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Abstract

Background: In many songbirds the larger vocal repertoire of males is associated with sexual dimorphism of the vocal
control centers and muscles of the vocal organ, the syrinx. However, it is largely unknown how these differences are
translated into different acoustic behavior.

Methodology/Principal Findings: Here we show that the sound generating structures of the syrinx, the labia and the
associated cartilaginous framework, also display sexual dimorphism. One of the bronchial half rings that position and tense
the labia is larger in males, and the size and shape of the labia differ between males and females. The functional
consequences of these differences were explored by denervating syringeal muscles. After denervation, both sexes produced
equally low fundamental frequencies, but the driving pressure generally increased and was higher in males. Denervation
strongly affected the relationship between driving pressure and fundamental frequency.

Conclusions/Significance: The syringeal modifications in the male syrinx, in concert with dimorphisms in neural control and
muscle mass, are most likely the foundation for the potential to generate an enhanced frequency range. Sexually dimorphic
vocal behavior therefore arises from finely tuned modifications at every level of the motor cascade. This sexual dimorphism
in frequency control illustrates a significant evolutionary step towards increased vocal complexity in birds.
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Introduction

In many animals, vocal behavior plays an important role in

reproduction in both male-male and male-female interactions.

Vocal behavior is therefore often sexually dimorphic. In songbirds,

the vocal repertoire of males is typically larger than that of females

[1], and the most complex vocalization, song, develops through

vocal learning [2]. In some species, as for example the zebra finch

(Taeniopygia guttata), only the male sings [3].

Vocal behavior in songbirds is generated through sophisticated

neural control [4], which must integrate movements of multiple

peripheral motor systems controlling respiration [5], the vocal

organ [6,7] and upper vocal tract structures [8]. Sound production

occurs in highly specialized organs of the airways, which consist of

a cartilaginous framework, oscillatory soft tissues, and muscles for

airflow and vocal control [9].

To what degree sexually dimorphic vocal behavior arises from

differences in central neural control and differences in the

functional morphology of peripheral organs is an important

question for understanding the evolution of vocal behavior. In the

zebra finch, male song and male distance calls are learned vocal

patterns, which are characterized by a diverse array of acoustic

components, ranging from low-frequency sounds (480–1200 Hz)

with rich upper harmonic content to more tonal high-frequency

sounds (3–7 kHz). Females do not sing, and the female distance

call is not learned. It contains only low frequency components and

less pronounced frequency modulation than that of males. These

behavioral differences are paralleled by differences in the neural

architecture and biochemistry of the song control pathways, which

give rise to learned vocal behavior in males (distance calls and

song) but not in females [10,11,12].

It is still unclear to what degree this sexual dimorphism in

central vocal control is also accompanied by dimorphic functional

morphology of the sound generating organ. The male syrinx is

controlled by a substantially larger muscle mass than that of

females [13,14,15,16,17], and these muscles can contract at higher

rates [18]. However, it is not known whether these differences are

manifested in a simple increase in force, thus explaining a wider

fundamental frequency range, or the potential for more rapid

temporal control of vocal parameters. If these differences in muscle

mass and contractile properties were translated into larger

biomechanical differences through modifications of morphology

and histology of the sound generating apparatus, an amplification

of neural and morphological changes into acoustic potential would

occur. Whereas for the songbird syrinx the intraspecific variation

in syringeal morphology and histology has not been investigated,

such differences have been established in mammals where they

give rise to pronounced sexual dimorphism in vocal characteristics.
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For example, the sex-specific frequency difference in the human

voice is based on larynx size [19] and on biomechanical properties

of the vocal fold tissue [20,21].

Here we investigate in the zebra finch whether morphology and

histology of the sound generating structures differ between males

and females. We explore the functional morphology of sound

generation and show that differences in the vibrating tissues and in

the cartilaginous framework are consistent with the production of

a greater range of sound frequencies in males than females. These

results therefore strongly suggest that sexually dimorphic vocal

behavior arises from modifications at every level of the complex

sound production system. Small modifications at the peripheral

organ parallel those of the muscular and the neural control systems

to give rise to a substantial increase in acoustic diversity.

