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We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space

transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg.

Through heuristic analytical arguments and examples derived from recent experimental efforts, aug-

mented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are

found to be effective in optimizing the use of such structures for beam compression or for shaping the

current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent

experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal

dispersion of the beam is presented. The theoretical and experimental results indicate that these

manipulations can be used to create an electron bunch with a current profile having a long ramp followed

by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field

accelerator.
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I. INTRODUCTION

Several experiments [1–4] in the field of beam physics

have recently been proposed that require, or may benefit

from, the successful transport (with or without compres-

sion) of bunches of charged particles at large energy spread

through a dispersionless translating section, or dogleg. This

device, consisting of two consecutive bend magnets of

opposite sense separated by dispersion-matching focusing

optics, is commonly used in linear accelerator systems to

translate the beam axis transversely, and it may also be

used as a tool to compress or shape the current profile of a

relativistic electron bunch. Examples of three such beam

line structures are shown in Fig. 1.

For beams of large energy spread, this type of transport

line tends to have a longitudinal (temporal) dispersion

function with significant nonlinear contributions, i.e., con-

taining higher than first order dependences in powers of the

momentum error. The physical effect of these nonlinear

contributions is to introduce quadratic and possibly higher-

order correlations between energy and longitudinal posi-

tion within the bunch. In applications that are sensitive to

the beam’s distribution in the longitudinal phase space, it is

desirable to have the ability to manipulate these nonlinear

effects. Such manipulations can be employed to shape the

phase space distribution and thereby linearize the trans-

port. In Sec. II we present several analytical results which

help to illuminate these effects as well as their control

using sextupole correction. In the interest of clarity and

brevity, important derivations are reserved for the

Appendices.

Our main results, contained in Secs. III and IV, consist

of numerical and experimental studies pertaining to the

control of nonlinear longitudinal effects in the dogleg

sections on the linear accelerators at the UCLA-Neptune

Laboratory and the ORION beam line at SLAC, shown in

Figs. 1(b) and 1(c). The goal of these studies is to shape the

current profile of the beam in order to optimize it for use as

a drive beam for the plasma wake field accelerator

(PWFA). Simulations of the dogleg sections on these

beam lines, presented in Sec. III, indicate that sextupole

corrections could be implemented in order to linearize their

longitudinal transport. With such transport, these doglegs

can act as bunch compressors capable of producing elec-

tron bunches that rise linearly in density from head to tail,

followed by a sharp drop. This type of longitudinal beam

profile has been predicted to produce large-amplitude wake

fields and high transformer ratios [5], making it ideal as a

PWFA drive beam. In Sec. IV, we present new experimen-

tal results of horizontal dispersion and coherent transition

radiation (CTR) bunch length measurements on the UCLA

beam line of Fig. 1(b), which demonstrate the viability of

using sextupoles to manipulate the bunch shape in a dogleg

compressor.

Two additional applications, related to the visible to

infrared SASE amplifier (VISA) Brookhaven Accelerator

Test Facility (ATF) dogleg section of Fig. 1(a), are pre-

sented in Appendices C and D. In Appendix C, we discuss

simulations of second-order nonlinear bunch compression,

which have helped to explain the improved gain of the

VISA self-amplified spontaneous emission free electron

laser (SASE-FEL) when running the beam slightly off-

energy, an effect which was observed but not fully under-

stood during the first phase of that experiment [1]. In

Appendix D, we discuss similar calculations for the cur-

rently ongoing second phase of the VISA experiment,

which indicate that these second-order effects can be mini-

mized using sextupole correction, in order to transport a

beam though the dogleg section while preserving a strong

linear momentum-time correlation (chirp). This beam,

when delivered to the VISA undulator, may create a cor-

responding frequency chirp in the FEL output radiation
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pulse [2]. As a point of reference, values for various

parameters used in the discussions of Sec. II, including

the beam energy E, the bend radius �, bend angle �, total

path length �s, normalized emittance "N , rms momentum

spread �	, and the transport matrix elements R56, T566, and

U5666 (without sextupole correction) are given in Table I

for the dogleg sections on each of these beam lines. The

meanings of these matrices are explained in Sec. II.

II. BACKGROUND AND HEURISTIC ANALYSIS

The transformation of the 6D trace space vector X �
�x; x0; y; y0; z; 	� of a beam produced by a system of mag-

netic elements can be represented to arbitrary order in a

power series expansion of the trace space coordinates. This

method was originally developed for use in the particle

tracking code TRANSPORT [6]. In component form, the

transformation from the initial to final coordinates (X0 !

Xf) reads

�Xf�i � Rij�X0�j � Tijk�X0�j�X0�k

�Uijkl�X0�j�X0�k�X0�l � � � � ; (1)

where Rij; Tijk; Uijkl; . . . are transport matrices (or tensors)

of increasing order, and there is an implied summation on

repeated indices. Since we are concerned with the trans-

formation of the longitudinal phase space of the beam, we

will focus upon the z or i � 5 component of Eq. (1), which

has the general form zf � z0 � �chromatic terms	 �

�geometrical terms	. For beams of small transverse emit-

tance but with a large energy spread, the chromatic terms in

the transformation will tend to dominate the final form of

the longitudinal profile. Among these, the strongest con-

tributors are the longitudinal dispersion terms, which are

dependent on the momentum; the coupling of final longi-

tudinal position to the initial transverse coordinates is

relatively quite small. Hence, we may formulate the fol-

lowing approximation, including terms up to third order in

the momentum error 	,

zf 
 z0 � R56	� T566	
2 �U5666	

3 � � � � : (2)

The first order coefficient R56 � �@zf=@	�	!0 repre-

sents the longitudinal dispersion function. It is proportional

to the negative of the temporal dispersion function,

sometimes denoted by ��. The remaining elements,

T566; U5666; . . . , are higher-order momentum-error contri-

butions to the longitudinal dispersion. We may consider

Eq. (2) to apply to a beam of small transverse emittances

and large energy spread.1 It is also presumed that the beam

is sufficiently relativistic that space charge may be ne-

glected. The point at which higher-order terms in Eq. (2)

may be truncated depends upon the energy spread of the

beam. In practice it is rarely necessary to consider higher

than third-order contributions for single-pass transport.

For a dogleg structure in which the quadrupoles have

been successfully used to eliminate the linear horizontal

dispersion and its derivative with respect to path length

(�x; �
0
x ! 0), the analytical forms of the first- and second-

order terms may then be expressed as follows:

R56 �
�s

�2
0

� 2���� sin��; (3)

T566 � 4�sin2��=2� cos��=2� �
X

W

ai6kTi6k: (4)

Here � is the bend radius, � is the bend angle, �s is the

total path length (including the bends), and �0 is the central

energy of the beam. The summation in the second expres-

sion is over the set W of values of i; k corresponding to the

nonzero transverse second-order chromatic terms,

W � f�i; k� : �i; k�

� �1; 1�; �1; 2�; �1; 6�; �2; 1�; �2; 2�; �2; 6�; �5; 1�; �5; 2�g;

(5)

and ai6k are the corresponding coefficients, which are

functions of � and �. For the sake of space, we will relegate

the explicit forms of these functions to Appendix A, where

Eqs. (3) and (4) are derived.

