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Abstract

The mammalian circadian timing system coordinates key molecular, cellular and physiologi-

cal processes along the 24-h cycle. Accumulating evidence suggests that many clock-con-

trolled processes display a sexual dimorphism. In mammals this is well exemplified by the

difference between the male and female circadian patterns of glucocorticoid hormone secre-

tion and clock gene expression. Here we show that the non-circadian nuclear receptor and

metabolic sensor Liver X Receptor alpha (LXRα) which is known to regulate glucocorticoid

production in mice modulates the sex specific circadian pattern of plasma corticosterone.

Lxrα-/-males display a blunted corticosterone profile while females show higher amplitude as

compared to wild type animals.Wild typemales are significantly slower than females to resyn-

chronize their locomotor activity rhythm after an 8 h phase advance but this difference is abro-

gated in Lxrα-/-males which display a female-like phenotype. We also show that circadian

expression patterns of liver 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and Phos-

phoenolpyruvate carboxykinase (Pepck) differ between sexes and are differentially altered in

Lxrα-/- animals. These changes are associated with a damped profile of plasma glucose oscil-

lation in males but not in females. Sex specific alteration of the insulin and leptin circadian pro-

files were observed in Lxα-/- females and could be explained by the change in corticosterone

profile. Together this data indicates that LXRα is a determinant of sexually dimorphic circadian

patterns of key physiological parameters. The discovery of this unanticipated role for LXRα in

circadian physiology underscores the importance of addressing sex differences in chronobiol-

ogy studies and future LXRα targeted therapies.

Introduction

In mammals, many molecular, cellular, physiological and behavioural processes show circadian
(~24 h) oscillations synchronised to the external light/dark cycle. These circadian rhythms are
under the control of a self-sustained internal clock present in nearly every cell. At the organism
level, these clocks are organized hierarchically with at the top a central pacemaker located in the
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suprachiasmatic nuclei (SCN) of the hypothalamus that receives photic cues and in turn coordi-
nates local clocks in the periphery. Peripheral clocks are entrained by the SCN through internal
systemic synchronizers such as glucocorticoid hormones and body temperature and most proba-
bly other signals that remain to be identified. Although peripheral clocks display self-sustained
oscillations at the single-cell level, at the organ and systemic levels they require an intact SCN
clock to remain in phase [1, 2]. At the molecular level, the core mechanism of all cellular clocks is
governed by a genetic network that integrates multiple time delayed negative and positive feed-
backs loops [3]. The primary loop involves the two bHLH-PAS transcription factors CLOCK
and BMAL1 which upon dimerization trigger transcription of the Period (Per1-3) and Crypto-
chrome (Cry1/2) clock genes. PER and CRY proteins then translocate to the nucleus where they
in turn repress the CLOCK-BMAL1 transactivation [4]. The core clock mechanism also involves
the nuclear receptors ROR(α,β,γ) and REV-ERB(α,β) which are direct CLOCK:BMAL1 targets
and compete to activate or repress the transcription of the Bmal1 and Clock genes respectively.
This secondary loop provides robustness to the circadian oscillator and is critical for normal cir-
cadian behavior and physiology [5, 6]. In addition to these transcriptional mechanisms, the circa-
dian molecular network is also extensively regulated post-translationally [7–9] as well as through
chromatin remodelling [10, 11]. Oscillation of this increasingly complex network directs the
rhythmic expression of downstream clock-controlled genes through transcriptional, post-tran-
scriptional, translational and post-translational mechanisms [12, 13]. A recent meta-analysis of
available genome wide circadian gene expression data has estimated that approximately 43% of
mouse genes oscillate somewhere in the body yet with a significant tissue-specificity, thus
highlighting the extent of circadian regulation in mammals [14].

Nuclear hormone receptors form a large family of proteins which function as ligand-inducible
transcription factors involved in virtually all key biological processes and expectedly in many dis-
eases. In addition to the REV-ERB and ROR receptors, a substantial number of these receptors
have been implicated either in the core circadian clock mechanism or as transcriptional links
between the clock gene network and clock-controlled processes [15]. The glucocorticoid receptor
(GR) is for instance directly involved in the resetting of peripheral clocks by glucocorticoids [16].
The essential clock gene Bmal1 is regulated by peroxisome proliferator activated receptors
(PPARs) α and γ in the liver and the cardiovascular system respectively [17, 18]. Other examples
include the estrogen receptor β, constitutive androstane receptor, short heterodimer partner and
the estrogen related receptor α [19–22]. Many of these receptors have been implicated in the cir-
cadian regulation of metabolism [23]. Liver X receptor (LXR) α is another important metabolic
nuclear receptor regulating cholesterol, fatty acids and glucose homeostasis [24]. A critical func-
tion of LXRα is to activate bile acid formation through upregulation of cholesterol catabolism by
the CYP7α1 enzyme encoding gene. LXRα was suggested to be responsible for the circadian
expression of the Cyp7α1 gene through rhythmic activation by its endogenous ligands that
include 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 27-hydroxycholesterol, and choles-
tenoic acid [25]. Interestingly, male Lxrα-/-mice display adrenomegaly and increased corticoste-
rone (CORT) secretion [26]. Given the pivotal role of glucocorticoids (GCs) in the
synchronization of peripheral clocks, this observation suggests that although LXRα is not clock-
controlled, it may play an unanticipated role in circadian physiology [27]. Notably, the mamma-
lian hypothalamo-pituitary-adrenal (HPA) axis exhibits a marked and well documented sexual
dimorphism [28]. In particular, females show higher mean levels and amplitude of corticosterone
as compared to males. Given the impact of the loss of LXRα in the adrenals, we hypothesized
that LXRα could contribute to such sex difference. To address this issue we analyzed the circa-
dian physiology of LXRα deficient animals and obtained evidence that known and newly identi-
fied sex differences in circadian regulation are indeed altered in these animals.