Results

Histology and morphometry
The histological composition of the labia (supplemental

information S1 and supplemental figures S1, S2, S3, S4, S5) as

well as the dorso-ventral and left-right variation did not differ

between males and females (supplemental information S1 and

supplemental figure S6). However, the size and shape of some

syringeal components was sexually dimorphic (Figure 1) (Table 1).

The left and right first bronchial half rings (A1) were larger in

males (Table 1). Measurements for the right second half ring (A2-r)

approached significance (t = 21.96; P = 0.07). The left lateral

labium (LL) was larger in females (Table 1). The differences in the

length of the left medial labium (ML) approached statistical

significance (t = 22.14; p = 0.057). The left medial tympaniform

membrane (MTM) is significantly longer in females (Table 1).

Because combined length of the left ML and MTM was not

different between males and females (Table 1), and the area of the

left ML is also similar (Table 1), the shape of the left ML but not its

size was sexually dimorphic. There was no lateral asymmetry

between the left and right medial aspect of the syrinx (combined

ML and MTM length) in males (paired t-test, N = 6, t = 0.06,

P = 0.95) or females (paired t-test, N = 6, t = 21.20, P = 0.28). The

measurements for other parameters (P, A2-l, A3-l, A3-r, ML-area)

were not found to be sexually dimorphic.

Bilateral neurotomy
Acoustic parameters for male and female distance calls were

measured (Figure 2). Average fundamental frequency in female

distance calls ranged from 534 to 652 Hz. The low frequency

component of male distance calls ranged from 504 to 682 Hz

(Figure 3) and is not significantly different from the frequency of

female calls (N1,2 = 5, ANOVA, F = 0.6, P = 0.46). In addition,

male calls contain a high-frequency component (range 810 to

1157 Hz) that is absent in female calls.

In all individuals, fundamental frequency of distance calls was

significantly lower after bilateral neurotomy (Figure 3). Mean

fundamental frequency in female calls ranged from 506 to 559 Hz.

The high fundamental frequency in male calls dropped to values

between 446 and 627 Hz, while the low frequency component

ranged from 427 to 546 Hz. The difference between the low

frequency component of male calls and female calls was not

significant (N1,2 = 5, ANOVA, F = 0.56, P = 0.47).

The respiratory sounds showed a rich harmonic structure and

were produced with subsyringeal air sac pressure pulses that

showed steadily increasing pressure throughout the expiration

(Figure 2). This modulation in pressure was accompanied by an

increase in fundamental frequency of the respiratory sound. The

fundamental frequency at the onset of the respiratory sounds is

therefore the lowest measured frequency for each individual. The

lowest fundamental frequency in the respiratory sounds was not

significantly different in males and females (N1,2 = 5, ANOVA,

F = 0.5, P = 0.49).

Fundamental frequency is determined by size and tension of the

labia, but also by subsyringeal air sac pressure. Variation in

subsyringeal pressure can partially explain variations in funda-

mental frequency, as the positive regression between fundamental

frequency and pressure before and after the neurotomy suggests

(Figure 4).

In 3 males and 1 female, the subsyringeal pressure driving the

production of distance calls increased after the neurotomy

(Figure 3B). Most interesting for this study is the question whether

the different fundamental frequencies in the respiratory sounds

between males and females can be explained by pressure

differences. One would expect females to generate the slightly

higher frequency with higher pressure, if their sounds were

produced with an identically designed sound source. However, this

prediction is not supported by the results. Subsyringeal air sac

pressure during the respiratory sounds was not significantly

different in males and females (N1,2 = 3, ANOVA, F = 2.0,

P = 0.22) (Figure 3). Furthermore, males produced the low

frequency part of their distance calls with slightly higher

subsyringeal air sac pressure than females before (N1,2 = 3,

ANOVA, F = 10.3, P,0.05), but not after the nerve cut (ANOVA,

F = 1.86, P = 0.24).