In view of Eq. (4) and by virtue of the same argument by

which the coupled transverse-chromatic terms were

ignored in Eq. (2), we expect the dominant dependence

of the second-order longitudinal dispersion term T566 to

derive from the second-order horizontal dispersion terms

T166 and T266. Sextupole magnets are the obvious candidate

for eliminating this sort of nonlinear effect, as they are

inherently second order and are routinely used for making

chromatic corrections to T166 and T266 in bending trans-

port.

Since the second-order transport matrix for a pure sextu-

pole contains only geometrical terms, coupling to T566 is

accomplished by placing the sextupoles in a region of large

horizontal dispersion. The sextupole field strength then

TABLE I. Various parameter values for the dogleg sections of Fig. 1.

Facility E (MeV) � (m) � (deg) �s (m) "N (�m) �	 (%) R56 (m) T566 (m) U5666 (m)

UCLA 14 0.30 45 2 5 1.7 0.05 2.54 14.3

VISA-I 71 1.15 20 15 3.7 1.02 �0:0045 �10:1 172.5

VISA-II 71 1.15 20 15 2.42 0.56 �0:016 �7:17 48.7

ORION 55 0.84 22 14 4.4 2.2 �0:014 �1:8 29.1

1The zero emittance claim is false. One may launch a point
beam with finite angular spread (zero emittance) which demands
use of other terms in Eq. (2).
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couples to the x coordinate, which affects T566 via the first-

and second-order horizontal dispersion, R16and T166. If we

assume that the arrangement of quadrupoles and drifts

between the two dipole magnets is symmetric about the

midpoint of the dogleg and include two symmetrically

placed sextupole magnets whose geometrical field

strengths are � and ��, respectively, then Eq. (5) is found

to assume a linear dependence upon the sextupole field

strength of the form

T566��� � A� C�1� ���; (6)

where A and C are algebraic functions of � and �, as well

as the drift lengths and quadrupole focal lengths. These

functions and the derivation of Eq. (6) are found in

Appendix A.

If the goal is to eliminate T566 altogether, then (i) to

avoid asymptotic behavior, the value of � (the ratio of the

two sextupole field strengths) should not approach unity,

and (ii) in order to minimize � the quantity C�1� ��
should be large and therefore � should be negative. A

simple choice in agreement with these requirements is� �
�1, corresponding to sextupole fields equal in magnitude

but of opposite polarity. As a rule, the minimum number of

sextupoles needed is equal to the number of second-order

matrix elements one wishes to eliminate. Therefore � � 0
is also a possibility, although the elimination of one sextu-

pole would disrupt the optical symmetry and would require

the surviving one to have twice the field strength.

Minimization of the required sextupole fields, through

appropriate placement of the correcting magnets, is desir-

able from the standpoint of preventing the inadvertent

introduction of strong second-order geometrical effects,

as well as third-order chromatic effects.

The sextupole correction of T566 in this system often has

the added effect of minimizing the horizontal emittance

growth, due to the coupling of T566 to the second-order

horizontal dispersion discussed above. For a beam of large

energy spread and small transverse emittance, the non-

linear emittance growth is dominated by the second-order

horizontal dispersion elements T166 and T266. The final rms

emittance is then approximately (see Appendix B)

"x;f 

������������������������������������������������������������������������������

det�Mx�x;0M
T
x � �2

	dd
T � 3�4

	DDT	
q

; (7)

where d and D are the first- and second-order horizontal

dispersion vectors, respectively, �	 � h	2i1=2is the rms

momentum spread, Mx is the 2� 2 linear transport matrix

for the �x; x0� trace space plane, and �x;0 is the correspond-

ing initial matrix of second moments, i.e.,

d �

 

R16

R26

!

; D �

 

T166

T266

!

; Mx �

 

R11 R12

R21 R22

!

;

�x;0 �

 
hx20i hx0x

0
0i

hx0x
0
0i hx020 i

!

: (8)

The first of the three terms inside the determinant in Eq. (7)

is the contribution from the initial emittance, which would

be invariant if the transformation were governed solely by

the linear matrix Mx. Consequently, if the first order hori-

zontal dispersion and its derivative are eliminated in ac-

cordance with the discussion surrounding Eqs. (3) and (4),

then d ! 0 and the emittance growth described by Eq. (7)

is dominated by the third term in square brackets. The

coupling of longitudinal to horizontal dispersion is such

that for the sextupole configuration described above the

values of T166 and T266 tend to be reduced under the

sextupole correction of T566. Consequently, in many cases

sextupole correction of longitudinal dispersion also has a

reducing effect upon the transverse emittance.

III. SIMULATION RESULTS

The primary focus of our study is to test the concept of

creating a beam that has a relatively long (many pico-

seconds) rising current profile, followed by a short (sub-

picosecond) fall time. The dogleg section on the beam line

at the UCLA-Neptune Advanced Accelerator Laboratory,

shown in Fig. 1(b), has been designed and constructed with

this goal in mind [3]. Sextupole corrections on the dogleg

section, shown in Fig. 1(c), of the proposed low-energy

beam line for the ORION facility at Stanford Linear

Accelerator Center (SLAC) have also been considered

for the same purpose, namely, the creation of a ramped

current profile [4].

This type of profile is of considerable interest as a driver

for the PWFA, as it allows for a high transformer ratio (i.e.,

the ratio of the peak accelerating field found in the wake to

the peak decelerating field experienced by the driving

beam). We discuss below the ramped beam experiment at

UCLA-Neptune, and the ORION project at SLAC, which

we analyze with simulations using the tracking codes

ELEGANT [7] and PARMELA [8].

