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Abstract

Background: Autoimmune diseases are more prevalent in females than in males, whereas males

have higher mortality associated with infectious diseases. To increase our understanding of this

sexual dimorphism in the immune system, we sought to identify and characterize inherent

differences in immune response programs in the spleens of male and female mice before, during

and after puberty.

Results: After the onset of puberty, female mice showed a higher expression of adaptive immune

response genes, while males had a higher expression of innate immune genes. This result suggested

a requirement for sex hormones. Using in vivo and in vitro assays in normal and mutant mouse

strains, we found that reverse signaling through FasL was directly influenced by estrogen, with

downstream consequences of increased CD8+ T cell-derived B cell help (via cytokines) and

enhanced immunoglobulin production.

Conclusion: These results demonstrate that sexual dimorphism in innate and adaptive immune

genes is dependent on puberty. This study also revealed that estrogen influences immunoglobulin

levels in post-pubertal female mice via the Fas-FasL pathway.

Background
The incidence and severity of human diseases vary
between the sexes: For example, autoimmune diseases are
generally more common in females than in males and are
most marked in women of childbearing age [1-3]. Thus, it
appears that susceptibility to autoimmunity is expressed

at the time of puberty. Puberty is a period of intense
molecular, physiological and anatomical reorganization
in the body, and the hormonal changes occurring at the
time of puberty lay the framework for biological differ-
ences that persist throughout life and may contribute to
the variable onset and progression of disease in males and
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females [4]. Sex-related differences in disease susceptibil-
ity have also been observed in several mouse models of
infectious and autoimmune diseases and may be related
to differences in the expression patterns of immune
response genes [5,6].

Immune responses are sexually dimorphic, both in type
and magnitude. Two general systems of immunity to
infectious agents have been selected during evolution:
innate (natural) immunity, and acquired (adaptive or spe-
cific) immunity. The innate immune system uses proteins
encoded in the germline (on macrophages, mast cells,
natural killer cells) to recognize conserved products of
infectious non-self (i.e., microbial pathogens), but not
non-infectious self (i.e., host proteins) [7,8]. In contrast to
this relatively inflexible system is the almost infinitely
adaptable immune system of lymphocytes [9]. These two

systems are known to interact closely with each other: For
example, cellular and soluble components of innate
immunity help the adaptive immune response to select
and respond to appropriate antigens. Even though these
two systems are very well studied, there is a paucity of lit-
erature on gender differences as a function of age. Under-
standing the basis of sex differences in immune response
genes is important for developing new approaches to pre-
vention, diagnosis and treatment of infectious and
autoimmune diseases.

We studied sexual dimorphism in immune response
genes in C57Bl/6 (B6) mice because B6 mice do not spon-
taneously develop autoimmune diseases. However, when
autoimmune-susceptible loci are transferred onto a B6
background, the mice readily manifest a disease pheno-
type, including profound sex differences in disease sever-

Post-pubertal, sexually dimorphic gene expression patterns in spleenFigure 1
Post-pubertal, sexually dimorphic gene expression patterns in spleen. Shown is a data visualization of gender-specific 
gene expression patterns in normal mouse spleen. Six C57BL/6 mouse spleens from each sex at the pre-pubertal (3–4 weeks), 
pubertal (6–9 weeks) and post-pubertal (24–28 weeks) stages (a total of 36 mice) were analyzed using high-density oligonucle-
otide arrays. A hierarchical clustering algorithm was applied to group genes based on the similarities in gene expression pat-
terns. The X-axis represents time points (weeks) in female (left) and male (right) mice. The Y-axis represents relative intensity 
ratios. A: Gene cluster up-regulated in post-pubertal female mice, B: Gene cluster up-regulated in post-pubertal male mice. 
These clusters were used for subsequent identification of sexually dimorphic immune function pathways.
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ity [10,11]. We have now investigated the sex differences
in immune response genes in the spleens of pre-pubertal,
pubertal and post-pubertal male and female B6 mice
using global gene expression profiling. Our data indicate
that there is a clear sexual dimorphism after puberty in
innate and adaptive immune genes. We have also identi-
fied one such pathway, reverse signaling through FasL, as
a possible source of the sexual dimorphism in immu-
noglobulin (Ig) levels that is seen between males and
females, since this pathway is affected by estrogen levels.

Results
Gene expression in spleen during puberty

To define puberty-related changes in immune system
function, we performed a series of gene expression profil-
ing experiments using 12,000 gene highly redundant oli-
gonucleotide arrays (Affymetrix U74Av2) on spleens of
normal pre-pubertal (3- to 4-week-old), pubertal (6- to 9-
week-old) and post-pubertal (24- to 28-week-old) female
and male C57BL/6 (B6) mice to identify gender- and age-
specific expression programs. We used a microarray data
analysis approach that was optimized for signal/noise in
tissue samples [12]; unsupervised hierarchical clustering
analyses of these samples showed that the biological vari-
ables (age, sex) were dominant over technical and inter-
individual variables [12,13]. Genes involved in cell sign-

aling, cell growth, cell differentiation, extracellular matrix
synthesis, morphogenesis, vesicle trafficking, oncogenesis
and immune responses were up-regulated during puberty
in both male and female spleens (e.g., septin family genes,
GDNF, R-ras, Ets family transcription factors, Rab family
GTPases, alpha catenin, TGF beta, prolactin-like protein,
tenascin-X and IKaros) (see Additional file 1). Other genes
specifically down-regulated during puberty belonged to
the p53 tumor suppressor pathway, chromatin remode-
ling, cell cycle, DNA repair, replication and transcription
categories (e.g., RAD23a, Dnmt1, Ki 67, mBlm, cdc6 and
sak) (see Additional file 2). The majority of puberty-
driven gene programs in both female and male spleens
were involved in erythropoiesis (e.g., erythropoietin
receptor, Duffy blood group), consonant with the fact that
erythropoiesis is exceptionally active during puberty [14].
These results suggest that puberty, which enables the ini-
tiation and development of female and male reproductive
capabilities, is a period of intense molecular reorganiza-
tion in the spleen, probably in response to gender-specific
hormones.