The regression analyses of subsyringeal air sac pressure and

fundamental frequency showed a dramatic change in the

relationship between the two parameters after the neurotomy

(Figure 4). The slope of the regression line for the intact syrinx is

significantly larger (ANCOVA, F = 21.2; Df n = 1, d = 19;

P,0.001) than the one for the denervated syrinx, indicating that

pressure variations only caused very small variation in fundamen-

tal frequency compared to that present in the intact syrinx.

Discussion

Here we demonstrate morphological characteristics of the

female zebra finch syrinx as well as sexually dimorphic features

of the cartilaginous framework and of the sound-generating labia

in the syrinx of the zebra finch. Just like in males [9],

morphological differences between the left and right side of the

syrinx in female zebra finches were not consistent (Supplemental

information). In this species, the lateralization of high-frequency

sound production in males [6,30,31] and possible lateralization in

females cannot be explained by a simple size difference between

the two sound sources. In many songbird species each side of the

syrinx is specialized for a specific frequency range [32]. In the

absence of morphological asymmetry, an alternative mechanism

for tuning sound sources to different frequency ranges could

include differences in the viscoelastic properties of the labia of the

left and right syrinx. Such a mechanism was implicated in

accounting for frequency range differences in mammalian vocal

folds [33].

Together with physiological evidence on frequency control in

the intact and denervated syrinx, these morphological differences

indicate that the male syrinx is specialized for production of high

frequencies. This evidence, in combination with earlier findings on

the sexually dimorphic syringeal musculature [13,14,15,16,17,18],

provides a biomechanical mechanism for transducing sexually

dimorphic neural instructions into different acoustic behavior, thus

illustrating a functional sexual dimorphism at the level of the

sound generating organ. In the following we discuss the

biomechanical effects of morphological differences in more detail

Sexual Dimorphism in Birds
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Figure 1. Schematic and H&E stained frontal sections through the syrinx. A–E illustrate active, muscular and passive, pressure-driven
control of the syringeal valve (corresponding to ‘‘active and passive closure models’’ of Gaunt, [22]). Stained sections of a female (F) and male (G)
syrinx at about mid organ level illustrate sexual dimorphism in muscle mass and bronchial half rings. Syringeal muscles adjust the position of the labia
and therefore adjust the valve from complete closure to active opening. A partially adducted position is also assumed for induction of phonation [23].
A. Neutral position of labia. B. Rotation of the third bronchial half ring moves the lateral labium into the bronchial lumen [24,25]. C. The first and
second bronchial half rings arch with their end points into the ventral and the dorsal aspect of the medial labium and therefore tense the labial tissue
but also exert control over its position [9]. The valve control mechanisms in B and C most likely occur simultaneously, but are effected by different
syringeal muscles. The dorsal and ventral tracheobronchial muscles act as adductor and abductor of the lateral labium, respectively [26,27,28]. The
role of the ventral syringeal muscle appears to include abductive activity, as indicated by its activation during the expiratory phase during quiet
respiration [6,29]. D and E. A second mechanism for adjusting labial position is passive. The syrinx is located inside the interclavicular air sac (ICAS).
Pressure variation inside the subsyringeal air sac system causes similar pressure variation in the ICAS. The medial labium therefore passively moves
into or out of the bronchial lumen if there is a pressure differential between the bronchial lumen (PL) and the ICAS (PI) (first described by Hérissant in

Sexual Dimorphism in Birds
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and suggest an evolutionary step from more passive to more active

frequency control that allows expansion of the frequency range of

the sound source in birds.

The morphological difference in the shape of cartilage rings

(both A1, and possibly the right A2) can be directly translated into

control of fundamental frequency of sound. The medial labia are

fixed between the endpoints of cartilages A1 and A2, while the

lateral labia sit inside the inner arch of these half rings. Because

sound frequency is modulated by regulating the tension of the

labia, a simple bending of one or both half rings will stretch both

labia. The combination of a muscle-generated outward bending of

A1 and/or A2 and inward returning movement of the half ring by

elastic recoil would allow dynamic regulation of labial tension [9]

(Figure 1).