Sexual Dimorphism in Circadian Physiology Is Altered in LXRa KOMice
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Results

The sexual dimorphism of the circadian corticosterone pattern is
differentially changed in male and female Lxrα-/-mice

Plasma GCs levels show daily oscillations in mammals including mice with higher concentra-
tions being observed at the end of the resting phase. Further, female mice display significantly
higher mean CORT levels than males irrespective of the genetic background [29]. Of note a cir-
cadian pattern of CORT in females is observed in non estrus-synchronized females [29–31].
Based on the known implication of LXRα in adrenal corticosterone production, we measured
plasma CORT levels at four time points around the clock in wild type (WT) and Lxrα-/- male
and non estrus-synchronized female mice entrained to an LD12:12 cycle. Expectedly, plasma
CORT showed a robust daily variation in WTmice with an acrophase at the beginning of the
night (Fig 1 and Table 1). Mean levels were significantly higher in females than in male WT
mice (Fig 1 and Table 1). Loss of LXRα resulted in a significant and opposite effect in males as
compared to females. Indeed, male Lxrα-/- mice showed significantly higher mean CORT levels
with no circadian variation as compared to WT mice (Fig 1 and Table 1). In sharp contrast,

Fig 1. The sexually dimorphic circadian pattern of plasma CORT is differentially altered in male and
female Lxrα-/- mice. (A) Rhythm of plasma CORT was determined in wild type (plain line) and Lxrα-/-

(dashed line) male mice entrained to a LD12:12 cycle. (B) Same as in (A) except that mice were females.
Cosinor based non-linear regression was used for curve fitting. Plotted data were from 10 mice for each
experimental group. The ZT0 time point is double plotted for visualization purpose. White and black bars
represent the light and dark phases, respectively. Statistically significant differences in cosine fitting
parameters (p<0.05) between wild type and Lxrα-/- mice or between male and female of the same genotype is
indicated in the grey box at the top of the corresponding graph or between graphs (WT: plain arrow, Lxrα-/-:
dashed arrow). µ, α and φ indicate a difference in mean level, amplitude and acrophase, respectively.

doi:10.1371/journal.pone.0150665.g001

Table 1. Cosinor analysis of plasma CORT circadian pattern in WT and Lxrα -/- mice.

Group Mean level (ng/ml) Amplitude Acrophase (ZT:min)

♂ WT 206.7 (181.4 ; 231.2) 94.9 (62.5 ; 129.0) 12:16 (10:49 ; 13:47)

♂ Lxrα -/- 274.0 (235.8 ; 317.0)† NSR NSR

♀ WT 437.6 (388.7 ; 486.5)* 114.7 (62.5 ; 179.4) 12:24 (09:49 ; 14:52)

♀ Lxrα -/- 545.4 (458.3 ; 634.3)* 356.6 (225.1 ; 492.1)*† 13:03 (11:52 ; 14:23)*

For each parameter measured, values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between females vs males

† indicates significant differences between Lxrα-/- vs WT mice.

Circadian rhythmicity was considered significant for a p-value < 0.05; NSR, not significantly rhythmic.

doi:10.1371/journal.pone.0150665.t001
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Lxrα-/- females had similar mean CORT levels as compared to WT females but they displayed a
3 times higher amplitude. We also confirmed that the expression of glucocorticoid receptor
(GR) did not show circadian rhythmicity [27]. We found that mean level of GRmRNA was
lower in Lxrα-/- males as compared to WT animals, consistent with the known downregulation
of GR expression by its ligand [32]. We also found a small but significant difference between
males and females (S1 Fig and S1 Table). We conclude from these observations that both the
level and the circadian pattern of plasma CORT are differentially impacted by the LXRαmuta-
tion in males and females.

Time to reset after jetlag is decreased in Lxrα-/-males

Glucocorticoid hormones are well known to play a role in the resetting of the central clock
after a phase shift in mammals [33, 34]. As the CORT pattern was differentially changed in
male and female Lxrα-/- mice, we investigated circadian pattern and resetting of the locomotor
activity rhythm in these animals. Male and female Lxrα-/-mice entrained to an LD 12:12 cycle
and then released in constant darkness showed a similar level of total wheel running activity and
a small, although significant, increase of their free running period length of locomotor activity as
compared to WT animals (Fig 2F and Table 2). After re-entrainment to an LD 12:12 cycle, the
animals were subjected to an 8-hours phase advance of the LD cycle; we observed a significant
sexual dimorphism inWT animals with females requiring approximately 6 days to re-entrain
with the new phase as compared to 10 days for males (Fig 2A, 2C and 2E and Table 2). This dif-
ference was abolished in Lxrα-/-males which became significantly faster than their WT controls,
and consequently were similar to females (Fig 2B, 2D and 2E, Table 2). Note that some Lxrα-/-

females tended to re-entrain with a combination of advances (onset) and delays (offset) of their
activity patterns, rather than simply advancing activity onset. These results suggest that LXRα
does not play a major role in the control of the endogenous period by the central circadian pace-
maker but in contrast dramatically impacts on its resetting properties in males.

Loss of LXRα differentially alters circadian gene expression in males
and females

We first analysed the expression of Lxrα in liver and adrenals in WTmice and found no signifi-
cant time of day- or sex- dependent variation confirming and extending previous data (Fig 3A,
S2 Fig) [27]. Because Cyp7α1 is a well established direct target of LXRα, that displays a mRNA
circadian variation, we compared its expression in male and female Lxrα-/- mice. Data shows
that the Cyp7α1mRNA oscillates in WT males but not in females. Upon deletion of LXRα this
pattern is phase advanced by approximately 10-h in males and became rhythmic in females
with a similar phase (Fig 3B and 3C, Table 3).

Based on the changes observed in LXRα deficient mice regarding the plasma CORT pattern,
we investigated the expression profiles of the Adreno-Cortico-Tropic-Hormone-receptor

(MC2R) and Steroidogenic Acute Regulatory (StAR) mRNA, two key determinants of CORT
synthesis in the adrenals. They both display a circadian expression at the mRNA level in males
and the rhythmic CORT pattern has been linked to the circadian expression of StAR [35]. We
observed higher amplitude of theMC2RmRNA profile in females as compared to males irre-
spective of the genotype, suggesting that LXRα is unlikely to significantly modulate the
response of the adrenal to ACTH (Fig 4A and 4B and Table 4). We found that the acrophase of
StARmRNA was advanced by 4 to 6 hours in females as compared to males, independently of
the genotype (Fig 4C and 4D and Table 4). This sex difference was potentiated in the knockout
animals as Lxrα-/- females displayed an even earlier peak than their controls while Lxrα-/- and
WTmales were not different.