Post-pubertal sex differences in immune response genes

We then mined the data for explanations for the sexually
dimorphic immune response by first clustering for
female- and male-specific post-pubertal expression differ-

Table 1: Innate immune response genes differentially expressed in post-pubertal B6 male mice.

Acc# Fold Change Chr Gene Name Function

X03505 95.9 7 Serum Amyloid A Anti-inflammatory

X70057 12.9 14 Cathepsin G Phagocytosis

X15313 4.4 11 Myeloperoxidase Phagocytosis

M94584 6.7 3 Chitinase 3-like 3 Monocyte maturation

X81627 3.8 2 24p3 Immunomodulation

U04962 5.4 10 Neutrophil elastase2 Phagocytosis

U43525 6.7 10 Proteinase 3 Phagocytosis

J03298 1.7 9 Lactotransferrin Anti-inflammatory

AA144469 4.1 7 Interferon-inducible protein 1-8p Immunomodulation

AF099977 2.3 11 mSLFN4 (schlafen 4) Thymocyte maturation

M27008 10.3 4 Alpha-1 acid glycoprotein Anti-inflammatory

X70920 2.7 15 Granulocyte maturation Ly-6G.1 Phagocytosis

X59769 3.4 1 IL-1r2 Anti-inflammatory

M69260 3.5 19 Lipocortin 1 (Annexin A1) Anti-inflammatory

X78545 1.9 14 Mast cell protease 8 Mast cell function

M96827 3.6 8 Haptoglobin Anti-inflammatory

AF076482 3.6 7 Peptidoglycan recognition protein Phagocytosis

AF071180 3.0 17 Formyl peptide receptor-1 like receptor Neutrophil migration

AF051367 1.7 16 Integrin beta subunit-like cell-surface protein Anti-inflammatory

U49513 4.8 11 Mip 1 gamma (CCl 9) Neutrophil migration

U29678 5.7 9 CCR-1 Chemotaxis of monocytes

AA596710 4.8 4 Leukotriene B4 12-hydroxydehydrogenase Anti-inflammatory

J05018 6.6 1 High affinity IgE receptor alpha subunit Mast cell activation

X16490 2.7 1 Plasminogen activator inhibitor 2 (Serpin b2) Anti-inflammatory

U05265 3.2 10 gp49B NK and mast cell function

X66449 2.1 3 Calcyclin Monocyte differentiation

X15592 2.5 13 Ctla-2-beta Mast cell function
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ences (Figure 1), then querying these groups for immune-
related mRNAs. Assignment of functions to cluster mem-
bers suggested that post-pubertal male mice preferentially
expressed genes involved in innate immunity (see Table 1
and Additional file 3 for full list). The expression of these
innate immunity genes was significantly decreased in
post-pubertal female mice. These results suggest that con-
siderable remodeling of splenic immune function occurs
at the time of puberty, with the result that sexual dimor-
phism in immunity is permanently established in post-
pubertal life, with adult males showing a predominantly
primitive immune (innate) response and adult females
being relatively deficient in these responses. In contrast,
post-pubertal female mice preferentially expressed adap-
tive immune response genes (Table 2, see Additional file
3), and expression of the same genes occurred at lower
levels in post-pubertal male mice.

We found no differences in the expression of adaptive
immune response genes in pre-pubertal male and female
mice (Figure 1A). Even though the basal levels of some
innate immune response pathway genes were higher in
pre-pubertal male than pre-pubertal female mice, these
differences were not statistically significant (Figure 1B).
The difference in the expression of these genes cannot be
explained by their chromosomal localization, because
these genes are predominantly encoded by autosomes
(Tables 1 and 2). However the post-pubertal nature of
these differences clearly suggests that indeed many of
these genes are influenced by sex hormones.

We then confirmed the sexual dimorphism of adaptive
(immunoglobulin isotypes) and innate (serum amyloid A
and haptoglobin) immune response proteins in male and
female B6 mice. Serum Ig levels (IgG1, IgG2a, IgG2b, and
IgG3) showed no significant differences between pre-
pubertal male and female mice, but differences began to
appear at puberty and became significant in post-pubertal
mice (Figure 2). These differences were particularly strik-

ing for IgG1, IgG2a and IgG2b isotypes. Significantly
higher serum IgM, kappa light chain, but not lambda light
chain expression was observed in post-pubertal female
mice (data not shown). No differences in IgG3 or IgA were
observed between male and female mice in any age group.
We also examined two innate immune response proteins,
serum amyloid A and haptoglobin, both of which showed
increased levels in post-pubertal male mice as compared
to age-matched female mice (Figure 3).