The larger bronchial half rings (A1 and A2) of males provide

increased potential for transmitting force onto the labia and thus

allow generation of a wider range of high fundamental

frequencies. A thicker half ring is likely to be stiffer and therefore

provides bending characteristics that enable fast recoil into the

original position. The larger muscle mass of the male syrinx may

be required to bend these stiffer half rings. As in other songbirds

[27], muscle activity in the zebra finch is positively correlated with

1753, after Gaunt [22]). ICAS pressure is larger than pressure in the bronchial lumen during expiration and smaller during inspiration. Muscle activity
synchronized with the respiratory cycle [6,29] keeps the syringeal lumen open during expiration. Without muscle activity the lumen closes during
expiration (D) and opens during inspiration (E). During expiration, the medial and lateral labia are sufficiently adducted that increased flow causes
self-sustained oscillations of the labia and, thus, generates sound. Phonation is maintained as long as an asymmetric shape of the labia is combined
with flow separation right behind the labia as long as the driving pressure is high enough [23]. Abbreviations: P, pessulus; A1, A2, A3, three bronchial
half rings; ML, Medial labium, MTM, Medial tympaniform membrane, LL, Lateral labium, Tr, tracheal ring; D, drum; M, intrinsic syringeal muscles; B,
bronchial ring; arrows in C and E indicate air flow direction. The bar in G indicates a 1 mm distance and applied to F and G.
doi:10.1371/journal.pone.0011368.g001

Table 1. Average data, coefficients of variation (CV) and t-tests comparing males and females for 18 measurements.

Parameter
length in mm; area in mm2; mass in g;
Nm,f = 6 CV (%) significance male-female ratio

P
(area)

m: 5103869353
f: 5103568668

18.3
16.9

t = 20.0006
P = 0.99

1.00

A1-l
(area)

m: 81206616762
f: 4622366152

20.6
13.3

t = 24.79
P,0.001 **

1.75

A2-l
(area)

m: 83140615936
f: 8367069045

19.2
10.8

t = 20.07
P = 0.94

0.99

A3-l
(area)

m: 63927620659
f: 62949614523

32.3
23.1

t = 20.09
P = 0.92

1.01

A1-r
(area)

m: 76623618411
f: 5604068092

24.0
14.4

t = 22.5
P,0.05 **

1.36

A2-r
(area)

m: 89647616610
f: 73871610471

18.5
14.2

t = 21.96
P = 0.07

1.21

A3-r
(area)