Sexual Dimorphism in Circadian Physiology Is Altered in LXRa KOMice
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Fig 2. Resetting after jetlag differs betweenmale and female in wild type but not in Lxrα-/- mice.Wheel running activity was measured in animals
entrained to a LD12:12 and then submitted to an 8-hours jetlag (red arrow). Representative actograms for male (A) and female (B) wild type mice and male
(C) and female (D) Lxrα-/- mice are shown. In A-D, the white and grey bars represent the light and dark phases respectively. Box and whiskers plots for
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To extend our analysis of possible LXR dependent sexual dimorphism in circadian regula-
tion, we also analyzed clock gene expression in both the adrenals and the liver where LXRα has
a prominent role. Our analysis focused on Per1, Bmal1 and Rev-erbα, three key components of
the molecular clock. Differences were observed in the adrenals between WTmales and females
for both Per1 and Rev-erbαmean level and acrophase, while Bmal1 pattern did not differ
between sexes (Fig 4E–4J and Table 4). Strikingly, we found that LXRα deficiency resulted in
an arrhythmic Per1 expression in males while females showed no significant changes. By con-
trast, a trend for a decreased Rev-erbαmean level was only seen in Lxrα-/- females, so that they
were not different from Lxrα-/- males any more. The Per1, Bmal1 and Rev-erbα expression pro-
files were similar in the liver irrespective of sex or genotype (Fig 5E–5J, Table 5).

Because both the StAR andMC2R patterns were unlikely to explain the observed CORT pat-
tern in LXRα deficient mice, while clock function was not globally altered in the periphery, we
additionally explored the expression of hepatic type 1 11β-hydroxysteroid dehydrogenase (11β-
HSD1) which catalyzes the reactivation of 11-dehydrocorticosterone in the periphery and
thereby locally controls glucocorticoid signaling [36]. We found that 11β-HSD1 is rhythmically
expressed with low amplitude in the liver fromWTmales but not in females (Fig 5A and 5B
and Table 5). The 11β-HSD1mRNA oscillation was abolished in Lxrα -/-males while remaining
unchanged in females as compared to WT animals (Fig 5A and 5B and Table 5). We conclude
from this gene expression profiling that loss of LXRα has a highly selective effect that is
restricted to adrenal Per1 and hepatic 11β-HSD1in males and StAR in females. This data may
point to a primary defect both in liver and adrenal in males whereas only adrenal steroidogene-
sis seems to be affected in females.

Circadian rhythms of metabolic parameters are differentially impacted in
LXR α -/- male and female mice

Glucocorticoid hormones play a crucial role in metabolic homeostasis and LXRα has been
established as an important metabolic sensor in mammals. We therefore sought to link the
observed selective changes in CORT levels and circadian gene expression to physiological
parameters related to glucose homeostasis. We first analyzed plasma glucose levels at 4 time
points along the 24 h cycle and observed an approximately two-fold decrease of amplitude in
Lxrα-/- males as compared to their controls, leading to hypoglycemia during all the resting
phase (Fig 6A and 6B, Table 6). Lxrα-/- females were also affected but to a lesser extent. Hepatic

resetting-time (E) and free-running period of wheel running activity (F) in male (n = 8) and female (n = 6) wild type mice and in male (n = 11) and female (n = 6)
Lxrα-/-mice. * indicates statistically significant differences (p<0.05) between groups.

doi:10.1371/journal.pone.0150665.g002

Table 2. Total daily activity, free-running period of locomotor activity and resynchronization time of
WT and Lxrα-/- mice.

Group Daily activity (LD 12/12) Period (DD, hours : min) Resetting (days)

♂ WT 7736 (7048 ; 8294) 23:48 (23:47 ; 23:50) 10.00 (9.75 ; 12.00)

♂ Lxrα -/- 6638 (5849 ; 8474) 23:52 (23:50; 23:55)† 8.00 (7.00; 9.00)†

♀ WT 6732 (5555 ; 8612) 23:42 (23:41 ; 23:46)* 6.50 (5.25 ; 7.00)*

♀ Lxrα -/- 8097 (7384 ; 8681) 23:53 (23:50 ; 23:59)† 6.50 (5.25 ; 7.75)

Values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between males vs females

† indicates significant differences between WT vs Lxrα-/- mice.

doi:10.1371/journal.pone.0150665.t002
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glycogen content measured at ZT0 and ZT12 varied as expected but revealed no effect of sex or
genotype (S3A and S3B Fig). However, we noticed that the sex difference in food intake was
abolished in Lxrα -/- mice (S3C Fig).

To determine whether changes in glycemia could be caused by a differential hepatic glucose
production, we monitored the expression of the phosphoenolpyruvate carboxykinase (Pepck)
gene, which encodes a rate limiting step in the hepatic gluconeogenesis pathway. Results
showed a significant decrease in the amplitude of PepckmRNA oscillation in Lxrα -/- males as
compared to controls while females from both genotypes exhibited a similar circadian expres-
sion profile. (Fig 5C and 5D and Table 5). At the physiological level, plasma insulin, oscillated
in both males and females but with higher amplitude in males. This profile was not altered in
Lxrα -/-males while females displayed a 6 hours phase delay as compared to WT animals (Fig
6C and 6D and Table 6). Because leptin is known to regulate glucose metabolism through its
action in the brain, we also investigated its circadian pattern in the Lxrα -/- model. We found
that WT females displayed lower mean levels than WTmales. In contrast, this sexual dimor-
phism was not observed in Lxrα -/- animals because Lxrα -/- females exhibited significantly
higher amplitude of the leptin rhythm thus resembling males (Fig 6E and 6F and Table 6).

Fig 3. Analysis of Lxrα andCyp7α1 in liver. LxrαmRNA expression determined at ZT0 and ZT 12 in WTmales and females using qRT-PCR (A). Diurnal
mRNA expression of liver Cyp7α1 was compared in males (B) and females (C) using qRT-PCR inWT (plain line) and Lxrα-/- mice (dashed line). For each
time point, 3–4 mice were used. For the Cyp7α1 analysis, cosinor-based non-linear regression was used for curve fitting. The ZT0 time point is double plotted
for visualization purposes. Expression data were normalized to the constitutively expressed 36B4mRNA. The white and black bars represent the light and
dark phases, respectively. Statistically significant differences in cosine fitting parameters (p<0.05) between wild type and Lxrα-/- mice or between male and
female of the same genotype is indicated in the grey box at the top of the corresponding graph or between graphs (WT: plain arrow, Lxrα-/-: dashed arrow). µ,
α and φ indicate a difference in mean level, amplitude and acrophase, respectively.

doi:10.1371/journal.pone.0150665.g003

Table 3. Cosinor analysis ofCyp7α1 circadian expression in WT and Lxrα-/- mice.