A. Optimal current profile for the PWFA drive beam

Because of their capacity to support large electric fields,

plasmas have been considered in recent years as a means

for acceleration of charged particles capable of producing

field gradients larger than those achievable with traditional

radio frequency linear accelerating cavities by several

orders of magnitude. Longitudinal field gradients well in

excess of 1 GeV=m can be obtained by the excitation of

large-amplitude relativistic waves in a plasma. Various

acceleration schemes have been proposed which rely

upon driving such plasma waves, using either a short

intense laser beam [laser wake field accelerator (LWFA)]

or a short relativistic electron beam PWFA [9–12]. In the

case of the PWFA, the transformer ratio (the maximum

longitudinal accelerating electric field in the wake of the

driving beam divided by the maximum decelerating field

within the beam) is a figure of merit which provides a

measure of the maximum energy gain of a test charge

injected behind the bunch.
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For a driving bunch with a symmetric current profile and

finite length, the value of the transformer ratio can be

shown to always be less than two [13,14]. Various methods

have been proposed to overcome this limitation, the most

promising of which include the use of a single asymmetric

drive bunch [15] or a ramped bunch train [16]. In the case

of a single asymmetric drive bunch a ‘‘doorstep’’ profile

(i.e., a square pulse for the first quarter of a plasma period,

followed by a triangular ramp) approximates the optimal

asymmetric current distribution that maximizes the

transformer ratio and forces the retarding potential to be

constant within the bunch. The analytically derived trans-

former ratio of such a beam is found to be R � kpL, where

L is the length of the bunch and kp � !p=c is the inverse

plasma skin depth [5]. For such a profile R may therefore

exceed two so long as the bunch is longer than two plasma

skin depths.

An example of the longitudinal trace space distribution

of such a beam, artificially created from an idealized linear

transformation (considering only R56), characteristic of a

dogleg applied to a beam distribution at the exit of a

photoinjector electron source, as simulated by the beam

modeling code PARMELA, is shown in Fig. 2(a). In Fig. 2(b)

the corresponding current profile (in red) is superimposed

with an ideal doorstep ramped profile (in black) discussed

above. A two-dimensional particle-in-cell (PIC) simulation

of the longitudinal wake field excited by this high-charge

beam in a plasma of density 1016 cm�3, shown in Fig. 2(c),

predicts a peak field of 10 GV=m with a transformer ratio

of 11.

B. Beam shaping and compression at UCLA-Neptune

and ORION

As was discussed in the Introduction, a scheme has

been recently proposed [3] for the creation of a beam

which approximates the asymmetric ramped current

profile, using first- and second-order beam optics in a

dogleg compressor. The proposed method takes advantage

of the rf curvature in the longitudinal phase space distri-

bution of a positively chirped (i.e., back-of-crest) driving

beam. Under a pure negative R56 compression of the

FIG. 2. (Color) Plot showing the longitudinal phase space (a) and density profile (b) of a ramped beam produced by linear dogleg

(negative R56) compression, as well as a PIC simulation (c) of the wake field produced by such a beam in a plasma of density

2� 1016 cm�3, with 6 nC charge.

(a)

(b)

(c)

15 m

η
x

200 cm

η
x

14 m

η
x

FIG. 1. (Color) Cartoon drawings of the dispersionless trans-

lating sections at (a) ATF-VISA, (b) UCLA-Neptune, and

(c) ORION-SLAC. Each drawing is scaled to fit the figure.

Wedges, blue lenses, and red rectangles represent dipoles, quad-

rupoles, and sextupoles, respectively. In each drawing an ap-

proximate representation of the horizontal dispersion function

�x is superimposed.
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longitudinal phase space, such a distribution results in a

ramp-shaped current profile of a few picosecond to sub-

picosecond duration, which is ideal for use as a driving

beam for large-amplitude plasma wake fields with high

transformer ratios.

A proof-of-principle experiment is currently underway

at the UCLA-Neptune linear accelerator laboratory, using

the dogleg section shown in Fig. 1(b) as a negative R56

compressor. A PARMELA simulation of the beam at the

entrance to the compressor in Fig. 3(a) shows the charac-

teristic chirp in momentum and the rf curvature imposed by

the accelerating structure.

The longitudinal phase space distributions at the exit of

the compressor, predicted from simulations using the

matrix-based transport code ELEGANT, are shown without

and with sextupole correction in Figs. 3(b) and 3(c), re-

spectively. The S-shaped distribution in Fig. 3(b) is evi-

dence of the quadratic momentum dependence of the z
transformation produced by the second-order T566 contri-

bution in Eq. (2). When sextupole fields are utilized in

accordance with the description of Sec. II to eliminate this

contribution, the resulting distribution [Fig. 3(c)] is found

to correspond very closely to that produced by a linear R56

transformation, such as the one in Fig. 2. The resulting

current profile exhibits a sharp drop in current at the back

of the bunch, where the distribution begins to turn over on

itself, preceded by an approximately linear ramp of the sort

described in [5] as being ideal for generating large trans-

former ratios in a wake field accelerator.

It has been observed recently [17] that space-charge

driven transverse phase space bifurcation and accompany-

ing emittance growth are potential hazards encountered in

low-energy (12–14 MeV) compression at Neptune. To

gauge the transverse effects arising separately from non-

linearities and space-charge forces, ELEGANT and PARMELA

simulations were employed to calculate the normalized

transverse emittance "n;x � �(��0"x of the beam. The

ELEGANT simulation, with sextupoles turned off, predicts
an emittance growth in the Neptune dogleg due to

nonlinear effects of �"n;x � 13 mmmrad over the initial

value of 5 mm mrad at the entrance. This is consistent

with the approximation of Eq. (7), which gives �"n;x �
12 mmmrad.

With sextupoles turned on, ELEGANT predicts a much

improved �"n;x � 1:7 mmmrad, due to partial cancella-

tion of the T166 and T266, as discussed in Sec. II. To gauge

the effect of space-charge velocity field forces in the dog-

leg compressor, a calculational model for sextupoles was

introduced into the PARMELA source code and simulations

were run using PARMELA’s point-to-point space-charge

routine. With the space-charge routine turned off, the

PARMELA results match the ELEGANT prediction of �"n;x �
1:7 mmmrad. With the space-charge routine turned on,
PARMELA predicts a total emittance growth of �"n;x �
11:6 mmmrad, for a 300 pC beam, indicating a significant

additional contribution due to space-charge forces. These

results lie in the intermediate range of �"n;x values mea-

sured in [17] and do not show evidence of the sort of phase

space bifurcation reported there. The predicted growth in
transverse emittance, however, imposes restrictions upon

the focusability of the beam, requiring sharper focusing

angles and higher gradient quadrupole magnets in order to,

for example, match the beam into a PWFA. To meet these

concerns, a high-gradient (100 T=m) focusing system is

being developed using permanent magnet quadrupoles for

use after the Neptune dogleg.