m: 67434624756
f: 59322616642

36.7
28.0

t = 20.66
P = 0.51

1.13

LL-area-l m: 67938624332
f: 106828625195

35.8
23.6

t = 2.7
P,0.05 **

0.63

ML-area-l m: 95864636517
f: 85576637784

38.1
44.1

t = 20.47
P = 0.64

1.12

ML-length-l m: 9496201
f: 7186167

21.2
23.3

t = 22.14
P = 0.057

1.31

MTM-length-l m: 446695
f: 6426134

21.2
20.8

t = 2.92
P,0.05 **

0.69

combined ML-MTM length-l m: 13956287
f: 13616121

20.6
8.9

t = 20.26
P = 0.79

1.02

LL-area-r m: 59612617471
f: 98526640612

29.3
41.2

t = 2.15
P = 0.056

0.60

ML-area-r m: 92982629263
f: 88182637399

31.5
42.4

t = 20.24
P = 0.81

1.05

ML-length-r m: 9396231
f: 7776220

24.6
28.4

t = 21.24
P = 0.24

1.20

MTM-length-r m: 4606131
f: 521690

28.4
17.3

t = 0.94
P = 0.37

0.88

combined ML-MTM length-r m: 13996284
f: 12976211

20.3
16.3

t = 20.69
P = 0.50

1.08

Body mass m: 13.760.4
f: 11.860.7

2.8
6.2

t = 25.67
P,0.001

1.16

doi:10.1371/journal.pone.0011368.t001

Sexual Dimorphism in Birds

PLoS ONE | www.plosone.org 4 June 2010 | Volume 5 | Issue 6 | e11368



fundamental frequency (Goller, unpublished observations), sup-

porting the hypothesis that increased tension is exerted on the

labia in order to produce higher fundamental frequencies. Both

ventral and dorsal syringeal muscles are simultaneously active

during the production of zebra finch song syllables with the highest

fundamental frequency [6,29] (Goller, unpublished results), which

can effect outward bending of the half rings, as pull is exerted on

the ventral and dorsal ends.

The presence of a larger LL in females and the shape differences

of the ML-MTM complex are not easily interpreted. Before

neurotomy, the low frequency component of male distance calls

and fundamental frequency in female distance calls is similar,

while a high-frequency component can only be found in male

distance calls [this study, 34,35]. After syringeal denervation

fundamental frequency of calls is similar for males and females

[29,30,31,34,36,37], thus indicating that labial size is not an

explanation for the observed differences. Because it is not clear

which portion of the LL is actually vibrating during phonation,

this morphological difference may not play a major role in the

biomechanical control of sound frequency, but may be relevant in

other aspects of sound production. The different design of the ML-

MTM system may cause differences in the nonlinear stress

response [38], which could affect the biomechanics of frequency

control.

The relationship between driving pressure and fundamental

frequency in the intact and denervated syrinx provides important

insight into the relevance of the sexual dimorphism in frequency

control. During phonation the interlabial gap of the syringeal valve

is typically regulated by a combination of muscular activity [27]

and passive movement driven by pressure differentials (Figure 1).

In the denervated syrinx subsyringeal air sac pressure is higher

during distance call production than before the denervation. It is

possible that the pressure increase may be caused by a

compensatory effort. The drop in fundamental frequency after

neurotomy may trigger an increased effort to raise F0.

In the denervated syrinx, the driving air sac pressure alone

regulates the opening of the syringeal valve. The relationship

between fundamental frequency and subsyringeal driving pressure

therefore depends on response characteristics of the labial tissue to

stress and the interlabial opening at atmospheric pressure, i.e. in a

neutral position of the syringeal valve. Interestingly, we found

substantial differences in the pressure-frequency relationship

Figure 2. Oscillogram (top panel), spectrogram (middle panel) and subsyringeal air sac pressure (bottom panel) of a male (A,
before nerve cut, C, same individual after nervecut) and a female (B, before nerve cut, D, same individual after nervecut) distance
call as well as of two representative examples of respiratory sounds (E). The two arrows in A indicate a high (1) fundamental frequency at
the beginning of the male call and a low (2) fundamental frequency in the middle and end of a male distance call. This frequency modulation does
not occur in females and was also missing in one of the three males in this study. Calls in A and B are representative before nervecut surgery, and C
and D are examples from the same individuals after tracheosyringeal nervecut.
doi:10.1371/journal.pone.0011368.g002
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between different individuals (Figure 4), indicating marked

variation in either stress or valve lumen or both. However, the

small sample size only allows the suggestion that there may be a

systematic difference between males and females in these

parameters.