Because of the striking differences in several innate
immune response genes in post-pubertal mice (Figure 1B,
Table 1) we hypothesized that male and female mice
should respond differently to innate immune stimuli. We
used well-characterized innate immune ligands (i.e.,
lipopolysaccharide [LPS; TLR 4], lipoteichoic acid [LTA,
TLR 2], poly I:C [TLR 3], Imiquimod [TLR 7/8], Pam3CSK4

[TLR 1], and T1 CpG DNA [TLR 9]) to stimulate spleno-
cytes of post-pubertal mice, then measured their ability to
produce various cytokines and chemokines that are
known to affect the innate and adaptive immune systems,
including IL-1α, IL-1β, IL-6, IL-10, IL-12, IL-18, MCP-1
(JE) and RANTES [15,16]. We found that the chemokine,
MCP-1, is constitutively increased in female mice without
any treatment (male vs. female (pg/ml); 3.7 ± 0.4 vs. 17.3
± 5.8; p < 0.05) and these levels were further elevated after
treatment with Imiquimod (male vs. female (pg/ml); 28.6
± 4.5 vs. 65.6 ± 13.9; p < 0.05) and T1CpG DNA (male vs.
female (pg/ml); 9.6 ± 3.1 vs. 43.5 ± 12.1; p < 0.05). We
also found that IL-6 and IL-10, cytokines that influence
the adaptive arm (i.e., antibody production), were signif-
icantly increased in female mice after treatment with
T1CpG DNA (IL-6: male vs. female (pg/ml); 169.5 ± 21 vs.
279.2 ± 44.7; p < 0.05 and IL-10: (male vs. female (pg/
ml); 51.5 ± 9.8 vs. 80.6 ± 10.5; p < 0.05). In contrast, IL-
1α and IL-1β, cytokines affecting the innate immune sys-
tem, were significantly increased in males after LTA treat-
ment (IL-1α : male vs. female (pg/ml); 21.9 ± 0.9 vs. 14.6
± 2.2; p < 0.05 and IL-1β 25.3 ± 4.3 vs. 11.9 ± 2.7; p <

Table 2: Adaptive immune response genes differentially expressed in post-pubertal B6 female mice.

Acc# Fold Change Chr Gene name Function

AE000665 2.4 6 TCR beta locus T cell signaling

X00651 4.0 6 Ig-kappa light chain V-J kappa region Immunoglobulin

U19315 4.2 6 Immunoglobulin kappa light chain region Immunoglobulin

M15593 4.9 6 Ig kappa chain 7B6 mRNA Immunoglobulin

AF037206 1.7 3 RING zinc finger protein Lymphocyte development

M86751 2.1 6 Ig L-chain gene variable region Immunoglobulin

X94420 4.7 12 IgA V-D-J-heavy chain Immunoglobulin

V00793 141.8 12 IgG1 Immunoglobulin

X67210 13.3 12 IgG2 Immunoglobulin

L43568 5.3 6 B-cell receptor gene B cell signaling

U37386 3.0 2 Carboxyl ester lipase Lymphocyte maturation

M55412 1.6 19 Guanine nucleotide BP, alpha polypeptide Lymphocyte signaling
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0.05). Treatment with either Pam3CSK4, LPS or poly I:C
did not lead to a significant sexual dimorphism in the
cytokine/chemokine profiles that were examined (Table
3).

Role of Fas/FasL pathway in generating sexual dimorphism 

in Ig gene expression

Since functional gene clusters that participate in the same
biological pathway share "spatial" and "temporal" expres-
sion profiles, we looked for transcripts that shared a tem-
poral expression pattern with the Ig genes. We found that
the Fas and FasL pathway genes were regulated in their
expression pattern in a manner similar to that observed
for the IgG isotypes (Figure 4). Therefore, we explored the
possibility that the Fas-FasL pathway may be associated in
generating differences in immunoglobulin levels in post-
pubertal male and female mice.

To investigate the role of this pathway in vivo, we esti-
mated the levels of Ig isotypes in post-pubertal male and
female mice that were defective in Fas (lpr, insertion of an
early transposable element into the second intron) or FasL
(gld, point mutation in the C-terminal region) on a B6

background [17,18]. The differences in IgG2a and IgG2b
levels in post-pubertal male and female B6 mice were
abolished in both Fas-defective (B6 lpr) and FasL-defective
(B6 gld) mice, strongly suggesting that the Fas-FasL path-
way is involved in generating the differences in immu-
noglobulin levels seen in post-pubertal male and female
mice (Figure 5).

Because Fas/FasL expression was more pronounced in
post-pubertal female mice than in males (Figure 4), we
hypothesized that these genes may be influenced by
female sex hormones. A putative estrogen response ele-
ment has been previously described in the FasL promoter,
and FasL exists mainly in a membrane-bound form on
activated CD8+ cells of the T cell lineage [19]. Thus, we
measured FasL by flow cytometry and found that its
expression was enhanced by a physiological dose of estro-
gen (10-8M) on these activated CD8+ T cells (see Addi-
tional file 4). Previous studies had shown that reverse
signaling through FasL leads to increased proliferation of
CD8+ but not CD4+ T cells [20,21]. We therefore consid-
ered the possibility that increased estrogen levels during
post-pubertal life enhance FasL expression and lead to

Serum immunoglobulin levels in pre-pubertal, pubertal and post-pubertal female and male C57BL/6 miceFigure 2
Serum immunoglobulin levels in pre-pubertal, pubertal and post-pubertal female and male C57BL/6 mice. 
Serum samples from 6–8 C57BL/6 mice at 3–4 weeks, 6–9 weeks and 24–28 weeks were collected and assayed by ELISA. The 
samples were tested at dilutions of 1:5,000; 1:10,000; 1:50,000 and 1:100,000. The line graph presents the mean absorbance at 
405 nm ± SE for males (blue line) and females (pink line).
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downstream activation of CD8+ T cells. These activated
CD8+ T cells would be expected to secrete growth factors
and cytokines that, in turn, would enhance immunoglob-
ulin gene expression in these post-pubertal female mice.

