak et al.
1987).

If one sees an object as a vector of parameters, classi-
fying stars and galaxies optimally is nothing more than
finding the best frontier hypersurface between the two
classes in parameter-space. The decision hypersurface can
be made of hyperellipsoids (Jarvis & Tyson 1981). As
shown in Odewahn et al. (1992) and Bertin (1994) for
photographic images, neural networks provide an elegant
and extremely robust tool for determining the best fron-
tier between stars and galaxies. They can easily handle
problematic cases like merged objects or close neighbours,
as long as they have learned to recognize them. However,
these neural networks need to be trained with a set of
prototypes before being used. Selecting and labelling pro-
totypes from real images is a manual and rather tedious
task that can only be justified for a large amount of ho-
mogeneous data (a whole Schmidt plate for instance). Un-
fortunately, most surveys consist of image sets of variable
quality (seeing, depth, ...) for which each would in prin-
ciple require a different training. A solution to this may
be to perform the training with some homogeneous set
of images, and to apply an appropriate transformation to
the input parameters of other sets, so as to recover a sim-
ilar distribution of objects in parameter-space (Odewahn
et al. 1993). This is not satisfying, since it brings back
the necessity of a painful parametrization, and above all

there is no assurance that the transformation is accurate
enough to recover the full potential of neural classification,
especially for the “outliers”.

In fact, astronomical images produced by modern de-
tector arrays (CCDs, infrared arrays) share many simi-
larities: the intensity scale is linear with a good preci-
sion over a large range until a sharp saturation appears,
the background noise is essentially white noise, and at-
mospheric blurring makes the core of the point spread
function (PSF) gaussian. Hence correctly sampled im-
ages (FWHM >∼ 2 pixels) can roughly be described by
three numbers2: pixel scale, depth (S/N at a given mag-
nitude), and seeing FWHM. The first two can be elimi-
nated by a convenient choice of classification parameters
(see Sect. 7.3.1), and we shall use the seeing information
as a “tuning-button” and add it as input to our neural
network.

Assuming that today’s astronomical images share
many common properties, one can think of using simi-
lar artificial images, accurate enough to train the neural
network, instead of using real images. Let’s now see how
we can train a neural network with such simulations, and
what performances we can obtain from the resulting clas-
sifier on real data.

7.1. Neural networks as classifiers

A neural network (NN) is basically a group of connected
units called neurons whose behaviour is inspired from real
biological neurons. One of the most interesting feature of
NNs is their ability to “learn” and to “generalize” in a
given context. This has led to use them, during the last
ten years, in a growing number of difficult pattern recog-
nition problems going from spoken words or hand-written
character identification to the discrimination of particles
in high-energy physics. When not too many neurons are
involved, as it is the case here, it is possible to simulate the
working of the neural network with a computer program.
For an introduction to neural computational techniques
see Wasserman (1989), Beale & Jackson (1990) or Hertz
et al. (1991). Lahav (1994) gives an overview of possible
applications of neural networks in statistical astronomy.

7.2. Principle

In the case of star/galaxy separation, we have chosen a
multi-layered network architecture and a learning proce-
dure known as backpropagation. Of all the NNs, it is prob-
ably one of the best-studied, and has been intensively ap-
plied with success for many classification tasks. Such net-
works have one input layer, one output layers, and one
or more “hidden” layers between them. Neurons from one

2Doing so, we neglect of course the change in appearance of
galaxies from UV to NIR, from large to narrow-band filters;
but the effect of this change is not larger than the one due to
the natural spread of galaxy types in the B band.
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layer are connected to all neurons of the previous layer, but
there is no connection between neurons of a same layer.
In a classifier, the input nodes are given the parameters
defining the object, and the output nodes contain “affilia-
tion indices” to each class. The NN is used in two modes:

- a “training” mode in which the network “learns” to
associate inputs and desired outputs which are repeatedly
presented to it (supervised learning).

- a “play-back” mode in which it simply responds to
new patterns according to prior training.