The extent to which sound frequency can be changed by driving

pressure is limited as indicated by the small slope of the linear

regression for the denervated syrinx (Figure 4). Active control of

labial tension is therefore the main mechanism that enables the

production of a wide range of fundamental frequencies. Female

zebra finches produce frequencies that are only slightly above the

curve for pressure-driven frequency control, suggesting that

muscular frequency control is limited. This conclusion again

suggests that the above described biomechanical differences,

combined with substantially increased muscle mass, are the main

modifications that can account for the large difference in

frequency range between male and female distance calls. Some

song syllables contain even higher fundamental frequencies (up to

7 kHz) than are found in the distance calls [e.g. 3]. Frequency

control of song syllables is also largely driven by muscular control

of labial tension, as is illustrated by the large drop after

denervation [29,30,31,34,36,37]. The occurrence of high-frequen-

Figure 3. Fundamental frequency and air sac pressure measurements (mean ±1 standard deviation) in female and male calls
before (‘‘pre’’) and after bilateral neurotomy (‘‘post’’). Fundamental frequency and air sac pressure was also measured in the respiratory
sounds (‘‘rs’’). ‘High’ and ‘Low’ fundamental frequency (F0) in male calls (‘‘highF0’’ and ‘‘lowF0’’) is explained in Figure 2. Means were calculated from
individual means (number of individuals, N, indicated in each category) which are based on measurements in twenty calls. The probability levels that
the slopes are greater than zero is P = 0.006 before and P = 0.012 after the nervecut.
doi:10.1371/journal.pone.0011368.g003

Sexual Dimorphism in Birds

PLoS ONE | www.plosone.org 6 June 2010 | Volume 5 | Issue 6 | e11368



cy song components further supports specialization of the male

syrinx for high frequencies, because only males sing in the zebra

finch.

In summary, the enforced cartilage framework, a massive

muscle package and much higher fundamental frequencies for a

given range of subsyringeal air sac pressures in the intact,

compared to the denervated, syrinx all suggest that the sexually

dimorphic features play an important role in generating a wide

fundamental frequency range, specifically by increasing this range

toward higher frequencies in males. Sexually dimorphic vocal

behavior therefore involves modification of the biomechanical

system in addition to well-described differences in neural control

[10,11,12] and syringeal muscles [13,14,15].

The fact that after denervation the solely pressure driven control

of frequency only generates a much smaller frequency range

confirms that control of labial tension through the neuromuscular

system is an important aspect of achieving a broader range of

acoustic features [27]. Much less control appears to be required for

the production of the vocal repertoire of females. Interestingly, in a

suboscine species, the kiskadee (Pitangus sulfuratus), bilateral

denervation of the syrinx has a much less dramatic effect on the

fundamental frequency of its song. Denervation of the syrinx leads

only to minor frequency changes and does not cause a drastic

change in the slope of the frequency-pressure relationship [39],

unlike the results reported here for the male zebra finch. This

apparent independence of direct muscular regulation of tension in

the kiskadee therefore more closely matches frequency control in

female zebra finches. The lack of muscular control of labial tension

in a suboscine and the sexual dimorphism in this control aspect in

the zebra finch strongly suggest that direct muscular control of

frequency is an important step toward production of a broad

frequency range in oscines. While we expect to find a similar

strong muscular control of frequency in other male songbirds and

in females that sing, we expect a more pressure-driven frequency

control in suboscines.

The advantages and disadvantages of being able to produce

higher frequencies are complex in all vertebrates [e.g. 40,41]

because there are tradeoffs. Sound radiation from orifices and

surfaces improves with increasing frequency [42], thereby

improving radiation of high-frequencies from the beak compared

to radiation of low frequencies for a given input. However, this

apparent advantage is countered or paralleled by factors such as

sound transmission in various habitats [43], sender and receiver

perception [44], female preference [45], species recognition [46],

and background noise [47]. It is safe to assume that the ability to

generate a wide range of fundamental frequencies added an

important degree of freedom that contributed to the success of

oscine birds. The evolutionary step towards direct frequency

control within birds parallels a similar step in mammals, which,

unlike amphibians and reptiles, evolved a more direct muscular

control of vocal fold tension [48,49,50].

Methods

Tissue collection and processing
We processed the syrinx of six male and six female zebra

finches. The birds were deeply anaesthetized with a Ketamine/

Xylazine combination (Sigma-Aldrich K-113; 2 ml/g body mass)