Effect of activated CD8+ T cell culture supernatants on IgG 

isotype expression

To investigate and further confirm this hypothesis, we
purified CD8+ T cells from post-pubertal female mice and
activated them with plate-bound Fas Fc, along with anti-
CD3/CD28, in the presence and absence of estrogen for
18 h. Culture supernatants from the activated CD8+ T cells
were collected and incubated with splenocytes in an in
vitro immunoglobulin synthesis assay, and IgG isotypes
were estimated on day 10 using an indirect ELISA. Super-
natants from Fas-Fc/CD3/CD28-activated CD8+ T cells
cultured in the presence of estrogen showed enhanced
expression of IgG isotypes (IgG1, IgG2a, IgG2b and

IgG3). These results demonstrate that estrogen increases
the reverse signaling through FasL in CD8+ T cells, leading
to the secretion of growth factors that support increased
IgG isotype expression (Figure 6). The effects of estrogen
were also shown to be Fas- FasL pathway dependent, since
the addition of estrogen alone produced no differences in
IgG expression. Therefore, it is expected that this type of
signaling represents one mechanism by which sexual
dimorphism is expressed at the molecular level.

Since IFN-γ is known to influence IgG2a isotype switch-
ing, we also analyzed the CD8+ T cell supernatants for
cytokine production and found that IFN-γ was produced
at higher levels in the presence of estrogen (CD3/CD28/
Fas Fc vs. CD3/CD28/Fas Fc/estrogen (pg/ml): 44169 ±
909 vs. 50318 ± 505, p < 0.01) (see Additional file 5). To
define the role of IFN-γ, we evaluated the Ig isotype levels
in post-pubertal B6 IFN-γ knockout (GKO) mice and

Acute phase proteins in post-pubertal miceFigure 3
Acute phase proteins in post-pubertal mice. A: Serum amyloid A and haptoglobin mRNA expression patterns in pre-
pubertal, pubertal and post-pubertal mice. The X-axis represents time points (weeks) in female and male mice, and the Y-axis 
represents relative intensity ratios. B: Serum amyloid A and haptoglobin protein levels in post-pubertal C57BL/6 mice. Serum 
amyloid A levels in 24- to 28-week-old C57BL/6 mice. Serum samples (1:200) along with known standards were assayed in 96-
well ELISA plates. The concentrations of the test samples were determined from the standard curve by multiplying the interpo-
lated values by the dilution factor (n = 10/sex: male vs. female [µg/ml mean ± SE]: 77.48 ± 25.26 vs. 0.38 ± 0.12; p = 0.009). The 
working assay range was 11.8-190 µg/ml. Normal serum levels of SAA are generally less than 20 µg/ml. Serum haptoglobin lev-
els were assayed using a colorimetric assay. Normal murine haptoglobin levels range from 0–0.1 mg/ml, and these increase in 
the acute phase to 0.3–2.0 mg/ml. The assay has a sensitivity of 0.05 mg/ml haptoglobin. (n = 10/sex: male vs. female [mg/ml 
mean ± SE]: 0.578 ± 0.059 vs. 0.254 ± 0.013; p = 0.00004).
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Table 3: TLR ligand-induced cytokine/chemokine production in post-pubertal mice shows sexual dimorphism.

TLR ligand Cytokine/Chemokine Male (pg/ml) Female (pg/ml)