Gene Group Amplitude Acrophase (ZT:min)

Cyp7 α 1 ♂ WT 0.81 (0.64 ; 1.01) 0.41 (0.18 ; 0.70) 19:18 (16:22 ; 21:43)

♂ Lxrα-/- 0.58 (0.45 ; 0.74) 0.30 (0.12; 0.52) 9.21 (6:24; 12:35)†

♀ WT 1.83 (1.53 ; 2.15)* NSR NSR

♀ Lxrα-/- 0.90 (0.64 ; 1.18)† 0.52 (0.20; 0.96) 9.37 (6:29; 12:33)

Values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between females vs males

† indicates significant differences between Lxrα-/- vs WT mice.

Circadian rhythmicity was considered significant for a p-value < 0.05; NSR, not significantly rhythmic.

doi:10.1371/journal.pone.0150665.t003
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Fig 4. Analysis of circadian gene expression in the adrenals of WT and Lxrα-/- mice.Diurnal mRNA
expression of adrenal StAR (A, B),MC2R (C, D), Bmal1 (E, F), Per1 (G, H) and Rev-erbα (I, J) was compared
using qRT-PCR in WT (plain line) and Lxrα-/- mice (dashed line). For each time point, 3–4 mice were used.
Cosinor-based non-linear regression was used for curve fitting. The ZT0 time point is double plotted for
visualization purposes. Expression data were normalized to the constitutively expressed 36B4mRNA. The
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These data collectively indicate that the circadian regulation of metabolic parameters is altered
in a sex-specific manner in LXRα deficient mice.

Discussion

LXRα is an essential metabolic sensor which upon binding to oxysterols regulates the transcrip-
tion of genes critical for cholesterol, lipid, and glucose homeostasis [24]. In this report we iden-
tified a novel and unanticipated role for LXRα as a determinant of the sexual dimorphism of
circadian physiology. Lxrα-/- male mice have previously been reported to display adrenomegaly
and increased plasma CORT levels, although the circadian pattern was not investigated [26].
We and others reported significant sex specific differences in the circadian rhythm of plasma
CORT which show higher levels and amplitude in females than in males [29, 37, 38]. The
observation that CORT was arrhythmic in Lxrα-/- males while females displayed higher ampli-
tude is of importance because there is compelling evidence from the literature that glucocorti-
coid hormones are potent synchronizers of peripheral circadian clocks in addition to their
multiple physiological roles [16, 39–41]. For instance, phase-shifting the CORT pattern using
metyrapone changed the speed of behavioral re-entrainment after a jetlag and transplanting

white and black bars represent the light and dark phases, respectively. Statistically significant differences in
cosine fitting parameters (p<0.05) between wild type and Lxrα-/-mice or between male and female of the
same genotype is indicated in the grey box at the top of the corresponding graph or between graphs (WT:
plain arrow, Lxrα-/-: dashed arrow). µ, α and φ indicate a difference in mean level, amplitude and acrophase,
respectively.

doi:10.1371/journal.pone.0150665.g004

Table 4. Cosinor analysis of circadian gene expression in the adrenals of WT and Lxrα-/-mice.

Gene Group Mean level Amplitude Acrophase (ZT:min)

StAR ♂ WT 0.83 (0.78 ; 0.90) 0.20 (0.13 ; 0.28) 12:58 (11:17 ; 14:37)

♂ Lxrα -/- 0.90 (0.82 ; 0.98) 0.18 (0.08 ; 0.32) 13:09 (10:35 ; 15:58)

♀ WT 0.77 (0.72 ; 0.82) 0.34 (0.27 ; 0.42) 8:26 (7:32 ; 9:16) *

♀ Lxrα -/- 0.78 (0.71 ; 0.85) 0.35 (0.26 ; 0.46) 6:14 (5:02 ; 7:26) †

MC2R ♂ WT 1.15 (1.06 ; 1.27) 0.36 (0.23 ; 0.50) 2:56 (1:14 ; 4:25)

♂ Lxrα-/- 1.19 (1.07 ; 1.32) 0.25 (0.10 ; 0.45) 3:08 (0:08 ; 6:17)

♀ WT 1.14 (1.07 ; 1.22) 0.61 (0.51 ; 0.73)* 4:49 (4:05 ; 5:32)

♀ Lxrα-/- 1.03 (0.92 ; 1.15) 0.66 (0.50 ; 0.82)* 3:18 (2:23 ; 4:16)

Per1 ♂ WT 1.74 (1.51 ; 1.97) 0.98 (0.64 ; 1.35) 9:34 (8:17 ; 10:53)

♂ Lxrα-/- 1.27 (1.04 ; 1.49)† NSR NSR

♀ WT 1.09 (0.86 ; 1.33)* 0.92 (0.61 ; 1.28) 6:53 (5:33 ; 8:10)*

♀ Lxrα-/- 1.23 (0.95 ; 1.51) 1.50 (1.11 ; 1.90) 5:22 (4:23 ; 6:21)

Bmal1 ♂ WT 0.83 (0.71 ; 0.97) 0.79 (0.61 ; 0.97) 22:32 (21:40 ; 23:25)

♂ Lxrα-/- 0.62 (0.51 ; 0.74) 0.60 (0.46 ; 0.76) 21:47 (20:46 ; 22:48)

♀ WT 1.00 (0.72 ; 1.26) 1.22 (0.84 ; 1.66) 23:11 (21:56 ; 00:21)

♀ Lxrα-/- 0.84 (0.63 ; 1.08) 0.98 (0.67 ; 1.34) 23:00 (21:41 ; 00:17)

Rev-erbα ♂ WT 0.20 (0.17 ; 0.22) 0.18 (0.15 ; 0.21) 7:35 (6:51 ; 8:17)

♂ Lxrα-/- 0.23 (0.19 ; 2.66) 0.18 (0.14 ; 0.24) 7:48 (6:44 ; 8:54)

♀ WT 0.43 (0.35 ; 0.52)* 0.56 (0.44 ; 0.69)* 5:45 (4:53 ; 6:35)*

♀ Lxrα-/- 0.29 (0.22 ; 0.36) 0.38 (0.28 ; 0.48)* 4:55 (3:56 ; 5:54)*

For each parameter measured, values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between females vs males

† indicates significant differences between Lxrα-/- vs WT mice.