In the multi-layer network we consider, a neuron i in
layer (l) has the following output

o
(l)
i = g(w

(l)
i .o(l−1) − b

(l)
i ) (7)

where w
(l)
i is the weight vector of the connections between

the neurons from the previous layer l − 1 and neuron i,

and b
(l)
i is a bias term which may be considered as the

weight of a connection with a steady neuron
output. The activation function g is the usual sigmoid

function: g(u) = 1/(1 + e−u). The training procedure is
organized as follows. First of all, weights and biases are
initialized to random values. Then for each pattern, of a
“training set” loaded into the input layer at iteration t,
a forward propagation through the network is done using
Eq. (7). Weights and biases are adjusted layer by layer
backward, according to the error backpropagation learn-
ing rule (Rumelhart et al. 1986):

∆w
(l)
j (t+ 1) = −η∇E(w

(l)
j ) + α∆w

(l)
j (t) (8)

E is a quadratic cost function which measures the output
error of the network:

E =
1

2
|O− o|2 (9)

where O is the desired output vector and o the response of
the network to the training pattern. The “learning rate”
of the network is determined by η, while the momentum

parameter α may be set to non-zero (but < 1) to speed
up the convergence in flat regions of the cost surface, and
prevent the network being fooled by local fluctuations.
All learnings here have been carried out with η = 0.1 and
α = 0.2.

As learning progresses, E decreases slowly. With ex-
perimental data, a million learning steps are often needed
for E to reach a stable minimum, which means that many
passes through the training set are necessary (faster learn-
ing algorithms do exist, but as we only learn once, speed
is not here a matter of concern).

7.3. Optimization for the star/galaxy classification

7.3.1. Input parameters

Choosing the right input parameters is a crucial step in
star/galaxy separation. The following points were taken

into account in our attempt to choose “optimal” parame-
ters. They should

i) discriminate efficiently the two classes over the whole
magnitude range accessible with any linear detector.

ii) be invariant under translation and rotation (scale in-
variance is not demanded because of seeing).

iii) bear some robustness concerning noise, image distor-
tions, and influence of close neighbours.

iv) be as independent as possible from the characteristics
of the exposure (depth, scale).

Simple parameters that fulfil these requisites are
isophotal areas. A good depiction of image profiles can
be done by combining some isophotal areas A0, A1, ...
and the maximum pixel value above the sky Imax. Taking
more isophotal areas than only A0 (corresponding to the
lowest isophote) allows the classifier to work better with
dim objects (a high relative uncertainty on Imax weakens
the contrast between the two classes), bright stars (Imax

reaches the saturation level), and deblended images (the
faint pixel allocation procedure distorts the wings of the
profile). This set of parameters is very similar to the one
adopted by Maddox et al. (1990a) for the APM survey,
the difference being in the distribution of the isophotes: a
steady scale for the APM, and normalized to each profile
in our case. We did not include any elongation measure-
ment in the parameter set in order to comply with iii); in
fact, as it has been remarked by Odewahn et al. (1992),
ellipticity and most sophisticated geometrical parameters
are not of major importance in star/galaxy separation,
particularly for faint objects.

Thus, we end with 10 parameters: 8 isophotal areas,
1 peak intensity, and 1 “control-parameter” which is the
seeing. Isophotal areas are given to the network in units
of “squared seeing FHWM”, which eliminates the need for
a pixel scale information (we assume that the images are
correctly sampled). There should be no difference concern-
ing the extracted profiles (except noise), between a deep
exposure analysed at a high threshold, and a less deep
one analysed at a lower threshold, so we can get rid of
the depth information by expressing the peak intensity in
units of extraction threshold. Because of the wide bright-
ness range of the objects that may appear in the image,
the neural network is fed with the logarithms of the pa-
rameters.