Media IL-1α 2.6 ± 0.5 3.8 ± 0.8

IL-1β 7.2 ± 2.3 6.5 ± 1.3

IL-6 39.7 ± 4.1 39.4 ± 10.2

IL-10 20.2 ± 3.5 27 ± 2.8

IL-12 4.1 ± 1.4 4.7 ± 1.1

IL-18 80.1 ± 17.2 46 ± 11.2

MCP-1 3.7 ± 0.4 17.3 ± 5.8*

RANTES 159.2 ± 56.5 171.4 ± 54.2

LPS IL-1α 24.5 ± 1.8 24.8 ± 5.2

IL-1β 29.1 ± 4.1 23.8 ± 3.6

IL-6 848.7 ± 154.4 1132.7 ± 323

IL-10 1484.5 ± 56.2 1960.5 ± 316.4

IL-12 12.7 ± 1.0 13.3 ± 1.1

IL-18 150.8 ± 10.8 151.8 ± 23.9

MCP-1 14.8 ± 2.7 21.2 ± 4.4

RANTES 937.5 ± 369.8 1202.3 ± 567.4

LTA IL-1α 21.9 ± 0.9* 14.6 ± 2.2

IL-1β 25.3 ± 4.3* 11.9 ± 2.7

IL-6 214.2 ± 36.1 174.2 ± 48.3

IL-10 199.1 ± 21.3 210.7 ± 43.8

IL-12 9.5 ± 1.3 7.4 ± 0.5

IL-18 118.3 ± 6.0 94.1 ± 16.7

MCP-1 26.5 ± 3 32.2 ± 7.5

RANTES 675.0 ± 228.5 772.4 ± 323.6

Poly I:C IL-1α 24.2 ± 1.9 20.0 ± 3.0

IL-1β 20.7 ± 2.1 13.8 ± 3.7

IL-6 201.4 ± 36.7 192.2 ± 45.59

IL-10 257.6 ± 17.8 298.1 ± 37.8

IL-12 6.7 ± 0.5 7.5 ± 0.5

IL-18 92.6 ± 12.2 105.8 ± 18.0

MCP-1 24.6 ± 2.3 31.3 ± 7.1

RANTES 644.4 ± 236.3 980.7 ± 362.3

Imiquimod IL-1α 5.9 ± 0.8 7.3 ± 0.7

IL-1β 29.4 ± 7.2 28.2 ± 1.5

IL-6 4831.3 ± 1210.29 5256.1 ± 881.4

IL-10 1232.3 ± 272.3 1578.7 ± 145.9

IL-12 12.9 ± 1.7 14.5 ± 1.6

IL-18 137.1 ± 19.8 136.3 ± 15.0

MCP-1 28.6 ± 4.5 65.6 ± 13.9*

RANTES 632.1 ± 292.6 679.2 ± 273.1

Pam3CSK4 IL-1α 10.3 ± 6.9 3.2 ± 0.4

IL-1β 12.5 ± 3.5 6.5 ± 0.2

IL-6 272.9 ± 29.6 262.6 ± 59.4

IL-10 295.3 ± 30.6 351.8 ± 38.5

IL-12 5.4 ± 1.1 6.6 ± 1.2

IL-18 47.8 ± 17.0 80.9 ± 14.8

MCP-1 15.7 ± 1.4 40.2 ± 12.5

RANTES 195.7 ± 68.3 279.2 ± 94.0

T1 CpG IL-1α 3.5 ± 1.0 3.5 ± 0.7

IL-1β 9.5 ± 2.2 7.7 ± 1.5

IL-6 169.5 ± 21 279.2 ± 44.7*

IL-10 51.5 ± 9.8 80.6 ± 10.5*

IL-12 6.0 ± 0.6 7.2 ± 1.2

IL-18 58.4 ± 7.1 96.5 ± 18.0

MCP-1 9.6 ± 3.1 43.5 ± 12.1*

RANTES 403.4 ± 158.7 619.3 ± 218.3

*Indicates statistical signifigance (p < 0.05)
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found that the gender differences in IgG2a, but not IgG2b,
levels were abolished in these mice (Figure 7). These
results indicate that CD8+ T cell-derived cytokines such as
IFN-γ are involved in generating the observed differences
in Ig levels in post-pubertal mice.

Discussion
We have shown that male and female mice differ signifi-
cantly with respect to their immune response genes in
post-pubertal life. The innate immune response genes are
highly up-regulated in post-pubertal male but not female
mice. Post-pubertal male mice also produce higher levels
of IL-1α and IL-1β in response to the TLR-2 ligand (Table
3). The biological relevance of these findings can be seen
in both infectious and autoimmune disease conditions.
Although males are more susceptible than females to
many parasitic infections, there are some parasites for
which males are more resistant than females and differ-
ences in innate and adaptive arms of the immune system
may explain this sex reversal. For example, the innate
immune response plays a critical role in offering males
protection against Toxoplasma gondii infection [22,23].
Our data are consistent with the relative deficiency of

innate immune response genes in female mice, as evi-
denced by their enhanced susceptibility to and higher
mortality associated with certain parasitic infections (e.g.,
T. gondii). Thus, the relative resistance of the males to T.
gondii infection is likely explained by their high levels of
innate immunity-related proteins. Furthermore, it is also
known that the 5-lipoxygenase pathway and leukotrienes
are integral components of innate immune cells such as
macrophages, mast cells and eosinophils [24]. Recent
experiments have clearly demonstrated that 5-lipoxygen-
ase-deficient male mice on an MRL lpr/lpr background
show a marked decrease in survival, further supporting a
protective role for innate immune response genes in
autoimmune diseases [25].

In contrast, adaptive immune response genes are highly
up-regulated in post-pubertal female mice. These mice
also produce significantly higher levels of cytokines and
chemokine that influence antibody production than do
post-pubertal males (Table 3). These findings are particu-
larly relevant to autoimmune diseases, in which the adap-
tive immune system attacks normal self tissue. We
propose that enhanced susceptibility to autoimmune dis-

Immunoglobulin isotypes, Fas, and FasL genes show similar expression patternsFigure 4
Immunoglobulin isotypes, Fas, and FasL genes show similar expression patterns. Nucleating hierarchical clustering 
with IgG1 and IgG2b revealed Fas and FasL as co-regulated transcripts in post-pubertal female mouse spleens. These data 
drove the hypothesis that a non-apoptotic role of Fas/FasL might be responsible for downstream differential IgG isotype 
expression. The X-axis represents time points (weeks) in female and male mice, and the Y-axis represents relative intensity 
ratios.
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ease in post-pubertal life is the result of an altered ratio of
adaptive and innate immune response genes. This
hypothesis is in fact supported by the finding that genetic
defects in innate immune response genes (complement
C1q and serum amyloid P) in mice result in spontaneous
autoimmune disease [26-28]. It is known that females
produce higher levels of Igs than do male mice in
response to a variety of antigens, and these effects have
been attributed to sex steroids [29-31]. Our results con-
firm these findings and further indicate that even non-
immunized female mice show significantly elevated levels
of various Ig isotype genes, and that the levels are even
more enhanced in post-pubertal life.