This beam-shaping scheme has also been proposed [4]

for future implementation on the dogleg leading from the

FIG. 3. (Color) Plots of the z trace space and current profile from PARMELA and ELEGANT simulations of the UCLA accelerator beam

line showing (a) the beam at the entrance of the dogleg compressor, and the same beam at the end (b) without sextupole correction and

(c) with sextupole correction.
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main transport line to the low-energy (50 MeV) experi-

mental section of the ORION beam line at the Stanford

Linear Accelerator, shown schematically in Fig. 1(c). Here

the goal is again that of providing a venue for PWFA

experiments using ramped bunches. The symmetrical

placement of a pair of quadrupole triplets at the extreme

ends of the structure is due to the spatial constraint im-

posed by a wall through which the middle section of the

beam line passes. This quadrupole configuration, when

compared with a more conventional arrangement such as

that of Fig. 1(b), is found to result in T566 values which are

larger by about 45% and therefore require stronger com-

pensating fields in the sextupoles. However, other signifi-

cant nonlinear effects (T266, T166, T561, and T562) are found

to be reduced by this geometry, offsetting the danger of

amplifying such terms by the use of stronger sextupoles.

Of more critical concern is the prediction of strong third-

order effects in ELEGANT simulation results, primarily

U5666, due in part to the large (2.2% rms, nearly 9% full)

momentum spread found in this scenario. The momentum

spread is enhanced at ORION with respect to Neptune and

ATF (all three have similar S-band photoinjectors), by use

of X-band postacceleration linacs. The large third-order

chromatic effect arising from U5666 is shown in the simu-

lation results of Fig. 4, in which a chirped beam (a) with a

2.2% rms energy spread is injected into the ORION dogleg

section producing at its exit the final distributions

(b) without sextupole correction and (c) with sextupole

correction. Qualitative comparison reveals in the corrected

distribution in Fig. 4(c) the presence of a low-energy ‘‘tail’’

which is not observed, for example, in the ramped distri-

bution of Fig. 3(c). Examination of the extra component to

the transformation exhibited by this tail reveals it to be

primarily third order and to possess a dominant component

that is cubic in the momentum error, corresponding to the

term U5666 in Eq. (2). This effect may be compensated to

some degree by the insertion of symmetrically positioned

octupole magnets outside of the focusing triplets. However,

the resulting collusion of second- and third-order effects

distorts the current profile and destroys the desired hard

edged cutoff at the back of the beam. As shown in Fig. 4(d),

overcompensating with the octupoles can restore this hard

edge but results in a new low-energy tail extending in the

forward (positive z) direction. A full treatment of these

effects requires an examination of third-order effects,

which we reserve for future study.

IV. RECENT EXPERIMENTAL RESULTS

Initial investigations of the effects of sextupole correc-

tion on the dogleg beam line of Fig. 1(b), dubbed S-Bahn,2

have been conducted at the UCLA-Neptune Laboratory. A

more detailed diagram of this beam line is shown in Fig. 5.

The recent experiments include measurements of the hori-

zontal dispersion to second order in momentum error and

CTR interferometry bunch length measurements. Both

types of measurements were performed parametrically as

functions of the sextupole field strengths.

The linear horizontal dispersion function �x (or R16)

was minimized in accordance with the discussion sur-

rounding Eqs. (3) and (4) by adjusting the quadrupoles to

reduce horizontal deflection of the beam centroid at the

midpoint of the dogleg (Screen 11 in Fig. 5) with respect to

a fractional perturbation + of the field strengths of all

quadrupoles and dipoles on the dogleg section (labeled

B1, Q1, Q2, and B2). The centroid deflection �xcen under

these conditions is equivalent to that which would be

experienced by an off-momentum particle with momentum

FIG. 4. (Color) Plots of the z trace space and current profiles from PARMELA and ELEGANT simulations of the ORION dogleg section

showing (a) the beam at the entrance, and the same beam at the end (b) without sextupole correction and (c) with sextupole correction.

In (d) symmetrically placed octupoles are inserted for third-order correction. Beam currents are in arbitrary units, but the scale is the

same on all plots.

2After a train system in Hamburg, Germany, and in honor of its
geometry.
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error �+ , and is given to second order in powers of + by

�xcen � �R16+ � T166+
2 �O�+3�:

Consequently, the first- and second-order horizontal dis-

persion terms R16 and T166 can be obtained empirically by

fitting the measured centroid deflection to a quadratic in + .

Empirical values of T166 at the location of Screen 13 in

Fig. 5 were obtained using this method, and are compared

in Table II with the ELEGANT simulation predictions for

three different configurations of the sextupole fields. The

geometrical field strength � and ratio � correspond with

the quantities in Eq. (6).

Experimental errors in Table II correspond to a 95%

confidence level. Since the quadrupoles were set to elimi-

nate the linear dispersion, R16 in all three cases was found

to be zero to within the experimental error. Measurements

of the rms beam size on Screens 5, 10, 11, 12, 13, and 14

agree with the ELEGANT simulation results to within 20%.

Since the horizontal dispersion does not provide a diag-

nostic of the longitudinal trace space, the measurements of

Table II were performed using a beam with no momentum

chirp and a relatively small (0.5%) energy spread. To

obtain information about the effect of the sextupoles on

the longitudinal distribution of the beam, the beam was

then chirped in momentum by injecting it with an rf phase

offset of �28� relative to the crest of the accelerating field

in the standing wave linac cavity. The bunch length was

then measured at different sextupole settings using CTR

autocorrelation. Transition radiation emitted by the beam

at a metal foil on Screen 14 of Fig. 5, oriented at 45�

incidence, was autocorrelated using a Martin-Puplett– type

interferometer with wire grid polarizing beam splitters

[18]. The bunch length�t was extracted from the interfero-

grams using the time-domain fitting procedure of Ref. [19].

The extracted values are plotted in Fig. 6 as a function of

sextupole field strength �. The ratio of the two sextupole

fields was set to � � �1. The data show the dependence of

bunch length upon the magnitude of the sextupole correc-

tion, with an approximately twofold compression occur-

ring near the field value � � 1094 m�3.

It should be noted that, due to both the limited frequency

bandwidth of the autocorrelator apparatus and the nature of

the fitting procedure used to extract the pulse length from

the data (which assumes a Gaussian current profile), for a

beam whose temporal profile is asymmetric, the value of

�t obtained from the interferogram is more closely con-

nected with the FWHM than with the rms width of the

distribution. Consequently, we have found that obtaining a

theoretical prediction to complement the data of Fig. 6

involves a somewhat complicated computational proce-

dure, the final result of which is superimposed as a dashed

curve.

To produce this theoretical curve, first the creation and

transport of the beam in the accelerating section were

simulated using the tracking code PARMELA. This detailed

simulation employed 5000 macroparticles, whose initial

temporal profile (inherited from the laser pulse) was modu-

lated in a way consistent with observations of the energy

TABLE II. Comparison of experimental and simulated

second-order horizontal dispersion values for various sextupole

field settings.