Each of these is scaled in order to have the input distri-
bution falling in the interval [−1,+1] within 3σ. Weights
and biases are initialized with random values between
−N−1

l and +N−1
l , where Nl is the number of nodes in

the layer l. These precautions ensure at the beginning of
training that the net input of each neuron is in the domain
of maximum sensitivity of the activation function.
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7.3.2. Topology of the network

The optimal architecture of the NN in terms of perfor-
mance depends on the distribution of the pattern vectors
in parameter space. A multi-layer network is character-
ized by the number of layers and the number of neurons
in each layer.

Number of layers. The frontier between stars and
galaxies in parameter space is assumed to be continu-
ous. In this case, it can be shown that one hidden layer is
enough to separate the two classes (e.g. Cybenko 1989).

Number of neurons in each layer. The input layer con-
tains as many units as there are parameters. The output
layer contains only one neuron, as “star” and “galaxy” are
two classes mutually exclusive. It will define a “stellarity
index”: 0 for a galaxy, 1 for a star, or any intermediate
value for more ambiguous objects.

Note that we have not created a class for defects
such as cosmic ray impacts, bad column or glitches. The
major reason being that on “correctly sampled” images
(FWHM >∼ 2 pixels) they can easily be discarded by stan-
dard techniques3. We want the classifier to have a suffi-
cient number of degrees of freedom to separate classes,
and few enough to be able to “generalize” and not be too
tightly bounded to the training data. In networks like the
one used here, this feature is determined by the number
of neurons in the hidden layer. In fact, our training set
is large enough that we could use a large number of neu-
rons (a few tens) without loss of generalization (see Bertin
1995). But, in order to save processing time, we restricted
the number of “hidden neurons” to the reasonable value
of 10 (the same as the number of inputs). The resulting
neural network is shown in Fig. 5.

7.4. Training

Six hundred 512× 512 simulation images containing stars
and galaxies were generated to train the network (the
simulations are described in the appendix). They were
done in the blue band, where galaxies present very diver-
sified aspects. The two PSF parameters (seeing FWHM
and Moffat β parameter) were chosen randomly with
0.025 ≤ FWHM ≤ 5.5′′and 2 ≤ β ≤ 4. The pixel scale
was always taken less than ≈ 0.7 FWHM to warrant cor-
rect sampling of the image. Bright galaxies are simply too
rare in the sky to consitute a significant training sample
on such a small number of simulations. So, keeping a con-
stant comoving number density, we increased artificially
the number of nearby galaxies by making the volume ele-
ment proportional to z.dz. The stars were given a number-
magnitude distribution identical to that of galaxies. Thus
any pattern presented to the network has 50% chance to

3Optical artifacts like spikes or scattered light rays would cer-
tainly be worth identifying, as they are found to pollute all
survey catalogs, especially around bright stars; but the classi-
fication parameters used here are simply unadequate.
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Fig. 5. Diagram of the neural star/galaxy classifier

correspond to a star or a galaxy, whatever its magnitude4.
This weighting is certainly not optimum for classifying real
object with V <∼ 18 (where stars outnumber galaxies) or
inversely V >∼ 22 (galaxies outnumber stars), but is prefer-
able here, as all depth information have been withdrawn
from the input parameters for the sake of generality. In
Sect. 7.5 we indicate how this problem can be easily alle-
viated. As one can see in Fig. 6, the crowding in the sim-
ulated images is higher than what one sees on real images
of the field, allowing for the presence of many “difficult
cases” (close double stars, truncated profiles, etc...) that
the neural network classifier will have to deal with.

SExtractor was run on each image with 8 different ex-
traction thresholds. It produced a catalog with about 106

entries, for each of which the 10 classification parameters
are available. Backpropagation learning took about 15 min
on a SUN SPARC20 workstation. The corresponding set of
synaptic weights was then saved to a file, ready to be used
in “feed-forward only” mode during source extraction.