Fas and FasL genes showed spatial and temporal expres-
sion patterns similar to those of immunoglobulin genes.
The preferential expression of Fas and FasL in post-puber-
tal females suggested a role for this pathway in generating
sexual dimorphism in immunoglobulin gene expression.
The observed post-pubertal sex differences in Ig levels in
B6 mice were abolished in B6 lpr and B6 gld mice, indicat-
ing that the post-pubertal levels of specific Ig isotypes are
regulated through Fas/FasL pathway.

Genetic defects in both Fas and FasL are known to cause
severe lupus like autoimmune disease on the MRL/Mp
genetic background. The gender differences in disease
severity (mortality, pancreatitis and autoantibodies) in
MRL/Mp mice are abolished when Fas (lpr) mutation is
transferred onto this background, suggesting that MRL lpr
mice are gender-neutral [32,33]. It is important to note
that in a previous study, transferring the C1q deficiency
onto the MRL background did not abolish the gender dif-
ferences [34]. Thus, the defects in the Fas-FasL signaling
pathway alone abolish the gender differences in lupus-
like autoimmune disease in MRL mice. Further supporting
this observation is the finding that lpr mice show sponta-
neous polyclonal B cell activation and lymphadenopathy
[35]. The male lpr mice showed significant increases in Ig
levels, similar to those seen in females (Figure 5). These
results are interesting, especially when correlated with the
disease-prone MRL lpr mouse model of lupus, in which
male mice die as early as female mice (50% mortality in
both male and female mice by 5.5 months of age). This
finding suggests that increased IgG levels in males lead to
increases in immune complex-mediated disease, similar
to those in female mice.

Differences in serum immunoglobulin IgG2a and IgG2b isotypes are abolished in post-pubertal B6 lpr (Fas-deficient) and B6 gld (FasL-deficient) miceFigure 5
Differences in serum immunoglobulin IgG2a and IgG2b isotypes are abolished in post-pubertal B6 lpr (Fas-defi-
cient) and B6 gld (FasL-deficient) mice. Serum samples from 16- to 20-week-old male and female (5–6 mice/sex) B6, B6 
lpr and B6 gld mice were assayed by ELISA. The samples were diluted at 1:5,000 (IgG2a); 1:10,000 (IgG3); 1:50,000 (IgG1 and 
IGg2b). Bar graphs represent mean absorbance at 405 nm ± SE. Significant differences for IgG2a (p = 0.0009) and IgG2b (p = 
0.00005) between post-pubertal male (blue bar) and female (checker red bar) mice are shown with asterisks.
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This hypothesis is further supported by another model of
autoimmunity: MRL-Fas lprcg mice have a phenotype simi-
lar to that of MRL lpr mice because of a defect in Fas-medi-
ated apoptotic signaling (a single amino acid mutation in
the cytoplasmic death domain) [36]. The reverse signaling
pathway through FasL is functional because of the intact
extracellular domain that interacts with FasL. In fact, the
MRL-Faslprcg mice exhibit sex differences in disease severity
[37]. These observations suggest that reverse signaling
through FasL is involved in generating sex differences in
IgG isotypes, and consequently in the frequency of severe
disease in female mice.

It has been shown that FasL expression in ovaries is closely
correlated with estrogen levels, which vary at different
phases of the female estrus cycle. This result suggests that
estrogen dynamically controls FasL expression on various
cells and may enhance Ig levels only once during each
cycle [38]. To directly establish the role of estrogen in this
reverse signaling pathway, we carried out in vitro stimula-
tion of CD8+ T cells and assessed Ig isotype levels. We have
shown here that FasL expression on activated CD8+ T cells
is influenced by estrogen and have further demonstrated
that the culture supernatants from estrogen-activated
CD8+ T cells produce growth factors that enhance in vitro
immunoglobulin levels. These data suggest that reverse

signaling through FasL in CD8+ T cells leads to the produc-
tion of growth factors that enhance the expression of Ig
isotypes and that females are expected to have enhanced
Ig switching because of their elevated post-pubertal estro-
gen levels. It is likely that some of the growth factors
secreted by the activated CD8+ T cells also influence B cell
growth, maturation and differentiation.