� (m2) � T166;exp (m) T166;sim (m)

0 0.00 2:56� 0:59 2.54

537 �2:13 0:22� 0:77 0.26

995 �1:55 �1:27� 0:93 �1:69

GUN LINAC

CHICANE

B1

S-BAHN

Q1 Q1

Q2Q2

B2

S S

PBWA

Screen 5

Screen 10

Screen 11

Screen 12

Screens 13,14

BEAM DUMP

FIG. 5. (Color) Schematic of the linear accelerator beam line at the UCLA-Neptune Laboratory, with a blowup of the S-Bahn dogleg

section.

SEXTUPOLE CORRECTION OF THE LONGITUDINAL . . . Phys. Rev. ST Accel. Beams 8, 012801 (2005)

012801-7



modulation of the beam, and a �28� phase offset in the

linac, producing a chirped beam. The set of output 6D trace

space coordinates obtained from PARMELAwas then used as

the input beam for an ELEGANT simulation of the dogleg

section, including a truncation of outlying particles con-

sistent with the observed 60% electron transmission effi-

ciency through the device. The longitudinal (z) coordinates

of the particles were extracted from the ELEGANT simula-

tion at the location corresponding to Screen 14, where the

CTR foil was inserted. An algorithm was used to recon-

struct from the extracted z coordinates the predicted auto-

correlation function, including appropriate filtering of the

frequency content due to diffraction, collection, and trans-

port efficiency effects.

The simulated autocorrelation function was then sub-

jected to the same fitting procedure that was used to extract

�t from the empirical interferograms, yielding values

which produce the dashed curve in Fig. 6. These simulation

results suggest that the observed compression and decom-

pression results from a ‘‘folding over’’ of the longitudinal

trace space due to the quadratic T566 dependence in Eq. (2),

where particles of both high and low energy begin to

occupy the same longitudinal position within the bunch.

This scenario is illustrated by the trace space plots in Fig. 7.

The maximum compression [Fig. 7(b)] occurs at the sextu-

pole field value where this folding over begins to change

direction in z, corresponding to the point at which the

second-order term T566 changes sign. The discrepancy

between theory and data near the fourth data point in

Fig. 6 appears to be due to the sensitivity of the theoretical

autocorrelation algorithm to the sharp spikes in the tem-

poral distribution displayed in Figs. 7(c) and 7(d).

Although the temporal rms of the distribution is smaller

in 7(c) than in 7(d), the spike is more pronounced in 7(c).

That the physical data appears less sensitive to this effect

may be related to additional frequency filtering produced

by the interferometer in the short wavelength components

of the spectrum. These effects may arise from the poor high

frequency performances of the wire grid beam splitters in

the Martin-Puplett device. Of course, one cannot rule out

the possibility that the beam performance is not completely

consistent with the predictions of simulations.

These sorts of uncertainties highlight the limited utility

of CTR interferometry in this context and point to the need

for more sophisticated measurements of the longitudinal

phase space. The proposed diagnostic for performing lon-

gitudinal profile measurements in the Neptune experiment

is a 9-cell deflecting mode cavity driven at an X-band

frequency of 9.596 GHz, which is being designed in col-

laboration with the INFN Laboratori Nazionali di Frascati.

When operating in the dipole mode TM110, such a cavity

imparts to the beam a horizontal (x) momentum kick that

varies linearly with longitudinal position within the bunch.

Consequently, the longitudinal distribution of the beam is

deflected transversely and may be reconstructed from the

FIG. 7. (Color) The longitudinal phase space plots and density profiles obtained from the ELEGANT results corresponding to the

sextupole values � � 0, 1094, 1641, and 2735 m�3, respectively, from the plot in Fig. 6, illustrating the progression of the phase space

compression and decompression. The corresponding simulated T566 values are �2:11, 0.02, 1.08, and 3.22 m, respectively.

FIG. 6. CTR autocorrelator measurements of electron bunch

length a as a function of sextupole field strength, with super-

imposed theoretical result (dashed line) obtained from PARMELA/

ELEGANT simulation combined with an autocorrelation algo-

rithm.

R. J. ENGLAND et al. Phys. Rev. ST Accel. Beams 8, 012801 (2005)

012801-8



image of the beam’s cross section on a simple profile

monitor downstream of the cavity. Thus one may obtain

the beam’s longitudinal profile, with an estimated resolu-

tion of 30 �m (100 fs).

By combining the rf deflector with a magnetic dipole

deflection along the orthogonal transverse (y) axis, one

obtains a complete reconstruction of the longitudinal trace

space in both coordinate and momentum [20,21]. At the

time of this writing, design work, using the commercial rf

modeling code HFSS, has been completed, and a cold-test

prototype has been constructed and tested. Completion and

installation of a final cavity design are expected to occur in

early 2005, providing the means to explore in much greater

detail the complex dynamics contained in the results of

Figs. 6 and 7.

V. CONCLUSIONS

We have examined the use of sextupole magnets to

control second-order nonlinear chromatic effects and

thereby optimize the compression and shaping of a rela-

tivistic electron bunch in a dispersionless translating sec-

tion, or dogleg. For a beam of small transverse emittance,

heuristic analytical arguments and simulation results indi-

cate that the transformation of the distribution of the beam

in z is dominated by the first- and second-order transport

matrix elements R56 and T566, which represent the linear

and quadratic (in powers of momentum error) contribu-

tions to the longitudinal dispersion. Insertion of a pair of

sextupole magnets with field strengths of equal magnitude

� and opposite polarity provides a convenient method of

manipulating the second-order term T566, which is found to

be linear in �.

Simulation results using the beam transport codes

PARMELA and ELEGANT, applying this type of correction

to the Neptune and ORION beam lines, indicate that

longitudinal linearization aids in shaping the longitudinal

trace space inside the dogleg compressor for creation of a

ramped asymmetric current profile. This requires that the

negative value of the R56 be large enough to adequately

compress the beam distribution. Additionally, for the ex-

ample of the ORION beam line, Fig. 1(c), third-order

effects are apparently a concern, due to the third-order

longitudinal dispersion combined with a large energy

spread. These effects are currently undergoing further

study.