7.5. Confidence estimation of the classification

It has been proven, both theorically and experimentally
(Richard & Lippmann 1991 and references therein), that
the cost function of a multilayered neural net as ours
is minimized when outputs estimate bayesian a posteri-
ori probabilities. Although the present classifier does not
output exact bayesian probabilities (because real data un-
avoidably differ a bit from simulated ones), it provides at
least a confidence estimate in the classification. This is
obvious in Fig. 9, where the stellarity index tends to “de-
generate” to intermediate values as magnitude increases

4Faint galaxies have less chance of being detected than faint
stars, but it would have little effect since the ones that are lost
at a given magnitude are predominantly the most extended
and consequently the easiest to classify.
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Fig. 6. Example of a simulated CCD field (displayed using a logarithmic scale) for training the star/galaxy classifier

and classification becomes harder. Besides, qualitative es-
timates of confidence done by eye are in good agreement
with those of the classifier.

Thus, the problem of contaminationmentioned in Sect.
7.4, arising when the classification becomes difficult and
the two classes are in unbalanced proportions, can be
straightforwardly solved by adjusting the decision bound-
ary between “stars” and “galaxies” within the stellarity
index range ([0,1]).

7.6. Testing the neural network classifier

We checked the performance of the classifier both on sim-
ulated and real images. Simulated images are required for
very faint objects for the obvious reason that their nature
cannot be certified from ground-based images.

7.6.1. Simulation images

A new set of images werw simulated, but this time with
the purpose of testing the trained classifier. The character-
istics of these images match those of typical 20 mn CCD
exposures in the R band, at high galactic latitude, with
a 3.5 meter telescope, a pixel size of 0.35′′ and a seeing
FWHM of 0.9′′. The classification of extracted sources
was done with SExtractor, entering different values for
the seeing parameter. Objects with a stellarity index less
than 0.5 were identified as “galaxies”, and “stars” other-
wise. As expected, the classifier gets its peak performance
when the seeing parameter is set to 0.9′′(Fig. 7), with a

tolerance depending on magnitude. The tolerance in see-
ing is quite large for bright objects (≈20%), which means
that an approximate seeing parameter can be entered to
pick up the brightest stars in an image and determine a
more accurate estimate for classifying fainter detections.
Figure 8 shows the degradation of the classification qual-
ity with magnitude, using the optimum seeing parameter
value (0.9′′). More errors are made for stars than galaxies
at low flux, because of crowding: a faint star has a signif-
icant probability to catch wings added to its profile by a
background galaxy and get misclassified.

7.6.2. Real images

CCD images from several ground-based telescopes with
different depth, seeing and pixel scale were processed by
SExtractor (Fig. 9), and examined by eye. All isolated and
non-saturated objects identifiable by eye were found to
have been correctly classified. Saturation features differ
from one instrument to another, and lead to misclassifica-
tions for very bright stars on some images. Close blended
and undeblended stellar pairs are classified properly, but
some objects that might be compact members (a few per-
cent) of deblended galaxy-galaxy pairs were found to be
classified as stars.

In conclusion, if one excludes heavily saturated stars,
the classification of “bright” objects appears to be reliable
at least at a conservative ≈95% level, on both simulated
and real images with a good sampling. Figure 10 shows an
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R<20

20<R<22
22<R<24

Fig. 7. Global success rate of the classifier (on sets contain-
ing the same proportion of simulated stars and galaxies) as a
function of the seeing parameter, for three R magnitude ranges

galaxies
stars

Fig. 8. Success rate as a function of R magnitude for the same
simulated stars and galaxies as in Fig. 7

example of a CCD image and its interpretation by SEx-
tractor.

8. Speed

Together with the background estimation, the detec-
tion/deblending/filtering process is the most time- con-
suming part of the image analysis. With a SUN
SPARC20, we measure a global processing speed of about
40 kpix.sec−1 without convolution, and ≈ 30 kpix.sec−1

with small convolution masks.

9. Summary

We have described SExtractor, a programme for the au-
tomatic analysis of moderately crowded astronomical im-
ages. Speed, robust deblending and estimation of “total”
magnitudes make of SExtractor a tool particularly well-
suited to batch processing of large survey data.