In addition to their effects on CD8+ T cells, estrogens affect
the production of IFN-γ [39,40], which is known to
enhance IgG2a responses [41]. These activated CD8+ T
cells would be expected to secrete growth factors and
cytokines, which in turn would affect B cell growth and
differentiation, leading to the enhanced immunoglobulin
isotype expression in post-pubertal female mice. We
therefore assessed the effect of IFN-γ on IgG2a levels in B6
IFN-γ knockout mice. These data suggested that increases
in post-pubertal Ig isotype levels may be due to differen-
tial expression of cytokines (e.g., IFN-γ) produced by
CD8+ T cells activated through Fas-FasL reverse signaling.
Recently, it has been shown that IgG2a-chromatin
immune complexes, together with TLR 9 are very efficient
in activating autoreactive B cells [42]. Our findings suggest
that the increased IgG2a induced by the estrogen-Fas/
FasL- IFN-γ pathway in post-pubertal female mice is one
of the susceptibility factors enhancing autoimmunity in

Effect of activated CD8+ T cell supernatants on Ig expression in vitro antibody synthesisFigure 6
Effect of activated CD8+ T cell supernatants on Ig expression in vitro antibody synthesis. A representative example 
of 3 separate experiments is shown. T cells (5 × 105) were stimulated for 18 h with various stimulants either individually or in 
combination (CD3/CD28, anti-CD3 and anti-CD28; E, estrogen, (10-8 M and 10-9 M), Fas-Fc (µg/ml: 0.75 and 1.25). The cul-
ture supernatants from activated CD8+ T cells were collected and added (200 µl) to 1.5 × 106 splenocytes (800 µl) and incu-
bated for 10 days. The culture supernatants were assayed for various immunoglobulin isotypes using ELISA. Graphs represent 
mean absorbance of triplicates at 405 nm ± SD.
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females. We speculate that differential expression of
cytokines such as TGF-β may be involved in generating
IgG2b differences in post-pubertal life.

Ig genes are transiently increased at the time of puberty in
male mice (Figure 1A). The exact mechanism by which
this increase occurs is not known. It is likely that the tran-
siently elevated levels of estrogen at the time of puberty in
males [43,44] may enhance FasL expression on CD8+ T
cells. Reverse signaling through FasL may also be respon-
sible for this transient increase in Ig gene expression in
male pubertal mice. The molecular basis for the large
increase in innate immune response genes in males as
compared to the adaptive immune response genes in
females is not clear. It is possible that male hormones may
regulate some of the innate immune response genes
directly.

While the pathway analysis presented here has focused on
the estrogen-Fas/FasL- IFN-γ pathway, our data also have
implications with regard to male-related immunity. It has
been observed that males have a higher mortality due to
infectious diseases than do females [45], in part because
of testosterone-induced immunosuppression in post-
pubertal males [46]. The exact molecular mechanisms by
which testosterone suppresses the acquired immune sys-
tem are not yet understood. The data presented here sug-
gest that males have an adequate innate immune response
(first line of defense) but a relatively diminished adaptive
immune response, which is critical for the elimination of
the microorganisms. Thus, the documented higher mor-
tality rates in males worldwide may be due in part to this
relatively deficient adaptive immune response.

Conclusion
We have shown that male and female mice differ signifi-
cantly in post-pubertal life with respect to their immune
functions. We have defined one key molecular pathway in
this sexual dimorphism, in which we have attributed a
novel function to the Fas-FasL pathway, enhancing immu-
noglobulin gene expression in post-pubertal female mice.
These findings have clear implications not only for studies
of autoimmunity but also for transplantation and vacci-
nation.

Methods
Mice

Pre-pubertal (3- to 4 week-old), pubertal (6- to 9-week-
old) and post-pubertal (16- to 20-week- and 24- to 28-
week-old) C57BL/6 (B6) mice (The Jackson Laboratory)
were used for gene expression profiling experiments.
Johns Hopkins University is an AAALAC-accredited insti-
tution, and the mice were housed and cared for in accord-
ance with institutional guidelines.

Gene expression profiling and analysis

Expression profiling using Affymetrix U74Av2 (12,488
probe sets) was done as previously described [47]. In
brief, six spleens from female and male B6 mice in each
age group (pre-pubertal, pubertal and post-pubertal) (a
total of 36 mice) were used for expression profiling. The
spleens were homogenized in guanidinium thiocyanate
homogenization buffer (0.1 M Tris HCl, pH 7.5, with 4.0
M guanidinium thiocyanate and 1% β-mercaptoethanol)
using a Polytron homogenizer (Brinkmann). Total RNA
was extracted by centrifuging the homogenate at 25,000
rpm for 24 h over a CsCl cushion (5.7 M CsCl with 0.01

Differences in serum IgG2a but not IgG2b levels are abolished in B6 IFN-gamma knockout mice (B6 GKO)Figure 7
Differences in serum IgG2a but not IgG2b levels are abolished in B6 IFN-gamma knockout mice (B6 GKO). 
Serum samples from 16- to 20-week-old male and female (4–6 mice/sex) B6 and B6 GKO mice were assayed by ELISA. Graphs 
represent mean absorbance at 405 nm ± SE. Significant differences for B6 IgG2a (p = 0.005), B6 IgG2b (p = 0.003) and B6 GKO 
IgG2b (0.001) between post-pubertal male (blue bar) and female (checker red bar) mice are shown with asterisks.
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M EDTA, pH 7.5). Double-stranded cDNA was synthe-
sized from each aliquot using 8 ug of total RNA and the
SuperScript Choice system (Invitrogen) and T7-(dT24)
primer (GENESET Corp). Double-stranded cDNA reac-
tions and all the following steps were done in duplicate
for each sample. Double-stranded cDNA was purified
using Phase Lock Gel (Eppendorf-5 Prime). Biotin-
labeled cRNA was then synthesized from the double-
stranded cDNA by in vitro transcription using a BioArray
HighYield RNA Transcript Labelling Kit (Affymetrix). The
cRNA was then purified using an RNeasy Mini kit (QIA-
GEN), fragmented, and hybridized to murine genome
U74A chips for 16 h. The GeneChips were then washed
and stained on the Affymetrix Fluidics Station 400 follow-
ing Affymetrix protocols. The stained images were read
using a Hewlett-Packard G2500A Gene Array Scanner and
stored in an Affymetrix Microarray Laboratory Informa-
tion Management System (LIMS). Quality control meas-
ures included >4-fold cRNA amplification (from total
RNA/cDNA), scaling factors <2 to reach a whole-chip nor-
malization of 800, and visual observation of hybridiza-
tion patterns for chip defects. Probe set analysis was done
using Microarray Suite version 5.0. The signal intensity
values (absolute analyses) of the probe sets were then
loaded into GeneSpring (Silicon Genetics, Redwood city,
CA) for further analysis. Gene clusters were identified
using statistical analysis of expression based on correla-
tion coefficient. Briefly, a gene differentially regulated at a
specific age was selected, and then a gene cluster was gen-
erated whose expression pattern correlates to the selected
gene with the correlation coefficient of 0.97. All data files
available through Public Expression Profiling Resource
[48].