Recent experiments conducted on the UCLA-Neptune

beam line provide evidence of the use of sextupole correc-

tion to manipulate both the second-order horizontal (T166)
and longitudinal (T566) dispersion elements. The longitu-

dinal dispersion studies were limited by the information

which can be extracted from the CTR interferometry

method utilized. Future planned experiments using a trans-

verse deflecting mode cavity should yield detailed, high-

resolution longitudinal phase space measurements of the

beam and provide a more complete understanding of the

longitudinal phase space manipulations made possible by

use of dogleg systems.
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APPENDIX A: DERIVATION OF EQS. (3)–(6)

First- and second-order transport matrices for different

types of magnetic elements can be found in various refer-

ences, including [6,22]. The first order matrices for a bend

B of bend angle � and radius �, a thin-lens quadrupole Q
with focal length f, and a drift D of length l are as follows:

B��; �� �

cos� � sin� 0 0 0 ��1� cos��
��sin��=� cos� 0 0 0 sin�

0 0 1 �� 0 0
0 0 0 1 0 0

� sin� ��cos�� 1� 0 0 1 ���
�2
0

� ��� � sin��

0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; (A1)

Q�f� �

1 0 0 0 0 0
1=f 1 0 0 0 0
0 0 1 0 0 0
0 0 �1=f 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; D�l� �

1 l 0 0 0 0
0 1 0 0 0 0
0 0 1 l 0 0
0 0 0 1 0 0
0 0 0 0 1 l=�2

0

0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: (A2)

Let Y represent the linear matrix for a combination of quadrupoles, sextupoles and drifts. The total first order matrix for a

dogleg can then be written R � BY ~B, where B � B��; ��, ~B � B���;���, and Y has the form
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Y �

Y11 Y12 0 0 0 0
Y21 Y22 0 0 0 0
0 0 Y33 Y34 0 0
0 0 Y43 Y44 0 0
0 0 0 0 1 Y56
0 0 0 0 0 1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: (A3)

The resultant horizontal dispersion function and its deriva-

tive (elements R16 and R26 of the total transport matrix)

obtained by matrix multiplication are then given by

R16 � �� � cos�� ��cos�� 1��Y11 cos�� �Y21 sin��

� sin��Y12 cos�� �Y22 sin��;

R26 � sin�� �cos�� 1���Y21 cos�� Y11 sin��

� sin��Y12 sin�� �Y22 cos��=�: (A4)

The longitudinal dispersion element may then be written in

terms of these functions as follows:

R56 � Y56 �
2��

�2
0

� �2�� R16� sin�� R26��1� cos��:

(A5)

Noting that Y56 � 2��=�2
0 � �s=�2

0, where �s is the total

path length, we see that Eq. (A5) reduces to Eq. (3) in the

case where the quadrupoles are effectively utilized to

eliminate linear horizontal dispersion (R16; R26 ! 0).

To obtain an analytical expression for the second-order

longitudinal dispersion (element T566 of the total trans-

formation) we required the assistance of the commercial

software package MATHEMATICA. Because of the cumber-

some algebraic manipulations involved, we will merely

outline the steps used to arrive at our results. Tabulations

of the various second-order matrix elements may be found

in [6,22]. For simplicity, we will represent the second-order

counterparts to the linear matrices Bij, Yij, and ~Bij by

denoting them in component form using the same symbols

but with three indices instead of two (i.e., Bijk; Yijk; ~Bijk).
For Bijk and ~Bijk we use the analytical forms written in

terms of r and � as given by [6,22]. For Yijk we use a

generic form equivalent to Eq. (A3), where we set to zero

all elements which would naturally vanish for a system

composed only of drifts, quads, and sextupoles. We then

produce the total second-order matrix T by successive

multiplication of the matrices for the individual compo-

nents, which we can write as Tijk � Bil�Y ~B	ljk �

Bilm�Y ~B	lj�Y ~B	mk, where �Y ~B	ijk � Yil ~Bljk � Yilm ~Blj ~Bmk
denotes the second-order matrix for the first two successive

elements ~B and Y and there are implied sums on the

repeated indices. This produces a set of equations for the

elements Tijk in terms of �, �, Yij, and Yijk. Using these

expressions, which are algebraically cumbersome and

which we will therefore neglect to write out explicitly,

the equation for the longitudinal dispersion element T566
may be expressed as a linear combination of the expres-

sions for the other matrix elements as follows:

T566 � 4�sin2��=2� cos��=2� � a16R16 � a26R26

�
X

W

ai6kTi6k; (A6)

where W is the set of values in Eq. (5) and

a16 � � cos� sin�; a26 � ��1� 2 cos��sin2��=2�;

a161 � 2� cos��=2�sin3��=2�; a162 � �1
2sin

2�;

a166 � sin�; a261 � �2�2sin4��=2�;

a262 � 2� cos��=2�sin3��=2�; a266 � ��cos�� 1�;

a561 � ��sin2��=2�; a562 �
1
2 sin�: (A7)

In the limit where R16; R26 ! 0, we then find that Eq. (A6)

reduces to Eq. (4).

To determine the dependence of T566 on the sextupole

field strength, let us assume that the sextupoles lie just

inside the bends and are separated from each other only by

quads and drifts. Although the same final result may be

obtained without them, these assumptions will greatly

simplify our calculation. Let the two sextupoles, of

strengths � and ��, respectively, and of equal length d,

be denoted by the symbols S and ~S and the intervening

system of quads and drifts by H. We can then decompose

the first- and second-order representations of Y as Yij �

SikHkl
~Slj and Yijk � Sil�H~S	ljk � Silm�H~S	lj�H~S	mk,

where �H~S	ijk � Hil
~Sljk �Hilm

~Slj ~Smk. Multiplying the

linear matrices out explicitly and imposing the require-

ments

R16 � 0; R26 � 0; det

�
H11 H12

H21 H22




� 1; (A8)

we arrive at the following conditions upon H:

H12 � ��1�H22��d� � tan��=2	�;

H21 � �1�H22�=�d� � tan��=2	�; H11 � H22:

(A9)

Applying these conditions in the calculation of the second-

order matrix, we arrive at the following result for element

T566 expressed in powers of �:

T566 � 2sin2��=2��A0� sin�� A� � A� cos��

�
d

4
sin2

�

2

�

4jC0j
2

�

2ReC0 � d cos
�

2




sin
�

2

� 8�3 cos��1� sin��

�

�1� ���; (A10)

where for the sake of compactness we have defined the

functions
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A��H162�H522�d�H161�H262�H521

�d�H261�H511��1	��2�H261�H511�;

A0�1�H161�H262�H521�2d�H261�H511�

�cos�; C0�dcos
�

2
��1� i��sin

�

2
: (A11)

With the associations

A � 2sin2��=2��A0� sin�� A� � A� cos��;

C �
d

4
sin2

�

2

�

4 sin
�

2
jC0j

2

�

2ReC0 � d cos
�

2




� 8�3 cos��1� sin��

�

;

(A12)

we find that Eq. (A10) takes the form of Eq. (6). The linear

dependence on � is a reflection of the fact the second-order

matrix elements for a sextupole are proportional to the field

strength.