Circadian rhythmicity was considered significant for a p-value < 0.05; NSR, not significantly rhythmic.

doi:10.1371/journal.pone.0150665.t004
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Fig 5. Analysis of circadian gene expression in the liver of WT and Lxrα-/- mice. Diurnal mRNA
expression of liver 11β-HSD1 (A, B), Pepck (C, D), Bmal1 (E, F), Per1 (G, H) and Rev-erbα (I, J) was
compared using qRT-PCR inWT (plain line) and Lxrα-/- mice (dashed line). For each time point, 3–4 mice
were used. Cosinor-based non-linear regression was used for curve fitting. The ZT0 time point is double
plotted for visualization purpose. Expression data were normalized to the constitutively expressed 36B4
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clock-deficient adrenals in adrenalectomized WT hosts caused a faster re-entrainment after a
6-hour phase advance [33]. Furthermore it was shown in rat that CORT rhythmic secretion is
critical for normal resetting behavior [34]. We hypothesize that the faster re-entrainment seen
in Lxrα-/- males may result at least in part from the altered CORT pattern. The circadian
rhythm of CORT secretion by the adrenal cortex is regulated both at the central level by the
SCN and locally through the HPA axis. Because ACTH levels are unchanged in Lxrα-/- mice
while adrenals from these animals secrete more CORT in vitro, Cummins et al excluded a dys-
regulation of the HPA axis in these animals [26]. At the adrenal level, the rhythmic secretion
pattern of GCs is determined by both the sensitivity to ACTH and GCs biosynthesis rate.
Accordingly, the adrenal responsiveness to ACTH follows a diurnal rhythm, with a higher sen-
sitivity during the activity phase in rodents [42, 43]. The StAR gene that encodes a rate-limiting
enzyme of the steroidogenic pathway is the only component showing a robust circadian
expression in the adrenal [44]. Expression of theMC2R and StARmRNA was circadian and
sexually dimorphic in our study, but this was not changed in Lxrα -/- mice suggesting that the
damped CORT pattern observed in Lxrα -/- males may primarily result from the adrenomegaly
reported by Cummins et al [26].

mRNA. The white and black bars represent the light and dark phases, respectively. Statistically significant
differences in cosine fitting parameters (p<0.05) between wild type and Lxrα-/-mice or between male and
female of the same genotype is indicated in the grey box at the top of the corresponding graph or between
graphs (WT: plain arrow, Lxrα-/-: dashed arrow). μ, α and φ indicate a difference in mean level, amplitude and
acrophase, respectively.

doi:10.1371/journal.pone.0150665.g005

Table 5. Cosinor analysis of circadian gene expression in the liver of WT and Lxrα-/- mice.

Gene Group Mean level Amplitude Acrophase (ZT:min)

11β-HSD1 ♂ WT 0.83 (0.76 ; 0.91) 0.18 (0.09 ; 0.29) 17:27 (15:23 ; 20:01) †

♂ Lxrα-/- 0.67 (0.60 ; 0.74)† NSR NSR

♀ WT 0.90 (0.83 ; 0.98) NSR NSR

♀ Lxrα-/- 0.98 (0.84 ; 1.14) * NSR NSR

Pepck ♂ WT 0.47 (0.36 ; 0.58) 0.26 (0.12 ; 0.43) 9:06 (6:21 ; 11:21)

♂ Lxrα-/- 0.24 (0.19 ; 0.30)† 0.12 (0.04 ; 0.19) 8:33 (6:12 ; 11:24)

♀ WT 0.49 (0.38 ; 0.61) 0.24 (0.10 ; 0.41) 11:24 (8:33 ; 14:19)

♀ Lxrα-/- 0.42 (0.34 ; 0.50)* 0.34 (0.23 ; 0.45) 10:25 (9:14 ; 12:01)

Per1 ♂ WT 0.56 (0.43 ; 0.71) 0.32 (0.15 ; 0.52) 12:12 (9:38 ; 14:30)

♂ Lxrα-/- 0.69 (0.54 ; 0.85) 0.58 (0.39 ; 0.79) 13:01 (11:37 ; 14:29)

♀ WT 0.69 (0.53 ; 0.85) 0.45 (0.24 ; 0.68) 13:19 (11:15 ; 15:19)

♀ Lxrα-/- 0.64 (0.51 ; 0.76) 0.34 (0.19 ; 0.53) 11:22 (9:21 ; 13:21)

Bmal1 ♂ WT 1.38 (1.05 ; 1.72) 1.30 (0.86 ; 1.80) 23:41 (22:20 ; 01:00)

♂ Lxrα-/- 0.94 (0.75 ; 1.15) 0.80 (0.54 ; 1.10) 21:17 (19:55 ; 22:42)

♀ WT 1.02 (0.84 ; 1.21) 0.89 (0.64 ; 1.17) 22:47 (21:39 ; 23:56)

♀ Lxrα-/- 1.06 (0.90 ; 1.23) 0.95 (0.72 ; 1.21) 22:20 (21:20 ; 23:17)

Rev-erbα ♂ WT 0.23 (0.17 ; 0.29) 0.29 (0.21 ; 0.37) 6:29 (5:25 ; 7:33)

♂ Lxrα-/- 0.20 (0.10 ; 0.32) 0.31 (0.17 ; 0.47) 7:42 (5:45 ; 9:42)

♀ WT 0.41 (0.24 ; 0.60) 0.50 (0.26 ; 0 ;78) 7:00 (4:48; 9:03)

♀ Lxrα-/- 0.27 (0.17; 0.39) 0.37 (0.22; 0.54) 6:37 (4.50; 8:23)

For each parameter measured, values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between females vs males

† indicates significant differences between Lxrα-/- vs WT mice.