Fig. 9. Classifier output (“stellarity index”) as a function of
R magnitude for an NTT image from the photometric sample
of the ESO-Sculptor survey (Arnouts et al. 1995). The seeing
FHWM is 0.8′′. Note the decrease in “stellarity” for saturated
stars

Fig. 10. Interpretation by SExtractor of a CCD frame (ESO
3.6 m, R band, 3 min) containing a distant galaxy cluster.
Filled ellipses are objects with stellarity index > 0.8 (stellar
objects)
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We demonstrated that reliable star/galaxy classifi-
cation can be achieved using a tunable neural network
trained on realistic simulation images. Because the essen-
tial features of modern images can be described by only a
few parameters, this approach (simulation of data + tun-
able neural network) could be advantageously extended
to other classes of objects (like Hubble types), or even to
the measurement process itself (optimal determination of
positions, magnitudes, etc.).

The SExtractor package and its technical documenta-
tion are electronically available through World Wide Web
at: ftp://ftp.iap.fr/pub/from users/bertin/
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A. Appendix: simulation of artificial galaxy images

The simulated images we have used to test deblending,
photometry and star/galaxy separation contain galaxies
and stars with B magnitudes ranging from 10 to 27. Most
of the difficulty concerns the simulation of galaxies. In or-
der to simulate the large number of images needed for the
neural network training, we have tried to find a compro-
mise between realism and speed. Our concern was not to
build a cosmological tool, but simply a fast code capable
of producing convincing sky images.

Fundamental parameters defining the morphology of a
galaxy are its Hubble type T and its absolute blue magni-
tudeM5. The Hubble type T is randomly chosen between
−5 and +10, with a global type distribution complying
with the one measured by Spiekermann (1992), and a de-
tailed one taken from Lauberts & Valentijn (1989). The
blue-band absolute magnitude M distribution follows a
Schechter’s (1976) law

φ(M)dM = φ∗ exp(0.92(α+ 1)(M∗ −M)

− exp(0.92(M∗ −M))) dM (A1)

Values like M∗ = −20.9, α = −1.1 and φ∗ = 2.3 10−3

(for H0 = 50 km.s−1.Mpc−1) match real counts around

B = 19th magnitude (e.g. Yoshii & Takahara 1988). No
dependence on redshift z or morphological type was intro-
duced in the luminosity function; that is, we did not in-
clude luminosity or density evolution of the galaxies (this
would have been beyond the scope of this simple simula-
tion).

Each galaxy contains a spheroidal component, which
we assumed to follow a de Vaucouleurs law (in mag.pc−2)

µS(r) =MS + 8.3268

(

r

re

)
1

4

+ 5 log re + 16.6337, (A2)

5So far, most of the characteristics and scaling laws of galaxies
have been established in the B band; that’s why we shall do all
the computations in B and do a rough conversion to another
bandpass by using color indices.

where MS is the B absolute magnitude of the spheroid
and re its effective radius in parsecs. For ellipticals, from
the work of Binggeli et al. (1984), we adopt the following
mean relation between re (expressed in pc) and MS

re =

{

(

h
0.5

)0.5
103.5−0.3(MS+20.5) if MS < −20.5

(

h
0.5

)−0.5
103.5−0.1(MS+20.5) otherwise

(A3)

Bulges generally appear to be more diffuse than ellip-
ticals (see e.g. Kent 1985), but in the context of this
simulation, no distinction has been made between the
two. The intrinsic flattening q of spheroids is taken
between 0.3 and 1, and within this range follows a
normal distribution with 〈q〉 = 0.65 and σq = 0.18
(Sandage et al. 1970). Once again, we assume the same
distribution for bulges and ellipticals, even if there is some
controversy about this (see Boroson 1981). The apparent

axis ratio is then
√

q2 sin2 i+ cos2 i, where i is the incli-
nation of the (oblate) spheroid with respect to the line of
sight.