APPENDIX B: DERIVATION OF EQ. (7)

The full transformation in Eq. (1) represents the com-

plete solution to the single-particle equations of motion,

which constitute a Hamiltonian system. Therefore, to the

extent to which the second-order transformation is an

accurate description, it is Hamiltonian, and thus by

Liouville’s theorem the distribution function f remains

invariant under it. Consequently, f�Xf� � f�X0�, where

Xf and X0 are the final and initial trace space vectors,

which are related in component form to second order by

�Xf�i � Rij�X0�j � Tijk�X0�j�X0�k: (B1)

The matrix of second moments therefore transforms ac-

cording to

�jk �
Z

�Rj‘�X0�‘ � Tj‘m�X0�‘�X0�m	�Rkn�X0�n

� Tknp�X0�n�X0�p	f�X0�d
6X0; (B2)

where the Jacobian of this transformation is

Jij �
@�Xf�i

@�X0�i
� Rij �

X

k

Tijk�X0�k�1� 	jk�; (B3)

with 	jk representing the Kronecker delta. Writing

Eq. (B2) in the bracket notation, we have

�jk � Rj‘Rknh�X0�‘�X0�ni � 2TknpRj‘h�X0�‘�X0�n�X0�pi

� Tj‘mTknph�X0�‘�X0�m�X0�n�X0�pi; (B4)

where there is an implied sum on repeated indices and

h� � �i �
R
� � � f�X0� detJd

6X0. Now assume the beam dis-

tribution function to be uncoupled between the three trace

space planes, to have vanishing third moments, and unit

Jacobian determinant. Then the upper left 2� 2 submatrix

of Eq. (B4) takes the form

�x;f � Mx�x;0M
T
x � �2

	dd
T � h	4iDDT � �geo; (B5)

where d, D, Mx , and �x;0 are the first- and second-order

horizontal dispersion vectors, the 2� 2 linear transport

matrix for the �x; x0� trace space plane, and the initial 2�
2 matrix of second moments, respectively, as defined in

Eq. (8), and �geo is the contribution from second-order

geometrical terms. For a beam of small initial emittance

and large energy spread, Eq. (B5) is dominated by the

dispersion terms, and we can set �geo � h	4iDDT .

Furthermore, if the beam distribution in the z phase plane

can be approximated by a rotated bi-Gaussian in z and 	,

then h	4i 
 3�4
	. With these approximations, insertion of

Eq. (B5) into the definition of the transverse emittance

"x;f �
���������������

det�x;f

q

immediately produces Eq. (7).

APPENDIX C: NONLINEAR

COMPRESSION—VISA-I

The VISA-I experiment [1] was a UCLA collaborative

effort conducted from 1998 to 2001 for the purpose of

studying SASE-FEL physics in the visible to near-infrared

frequency range, using the 71 MeV high-brightness beam

provided by the Brookhaven ATF beam line. The presence

on this beam line of a 15 m long dogleg section, shown in

Fig. 1(a), combined with limitations in the transverse

aperture presented a particular challenge from the perspec-

tive of beam transport. The beam line was operated in a

configuration where the first- and second-order longitudi-

nal dispersions were R56 � �0:0045 m and T566 �
�10:1 m, respectively. The longitudinal transformation

of Eq. (2) in the ATF dogleg section is dominated by the

second-order T566 contribution, and is therefore unsuitable

for linear compression under ordinary conditions of opera-

tion. The gain of the SASE-FEL was found to be maxi-

mized when the beam was injected forward of crest in the

accelerating cavity, giving it a negative momentum chirp

and a 0.5% rms energy spread. This gain increase was due

to a nonlinear compression of the beam in the dogleg

section, resulting in a higher peak current. The pseudo-

linear compression was found to be produced by running

the beam off-energy with a momentum ~p differing from

the central momentum p0 of the design trajectory. Under

this condition, the beam centroid follows the trajectory of

an off-momentum particle whose momentum dispersion is

� � �~p� p0�=p0. A particle with arbitrary momentum p

then has the momentum error ~	 � �p� ~p�=~p relative to

the central momentum of the beam and the momentum

error 	 � �p� p0�=p0 relative to the design momentum

for which the beam line is optimized. Applying the result-

ant coordinate transformation,

	!
~p

p0

~	��; (C1)

to Eq. (2), the longitudinal transport relative to the dis-
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placed momentum error ~	 is found to be given by

zf � z0 � ~Q5 � ~R56
~	� ~T566

~	2; (C2)

where the transformation elements with respect to the new

central momentum of the beam are (truncating third- and

higher-order contributions)

~Q5 � R56�� T566�
2; ~R56 �

~p

p0

�R56 � 2T566��;

~T566 �

�
~p

p0



2
T566: (C3)

We may term the definitions given in Eq. (C3) the

‘‘effective’’ offset and momentum dispersion of the

beam. They represent the values of Q5, R56, and T566 that

would be needed to obtain a similar transformation of the

beam’s longitudinal distribution if the beam were run on-

energy. Using Eq. (C3) we find that operating the ATF

beam line with a fractional energy offset of � � �0:76%
produces a transformation that is dominated by an effective
~R56 of �0:18 m, which is opposite in sign, and an order of

magnitude larger in amplitude from R56. Since ~R56 is

positive, the longitudinal compression which it produces

is similar to that of a magnetic chicane and is therefore

suitable for compressing a beam (as in the case of VISA-I)

which has a negative (forward-of-crest) momentum chirp

in z and 	. Although this scheme mimics the linear com-

pression of a magnetic chicane, it is a primarily nonlinear

effect, since the expression for the effective ~R56 in Eq. (C3)

is modified from its nominal value by the presence of the

second-order T566.
Sextupole correction would provide a convenient

mechanism for changing the degree of compression pro-

duced by this method, through its ability to manipulate the

value of T566, as discussed in Sec. III. This tunability is

illustrated in Fig. 8, which shows ELEGANT simulations of

longitudinal (z-	) phase space distributions of a 71 MeV

beam on the VISA beam line. In Fig. 8(a) the phase space

at the entrance of the dispersive section shows a beam with

a strong momentum chirp. After being transported through

the dispersive section with sextupole fields set to zero

[Fig. 8(b)] the beam has been compressed by a factor of

4. With the sextupole fields in the simulation set to a field

strength sufficient to force T566 to vanish [Fig. 8(c)], the

nonlinear compression is turned off and the final phase

space resembles the initial distribution. The beam current

is shown alongside each trace space plot.

The widening of the distribution in (c) as compared with

(a) in Fig. 8 is due to the presence of nonlinear horizontal-

to-longitudinal coupling terms, such as T561, T562, and T512,
which we have neglected in Eq. (2). The resulting spread in

z therefore measures the degree of breakdown in the as-

sumption of vanishing emittance. As this effect adversely

affects the gain of the FEL radiation, minimization of the

initial emittance is also a critical concern. In a related note,

it should be emphasized that use of this nonlinear com-

pression scheme requires running of the dogleg with non-

zero dispersion, thus producing a larger effective emittance

after transport.