Circadian rhythmicity was considered significant for a p-value < 0.05; NSR, not significantly rhythmic.

doi:10.1371/journal.pone.0150665.t005
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Notably, the biological effects of GCs involve to a large extent the 11β-HSD1 enzyme that
catalyzes the reduction of plasma 11-dehydrocorticosterone to CORT. This reactivation path-
way plays a major role for local production of CORT and can also indirectly impact adrenal
CORT secretion [36, 45, 46]. The liver, which is the main site of LXRα expression, also contains
the highest concentration of 11β-HSD1. Mice lacking 11β-HSD1 display compensatory adreno-
megaly and elevated morning (diurnal nadir) plasma CORT concentrations but similar peak
levels [45]. Intriguingly, this phenotype is highly reminiscent to that observed in Lxrα-/- male
mice and prompted us to investigate hepatic 11β-HSD1expression around the clock. We found
that the circadian pattern of 11β-HSD1mRNA expression was totally damped in Lxrα-/- males.
An earlier study failed to detect this change possibly because only one time point in the early

Fig 6. Analysis of circadian variation of glucose, insulin and leptin in WT and Lxrα-/- mice. Plasma
glucose (A, B), insulin (C, D) and leptin (E, F) were determined in WT and Lxrα-/- mice entrained to a LD12:12
cycle. Cosinor-based non-linear regression was used for curve fitting. The ZT0 time point is double plotted for
visualization purposes. The white and black bars represent the light and dark phases, respectively.
Statistically significant differences in cosine fitting parameters (p<0.05) between wild type and Lxrα-/- mice or
between male and female of the same genotype is indicated in the grey box at the top of the corresponding
graph or between graphs (WT: plain arrow, Lxrα-/-: dashed arrow). μ, α and φ indicate a difference in mean
level, amplitude and acrophase, respectively.

doi:10.1371/journal.pone.0150665.g006
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light phase was analyzed [47]. Yet this previous paper reported a decreased hepatic expression
of 11β-HSD1 upon treatment with the LXR agonist TO901317 [47]. The similar effect of both
the agonist treatment and the lack of LXRα on 11β-HSD1 expression can be explained by the
fact that the apoLXRα is a repressor which, upon deletion or activation, induces an intermedi-
ary repressor of the 11β -HSD1 gene [47]. Altogether, this data strongly suggest that LXRα reg-
ulates the circadian rhythm of GCs production in males both at the systemic and local levels
through its action on the adrenals and 11β -HSD1 respectively. Presumably, females which
exhibit higher CORT levels and amplitude than males do not require further circadian time
dependent increase of the local regeneration of CORT. This may explain why 11β -HSD1 is nei-
ther rhythmic nor regulated by LXRα in females. Interestingly, mice lacking 11β -HSD1 are
hypoglycemic and a have decreased Pepck response to fasting hypoglycemia [45]. Thus the lower
amplitude of plasma glucose oscillation seen in Lxα-/-males may result, at least in part, from an
altered stimulation of the Pepck gene by locally produced GCs. This demonstrates that LXRα is
required not only for normoglycemia but also for normal daily oscillation of glucose levels. We
do not exclude that this role in the interaction between glucose homeostasis and circadian timing
could also involve LXRα outside the liver. Indeed insulin sensitivity is known to be under control
of the SCN clock and consequently displays daily variations [48]. Activation of LXRs using the
GW3965 agonist improves glucose tolerance in a mouse model of diet-induced obesity and insu-
lin resistance [49]. These effects are attributable to the role of LXRα in insulin secretion and glu-
cose uptake. It is therefore plausible that the damped plasma glucose profile in Lxrα-/-males also
originates from a time specific increase (ZT0-ZT12) of peripheral sensitivity to insulin resulting
from the loss of LXRα [49, 50]. Although female LXRαmice did not show significant changes in
their plasma glucose profile, there was also a trend toward decreased levels. Additionaly, they dis-
played a dramatic phase delay of their insulin profile (6 hours) that can be interpreted as a conse-
quence of the significant increase in the amplitude of leptin, an adipokine showing a circadian
variation in plasma and regulated by GCs[51, 52]. The dramatic increase in the amplitude of
CORT in females could therefore explain the gender specific increase in the amplitude of leptin
rhythmicity, resulting in a higher demand for insulin secretion.

Table 6. Cosinor analysis of circadian variation of glucose, insulin and leptin in WT and Lxrα-/- mice.

Parameter Group Mean level Amplitude Acrophase (ZT:min)

Glucose ♂ WT 1.42 (1.38 ; 1.46) 0.21 (0.16 ; 0.27) 6:53 (5:27 ; 7:36)

♂ Lxrα-/- 1.24 (1.21 ; 1.27)† 0.09 (0.04 ; 0.14)† 6:40 (4:23 ; 8:49)

♀ WT 1.35 (1.30 ; 1.40) 0.25 (0.18 ; 0.32) 6:53 (5:46 ; 7:59)

♀ Lxrα-/- 1.19 (1.13 ; 1.24)† 0.15 (0.08 ; 0.22) 6:51 (4:34 ; 8:54)

Insulin ♂ WT 1.33 (1.18 ; 1.49) 0.57 (0.36 ; 0.81) 17:20 (15:50 ; 18:49)

♂ Lxrα-/- 1.55 (1.27 ; 1.85) 0.62 (0.27 ; 1.07) 18:12 (15:26 ; 20:54)

♀ WT 0.68 (0.57 ; 0.80)* 0.22 (0.08 ; 0.39) 14:34 (10:43 ; 17:32)

♀ Lxrα-/- 0.83 (0.68 ; 0.98)* 0.44 (0.25 ; 0.67) 20:34 (18:16 ; 22:27)†

Leptin ♂ WT 3.41 (3.14 ; 3.70) 1.01 (0.67 ; 1.40) 16:19 (14:54 ; 17:44)

♂ Lxrα-/- 3.57 (3.14 ; 4.03) 1.48 (0.86 ; 2.14) 18:43 (17:09 ; 20:23)

♀ WT 2.10 (1.86 ; 2.36)* 0.62 (0.30 ; 1.03) 18:25 (16:15 ; 20:35)

♀ Lxrα-/- 2.99 (2.61 ; 3.39) 1.67 (1.19 ; 2.21)† 19:01 (17:34 ; 20:20)

For each parameter measured, values are represented as median ± 95% bootstrap confidence intervals.