Determination of serum polyclonal isotype-specific Ig 

levels

Serum samples from the various age groups (B6, B6 lpr
and B6 gld mice [16–20 weeks old] and B6 GKO mice [16
weeks old]) were collected and stored in aliquots at -80°C
before analysis. The levels of serum polyclonal IgG1,
IgG2a, IgG2b, IgG3, IgM, IgA, kappa and lambda light
chain antibodies were determined using isotype-specific
antibodies. Ig levels in these sera were assayed by solid-
phase enzyme-linked immunosorbent assay (ELISA)
using goat anti-mouse Ig antibody-coated plates and alka-
line phosphatase-conjugated isotype-specific anti-Ig anti-
bodies as developing reagents (Southern Biotechnology).
Dilutions of sera (IgG1, IgG2b and κ light chain at
1:10,000; 1:50,000 and 1:100,000; IgG2a, IgG3, IgM, IgA
and λ light chain at 1:1,000, 1:5,000 and 1:10,000) from
experimental mice were prepared, and the results are
expressed as OD405 absorbance values.

Determination of serum amyloid A and serum haptoglobin 

levels

Mouse serum amyloid A levels were determined using a
solid-phase ELISA (Phage Range, Tridelta), and serum
haptoglobin levels were determined using a colorimetric
assay according to the manufacturer's instructions (Phage
Range, Tridelta). Statistical significance was calculated
using students t-test. A p value less than 0.05 was consid-
ered statistically significant.

Flow cytometric analysis

All antibodies and reagents used for surface and intracel-
lular cytofluorimetric analyses were purchased from
Pharmingen. FasL expression was assessed on CD8+ T cells
after stimulation with combinations of anti-CD3/anti-
CD28; FasFc; and estrogen using anti-FasL antibodies.
Cell staining was detected by flow cytometry on FACS Cal-
ibur (Becton Dickinson) and analyzed using Cell Quest
software.

Purification of CD8+ T cells and in vitro antibody synthesis 

assays

Spleens from post-pubertal (12- to 14-week-old) female
mice were disrupted in PBS containing FBS. CD8+ T cells
were enriched using a Spin-Sep murine cell enrichment kit
(Stem Cell Technologies) according to the manufacturer's
protocol. T cells (5 × 105) were stimulated for 18 h with
various stimulants, either individually or in combinations
(anti-CD3/anti-CD28; FasFc; and estrogen). These acti-
vated CD8+ T cells were washed and added to 1.5 × 106

splenocytes in 24 well plates. On day 3 half of the
medium was removed and supplemented with fresh
medium and further incubated for 7 days. On day 10 the
culture supernatants were collected and assayed for Ig iso-
types.

Determination of IFN-gamma in culture supernatants

Purified CD8+ T cells were stimulated with plate-bound
anti-CD3/anti-CD28 (2.5 µg/ml/10 µg/ml) and FasFc (2.5
and 1.25 µg/ml) in the presence and absence of estrogen
(1 × 10-8M) for 24 h, and the supernatants were assayed
for IFN-gamma using a commercial ELISA kit (Quantikine
IFN-γ, R&D Systems). Statistical significance was calcu-
lated using students t-test. A p value less than 0.05 was
considered statistically significant.

In vitro TLR stimulation of splenocytes

Total splenocytes were isolated from post-pubertal male
and female B6 mice as described above. Cells (2.5 × 106

cells/ml) were stimulated with the following doses of TLR
ligands: lipopolysaccharide (LPS, Sigma), 200 ng/ml;
lipoteichoic acid (LTA, Sigma), 5 µg/ml; Poly I:C (Sigma),
50 µg/ml; Pam3CSK4 (EMC Microcollections), 1 ng/ml;
Imiquimod, 100 ng/ml; T1 CpG DNA (5'-TCGTCGTTTT-
GTCGTTTTGTCGTT-3'), 400 ng/ml. After two day incuba-
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tion with these ligands, supernatants were isolated, and
cytokine and chemokine analyses were carried out using
SearchLight Technology (Pierce Biotechnology). This sys-
tem uses multiplexed sandwich ELISAs to quantify up to
16 different cytokines/chemokines per well of a 96-well
plate. The results were expressed as pg/ml (mean ± SD).
Statistical significance was calculated using students t-test.
A p value less than 0.05 was considered statistically signif-
icant.
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