The disk component, when present, is given an expo-
nential profile:

µD(r) = µ0 + 1.0857

(

r

rh

)

, (A4)

where rh its scale-length, and µ0 its central surface
brightness. We refer to the studies of Freeman (1970),
van der Kruit (1987), and Binggeli (1994) and adopt
〈µ0〉 = 21.65 mag.arcsec−2 for non-dwarf galaxies (M ≤
−17), and 〈µ0〉 = 21.65+ 0.7(M + 17) otherwise6. µ0 fol-
lows a gaussian distribution with σµ0

= 0.35 around these
means. The scale length rh (in pc) of the disk comes with
the normalization

rh = dexp(−4.713 + 0.2(µ0 −MD)), (A5)

where MD is the B absolute face-on magnitude of the
disk. We take into account the truncation in the light pro-
file visible for many disk galaxies (see van der Kruit 1987)
by introducing a sharp parabolic decline in surface bright-
ness magnitude at r = 5rh. A logarithmic spiral pattern,
consistent with the measurements of Kennicut (1981) and
Schweizer (1976), is used to modulate the disk of late-type
galaxies (T > 0), chiefly to introduce some realistic irreg-
ularities in their profile. The disk profile is then given an
axis ratio of cos i.

Galaxies with T ≤ −4 have of course MS = M and
MD = +∞. For galaxies with −4 < T < 8 the fractional
luminosity of the bulge is a monotonic function of the Hub-
ble type T , as shown by Simien & de Vaucouleurs (1986).
We used the following empirical fit (their Eq. 4) to obtain
MS from M :

MS =M + 0.80 + 0.145T + 0.0284T 2 + 0.00267T 3 (A6)

6Although there are claims (McGaugh 1995, and references
therein) that these mean surface brightnesses only reflect se-
lection effects.
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This parametrization can be extended to later types
(T ≥ 8), because in that case MS − M > 5 mag, i.e.
MD − M ≈ 0. Internal absorption Ai of the disk (in the
blue band) is modelized by

Ai = −α(T ) log cos i (A7)

with (de Vaucouleurs et al. 1991)

α(T ) =

{

1.5− 0.03(T − 5)2 if T ≥ 0
0 if T < 0

(A8)

Note that we apply this correction only for the disk.
To avoid excessively large Ai the inclination angle i is
kept < 80◦. R band galaxy parameters are crudely de-
rived from the B band parameters by assuming B −R =
1.5 for the spheroidal component and B−R = 0.7 for the
disk (except for S0 galaxies). The internal absorption in R
is assumed to be 0.56 times what it is in B (Cardelli et al.
1989). K+e corrections are applied separately for the two
components (except once again for S0 galaxies) by using
the polynomial fits of Metcalfe et al. (1991), which are ex-
pected to be valid at least to z ≈ 1.5. Finally, each galaxy
is “placed” at its redshift z. A Friedmann universe with
zero cosmological constant is assumed. The (bolometric)
luminosity and the angular diameter distance are respec-
tively (Weinberg 1972):

dL =
c

H0q20

(

q0z + (q0 − 1)(
√

2q0z + 1− 1)
)

(A9)

and

dA =
dL

(1 + z)2
(A10)

After proper scaling and dimming, the objects are all
placed in a temporary array to be convolved with the point
spread function

I(r) =
I0

(

1 +
(

r
R

)2
)β

(A11)

which is the Moffat (1969) function. Stellar image pro-
files can be represented with a good accuracy for most
instruments with any seeing by adjusting R and β. Tak-
ing β = 3 yields FWHM ≈ R.

An oversampling of 3 × 3 is made on each pixel; but
the convolution is applied only with the final pixel size.
One may normally fear some distortion of the images due
to binning; however, comparaisons made with finer pixel
grids have convinced us that these effects affect the pro-
files negligibly in the conditions of our simulations, while
reducing considerably the time to produce the images.

Figure 11 shows some examples of simulated galaxy
images as described above.

Fig. 11. Examples of 15th magnitude simulated galaxy images.
From left to right: E, S0, Sb and Sd/Irr types
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