* indicates significant differences between females vs males

† indicates significant differences between Lxrα-/- vs WT mice.

Circadian rhythmicity was considered significant for a p-value < 0.05; NSR, not significantly rhythmic.

doi:10.1371/journal.pone.0150665.t006
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LXRα not only influences the production of corticosteroids but also that of sex steroids.
Lxrα-/- female mice display elevated levels of 17β-estradiol and an ovarian hyperstimulation
phenotype [53]. Unexpectedly, expression of Cyp19 which aromatizes androgens was found to
be decreased while that of Cyp11a1 was increased in Lxrα-/- female mice, suggesting that they
may also produce more testosterone than WT animals. Males lacking LXRα show a contrasting
situation as they display decreased levels of testicular testosterone associated to an increased
apoptosis rate of germ cells [54]. These effects of LXRα on sex steroid production could there-
fore also contribute the sexual dimorphism of physiological parameters including those under
circadian variation. Importantly, there is evidence that the gonadotropic axis and glucocorti-
coid signaling interfere at different levels. GCs are known to directly inhibit gonadotropin-
stimulated testosterone production [55], and serum corticosterone and testosterone levels are
inversely correlated [56]. Consistently, chronic corticotherapy reduces serum testosterone lev-
els In human patients [57]. Crosstalk between the estrogen, GCs and LXR pathways have been
described. [58]. [59, 60]. Collectively, this and our data suggests that loss of LXRα compromises
at the organismal level the fine tuning of the sex-specific balance between glucocorticoid, estro-
gen and androgen production and action.

The LXRα dependent co-regulation of clock outputs is another mechanism that could also
underlie the observed phenotype. For instance LXRα shares many targets with the circadian
nuclear receptor PPARα and the formation of LXRα-PPARα heterodimer has been shown to
downregulate Cyp7α1 expression [61, 62]. LXRα is also positively regulated by the deacetylase
SIRT1, an enzyme displaying a circadian activity in liver [63, 64]. Thus, LXRα activity could be
modulated posttranslationally by the circadian clock through rhythmic deacetylation.

We excluded a direct role of LXRα in the transcriptional regulation of the clock network
because Per1 was the only core clock gene found to be changed in Lxrα-/- animals and this was
restricted male adrenals. This suggests that Per1 rhythmic expression in the adrenal is more
likely to be driven by a systemic cue such as CORT, the production of which is altered in
Lxrα-/- males (see below). This hypothesis is supported by the observation that Per1 is an
hyper-responsive gene to GCs [65]. In addition two previous genome wide studies failed to
identify core clock components among genes regulated by the LXRα agonist T0901317 or
directly bound by LXRα [61, 66]. Finally the marginal effects of the LXRαmutation on the
free-running period of locomotor activity also supports that LXRα does not play a significant
role in core clock mechanism.

Despite a considerable male bias in most animal studies [67], sexual dimorphism in meta-
bolic and circadian physiology has been recognized in mammals [68, 69]. Reproductive factors
including sex hormones are considered as major determinants of such differences but non-
reproductive factors including glucocorticoid hormones also appear to play a significant role
[70]. Compelling evidences have recently linked metabolic homeostasis and circadian timing
and involved numerous nuclear hormone receptors. We extend this concept by linking the
metabolic nuclear receptor LXRα to the circadian and sex-dependent regulation of physiology.
These findings are of importance in the context of pharmacological studies or future personal-
ized therapies targeting LXRα.

Materials and Methods

Animals

Mutant Lxrα-/- breeders in the C57BL/6j background were obtained from Taconic and subse-
quently crossed in our facility. Control C57BL/6j animals were from Charles River (France)
and adapted to the facility environment for at least 6 weeks before the experiments to prevent
any bias related to housing conditions. Mice were housed in a temperature-controlled room
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with a 12-hours light (325 lux)/12-hours dark (LD 12:12) cycle and fed ad libitum. All experi-
ments were performed with 3 months-old animals. Animal experiment procedures were car-
ried out in accordance with the CNRS and INSERM institutional guidelines. The local ethical
committee (Comité Institutionnel d'Éthique Pour l'Animal de Laboratoire CIEPAL-AZUR
PEA N° NCE 2011–26) specifically approved this study.

Plasma metabolic parameters measurements

Blood samples were collected from the retro-orbital venous plexus in heparin containing tubes,
and plasma was separated by centrifugation for 20 min at 3,000 rpm. For each mouse, blood
was collected only twice (two different ZT times), at 2 weeks intervals, to avoid stress effects.
Plasma glucose was determined using an Accu-Check glucometer (Roche Diagnostics, France).
Serum insulin, leptin and corticosterone concentrations were measured with commercial
enzyme-linked immunosorbent assays from respectively Mercodia (Uppsala, Sweden) R&D
(MOB00) and Molecular Devices companies with an enzyme standard instrument for serum
corticosterone levels, according to the manufacturer’s recommendations.

RNA extraction and quantitative real-time (qRT)-PCR

Total RNA was extracted using the single step method described by Chomczynski andmRNA lev-
els were measured by real-time (RT)–qPCR using a Light Cycler 1.5 (RocheApplied Science) and
SYBR green I dye detection according to the manufacturer's recommendation. cDNA, synthesized
from 2 to 5 μg of total RNA using random primers and Superscript II (Invitrogen), was added to a
reaction mixture (Faststart DNA SYBR green I; Roche Diagnostics) with appropriate primers at
0.5 mM each (Lxrα: forward 5’-CTGATGTTTCTCCTGATTCTGC-3’ and reverse 5’-CTTTTT
CCGCTTTTGTGGAC-3’, Cyp7α1: forward 5’-TACTTCTGCGAAGGCATTTGG-3’ and reverse
5’-TACTTCTGCGAAGGCATTTGG-3’, StAR: forward 5’-AGGAAAGCCAGCAGGAGAAC-3’
and reverse 5’-TGATGACCGTGTCTTTTCCA-3’, 11β-HSD1: forward 5’-GGCGGGAAAGCT
CATGG-3’ and reverse 5’-AAGGAGGAGATGACGGCAAT-3’,MC2R: forward 5’-GCCCTTCT
AAGCCAGATC-C-3’ and reverse 5’-ATTTCTTGCGGTGTCATTGG-3’, Per1: forward
5’-GAAGTTTGAGCTCCCGAAGT-3’ and reverse 5’-TGAGAGCAGCAAGAGTACAAAC-3’,
Rev-erbα: forward 5’-AACCTCCAGTTTGTGTCAAGGT-3’ and reverse 5’-GATGACGATGAT
GCAGAAGAAG-3’ Bmal1: forward 5’-CTCATTGATGCCAAGACTGG-3’ and reverse 5’-GGT
GGCCAGCTTTTCAAATA-3’, Pepck: forward 5’-TTTGATGCCCAAGGCAACTT-3’ and
reverse 5’-ATCGATGCCTTCCCAGTAAA-3’, 36B4: forward 5’-GCTGATGGGCAAGAAC
ACCA-3’ and reverse 5’-CCCAAAGCCTGGAAGAAGGA-3’). The relative mRNA abundance
was calculated using a standard-curve method. Expression levels were normalized to the levels of
the constitutively expressed 36B4 ribosomal protein mRNA.