APPENDIX D: LINEARIZED BEAM

TRANSPORT—VISA-II

Part (c) of Fig. 9 illustrates the case where the elimina-

tion of T566, combined with a small R56, results in the

approximate transformation zf 
 z0 whereby the beam is

transported through the beam line with minimal perturba-

FIG. 8. (Color) ELEGANT simulations of the longitudinal trace space (upper plots) of the beam at ATF for VISA-I and corresponding

current profiles (lower plots). The initial beam (a) shows a negative chirp, which undergoes a chicanelike compression (b). This

compression is turned off (c) by the inclusion of sextupole correction.
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tion of the longitudinal trace space distribution. This is

useful in cases where it is critical to preserve the current

profile of the beam. However, in the example of Fig. 8(c),

the beam is run off-energy. In practice, this would result in

dispersion mismatch and an offset of the beam centroid,

which is generally undesirable. Consequently, a better

course of action for this type of transport is to run on-

energy in a configuration with a relatively small natural R56

and with sextupole cancellation of the T566.
The second stage of the VISA experiment [2] is a case in

point, as included among its stated goals is the study of the

time-frequency correlation of SASE-FEL radiation pro-

duced by injection of a positively chirped (back-of-crest)

beam with a 2% rms energy spread into an undulator

magnet. In this case, successful unperturbed transport of

the approximately linear momentum chirp through the

15 m dogleg section on the ATF beam line requires control

of the horizontal dispersion. This is accomplished through

effective use of symmetrically placed quadrupoles, and the

implementation of sextupole corrector magnets in regions

of large dispersion. The results of this optimization can be

seen in Fig. 9, which shows an ELEGANT simulation of the

longitudinal trace space distribution 9(a) before and 9(b)

after the dogleg section of the ATF beam line.

Here, the beam is run back of crest, giving it a negative

momentum chirp and a 3% full momentum spread. This

momentum spread, which is larger than that which can be

transmitted through a collimating region of the beam line

after the initial bend, was chosen to give a certain value of

the chirp (dp=dz). This chirp leads to both compression in

transport and the desired correlation between FEL radia-

tion wavelength and longitudinal position in the pulse.

Approximately 2% momentum spread may pass the colli-

mators, however, corresponding to nearly a 40% loss in

beam charge.

The components of the beam which are lost are ones

which would yield low gain, and also are afflicted with

undesirable nonlinear z-	 correlations, as can be seen in

Fig. 9(a). With the use of sextupoles, the nearly linear chirp

in the transmitted component of the beam is successfully

preserved, and enhanced in amplitude, during transit

through the beam line. Note that there is a significant

longitudinal decompression due to the dogleg’s negative

R56, which in this configuration has a value of �1:6 cm.

The peak current is enhanced by a factor of approximately

3 by this effect, as is the amplitude of the linear chirp after

negotiation of the dogleg.

[1] A. Murokh et al., in Proceedings of the Particle Acclerator

Conference, Chicago, IL, 2001 (IEEE, Piscataway, NJ,

2001), p. 2748.

[2] G. Andonian et al., in Proceedings of the Particle

Accelerator Conference, Portland, OR, 2003 (IEEE,

Piscataway, NJ, 2003), p. 944.

[3] R. J. England, P. Musumeci, R. Yoder, and J. B.

Rosenzweig, in Proceedings of the Particle Accelerator

Conference, Portland, OR, 2003 (Ref. [2]), p. 3258.

[4] R. J. Noble, E. R. Colby, D. T. Palmer, R. H. Siemann, D.

Walz, R. Byer, C. Joshi, W. Mori, J. Rosenzweig, and T.

Katsouleas, in Proceedings of the Particle Accelerator

Conference, Portland, OR, 2003 (Ref. [2]), p. 1858.

[5] K. L. F. Bane, P. Chen, and P. B. Wilson, Stanford Linear

Accelerator Center Technical Report No. SLAC-PUB-

3662, 1985.

[6] K. Brown, Stanford Linear Accelerator Center Technical

Report No. SLAC-R-075, 1982.

FIG. 9. (Color) ELEGANT simulation of the longitudinal trace space of the chirped beam at ATF for VISA-II, (a) before the dogleg

section, and (b) after the dogleg section, including effects of collimators, which allow approximately 2% relative momentum spread to

be transmitted.

SEXTUPOLE CORRECTION OF THE LONGITUDINAL . . . Phys. Rev. ST Accel. Beams 8, 012801 (2005)

012801-13



[7] M. Borland, Argonne National Laboratory Advanced

Photon Source Technical Report No. LS-287, 2000.

[8] L. Young and J. Billen, Los Alamos National Laboratory

Technical Report No. LA-UR-96-1835, 1996.

[9] C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal,

W. P. Leemans, R. Williams, and C. Joshi, Phys. Rev. Lett.

70, 37 (1993).

[10] K. Nakajima et al., Phys. Rev. Lett. 74, 4428 (1995).

[11] C. W. Siders, S. P. Le Blanc, D. Fisher, T. Tajima, and

M. C. Downer, Phys. Rev. Lett. 76, 3570 (1996).

[12] F. Amiranoff et al., Phys. Rev. Lett. 81, 995 (1999).

[13] J. T. Seeman, IEEE Trans. Nucl. Sci. 30, 3180 (1983).

[14] K. L. F. Bane, P. B. Wilson, and T. Weiland, in Physics of

High Energy Particle Accelerators, edited by M. Month,

P. F. Dahl, and M. Dienes, AIP Conference Proceedings

No. 127 (AIP, New York, 1985), p. 875.

[15] P. Chen, J. J. Su, J. M. Dawson, K. L. F. Bane, and P. B.

Wilson, Phys. Rev. Lett. 56, 1252 (1986).

[16] J. G. Power, W. Gai, X. Sun, and A. Kanareykin, in

Proceedings of the Particle Acclerator Conference,

Chicago, IL, 2001 (Ref. [1]), pp. 114–116.

[17] S. G. Anderson, J. B. Rosenzweig, P. Musumeci, and M. C.

Thompson, Phys. Rev. Lett. 91, 074803 (2003).

[18] D. H. Martin, in Infrared and Millimeter Waves, edited by

K. J. Button (Academic, New York, 1982), Vol. 6, pp. 65–

148.

[19] A. Murokh, J. B. Rosenzweig, M. Hogan, H. Suk, G.

Travish, and U. Happek, Nucl. Instrum. Methods Phys.

Res., Sect. A 410, 452 (1998).

[20] G. A. Loew and O. H. Altenmueller, Stanford Linear

Accelerator Center Technical Report No. SLAC -PUB-

135, 1965.

[21] P. Emma et al., Stanford Linear Accelerator Center

Technical Report No. LCLS TN-00-12, 2000.

[22] D. C. Carey, The Optics of Charged Particle Beams

(Harwood Academic, New York, 1987), pp. 123–144.

R. J. ENGLAND et al. Phys. Rev. ST Accel. Beams 8, 012801 (2005)

012801-14