Running wheel activity measurement

Mice were individually housed within light-controlled isolation chambers in cages containing
monitored activity wheels, and they were allowed ad libitum access to food and water. Animals
were weighed weekly and their daily food intake in each condition was estimated by measuring
the difference between the quantity of food provided and food remaining after 1 week / 7. Mice
were entrained to an initial 12:12 LD cycle (Light phase from 7:00 to 19:00, ZT0 = lights
on = 7:00). Daily as well as (subjective) day and night activity were quantified using Clocklab
plugin for Matlab (Actimetrics). After 3 weeks of activity recording on this cycle, they were
transferred to constant darkness (DD). Their free running period was assessed based on activ-
ity onset on the second week of DD using Clocklab. Mice were then returned to the initial
12:12 LD cycle for re-entrainment. After 3 weeks, animals were subjected to an 8h phase shift
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(Jetlag experiment) by advancing the light phase from 23:00 to 11:00. The time to re-entrain to
the new lighting schedule was determined based on activity onset and acrophase using
Clocklab.

Statistical analysis

Activity data are reported as median ± 95% bootstrap confidence intervals. For the jetlag exper-
iment, results are represented as boxplots. Data were analysed using a Kruskal and Wallis rank
sum test for multiple comparison between groups followed by non-parametric pairwise post-
hoc test. For time series, data was modelled using a non-linear regression (Cosine fitting analy-
sis: a + b � cos(2 � pi � (ZT—c)/24); where a = mean expression level, b = amplitude of the oscil-
lation and c = acrophase). Cosine fitting analysis was followed by bootstrapping to compare
confidence intervals on a, b and c parameters between time series. Significance level was set at
p< 0.05. Statistical analysis was performed using the R software (version 2.15.2; The R Foun-
dation for Statistical Computing).

Supporting Information

S1 Fig. Analysis of GR expression in the liver. Diurnal mRNA expression of liver GR was
compared in males (blue) and females (red) using qRT-PCR in WT and Lxrα-/- mice. For each
time point, 3–4 mice were used. Cosine-based non-linear regression was used for curve fitting.
The ZT0 time point is double plotted for visualization purposes. Expression data were normal-
ized to the constitutively expressed 36B4mRNA. The white and black bars represent the light
and dark phases, respectively.Statistically significant differences in cosine fitting parameters
(p<0.05) between wild type and Lxrα-/- mice or between male and female of the same genotype
is indicated in the grey box at the top of the corresponding graph or between graphs (WT:
plain arrow, Lxrα-/-: dashed arrow). μ, α and φ indicate a difference in mean level, amplitude
and acrophase, respectively.
(TIF)

S2 Fig. Analysis of Lxrα expression in the adrenal. Diurnal mRNA expression of adrenal
Lxrα was compared in males (blue) and females (red) using qRT-PCR in WTmice. For each
time point, 3–4 mice were used. Cosine-based non-linear regression was used for curve fitting.
The ZT0 time point is double plotted for visualization purposes. Expression data were normal-
ized to the constitutively expressed 36B4mRNA. The white and black bars represent the light
and dark phases, respectively. Statistically significant differences in cosine fitting parameters
(p<0.05) between wild type and Lxrα-/- mice or between male and female of the same genotype
is indicated in the grey box at the top of the corresponding graph or between graphs (WT:
plain arrow, Lxrα-/-: dashed arrow). μ, α and φ indicate a difference in mean level, amplitude
and acrophase, respectively.
(TIF)

S3 Fig. Food intake and liver glycogen content for each gender and each genotype. (A)
Mean daily food intake (g) in male and female WT and Lxrα-/- mice. Note there is a significant
difference between WTmales and WT females (p>0.05). (B-C) Glucose content liberated from
glycogen in liver pieces at ZT0 and ZT12. (B) Female WT vs Lxrα-/- mice (n = 4) and (C) male
WT vs Lxrα-/- mice (n = 4). There is a significant difference in liver glycogen content between
ZT0 and ZT12 (p>0.0001) but no influence of the LXRαmutation.
(TIF)

S1 File. Glycogen assay. Liver pieces collected at ZT0 and ZT12, from 4 animals of each group
were used in this experiment. For each sample, 30 mg of liver was lysed in KOH 0.5M at 95°C.
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Na2SO4 6% (25 μl) and 750 μl methanol were then added. Glycogen was precipitated at -80°C
in 2 separate aliquots for each sample. After centrifugation, glycogen was either resuspended in
200 μl amyloglucosidase 2 mg/ml (Sigma-Aldrich) or in 200 μl sodium acetate, to assay total
glucose and free glucose respectively. Suspensions were incubated for 1-h at 37°C. Free/total
glucose content was measured on 5 μL of supernatant in 300 μl of reagent using a glucose hexo-
kinase assay kit (Sigma-Aldrich) according to manufacturer’s protocol. Glucose was expressed
in μmol/g wet liver. Glucose coming from glycogen was determined as (total glucose)-(free glu-
cose) in each sample.
(DOCX)

S1 Table. Cosinor analysis of GR circadian expression in WT and Lxrα-/-mice. Values are
represented as median ± 95% bootstrap confidence intervals. � indicates significant differences
between females vs males, † indicates significant differences between Lxrα-/- vsWTmice. Cir-
cadian rhythmicity was considered significant for a p-value< 0.05; NSR, not significantly
rhythmic.
(DOCX)
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