and perfused intracardially with PBS followed by 5% neutral

buffered formalin. The syrinx with short segments of trachea and

the primary bronchi was carefully dissected out, and the isolated

tissue was stored for 2 weeks in 10% Buffered Formalin Phosphate

(Fisher Scientific; Fair Lawn, NJ, USA, cat. no. SF100-4) and for

8 hours in Decalcifier 1H (Surgipath Medical Industries, Inc.,

Figure 4. Relationship between fundamental frequency and subsyringeal air sac pressure. Before nervecut (full symbols); after nervecut
(open symbols). Respiratory sounds in males (+) and females (-) are only present after the nervecut. The regression lines were calculated using all pre-
neurotomy data (solid line) and all post-neurotomy data (dashed line). The arrows on the side indicate fundamental frequency ranges which are
regulated by abdominal pressure or by a combination of abdominal pressure and muscle activity. Pressure and muscle regulated range extends up to
4 kHz for some song syllables. Pressure in those high frequency song syllables does not exceed 5 kPa (data not presented here).
doi:10.1371/journal.pone.0011368.g004
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Richmond, IL, USA, cat. no. 00400) before further processing.

The tissue was then embedded in paraffin and 5 mm cross sections

of the complete syrinx were made. Data from males have been

reported in part elsewhere [9].

Staining
Adjacent sections were exposed to one of the following stains:

hematoxylin and eosin (H&E) for a general histological evaluation;

elastica van Gieson stain (EVG) to identify elastic fibers; trichrome

stain (TRI) to demonstrate collagen fibers; alcian blue stain (AB)

(pH 2.5) to determine mucopolysaccharides and glycosaminogly-

cans. We also performed a digestion procedure with 0.05 g bovine

testicular hyaluronidase (Type I-S, Sigma-Aldrich, St. Louis, MO,

USA; cat. no. H3506), solved in 100 ml buffer solution (94 ml

Potassium phosphate, monobasic, 0.1 M, and 6 ml Sodium

phosphate, dibasic, 0.1 M). Slides were first deparaffinized, then

incubated in hyaluronidase at 37uC for 1 hour, and then washed

in running water for 5 minutes and finally stained with alcian blue.

The combination of the hyaluronidase digestion with a subsequent

alcian blue stain increased specificity for various acid mucosub-

stances in the alcian blue stain. Alcian blue positivity is destroyed

following prior incubation with hyaluronidase, if hyaluronan is a

major component of the mucosubstances. All stains were

performed in conjunction with control stains (artery for EVG;

liver for TRI; umbilical cord for AB) on human tissue.

Micrographs were taken with a digital camera (AxioCam HRc,

Carl Zeiss, Germany) combined with an Axioplan Zeiss micro-

scope (Axioplan, Carl Zeiss, Germany) and computer software

(Axiovision 40, v. 4.6.3.0, Carl Zeiss, Germany). Interpretation of

the stains included a general description of labia, MTM,

tympanum, bronchial half rings and intrinsic laryngeal muscles.

Elastic fibers were randomly distributed and fiber content was

overall very low. We therefore only present qualitative results.

To compare the intensity of the trichrome stains, images

originally saved in RGB mode were converted to a 3-slice (red,

green, blue) stack. The blue channel was further analyzed. The

histogram function in Image J (version 1.41o; NIH open source)

was used to determine the distribution of blue values in an image

selection, intensity ranging from 0 (black) to 255 (white). The total

pixel counts as well as the mean and modal blue value were

compared between males and females. Staining with alcian blue

was also quantified with the same procedure as described for the

trichrome stains. The difference in the blue intensity before and

after hyaluronidase treatment, was compared between males and

females.

Morphometry
Labium size measurements were based on cross-sectional area

and cranio-caudal length for the medial labium (‘‘ML’’), on cross-

sectional area for the lateral labium (‘‘LL’’) and on the length of

the medial tympaniform membrane (MTM). The sizes of

bronchial half rings (A1, A2, A3) and the pessulus (P) were

estimated from cross-sectional area measurements. The size of the

tympanum was based on its diameter about 3 mm below its

cranial end.

Measurements were made with Image J. A curvilinear outline of

the labia, the bronchial half ring and the pessulus was used to

estimate cross-sectional area. A ‘‘segmented line’’ was drawn along

the centerline of the medial labium starting at the pessulus and

ending at the beginning of the MTM, and a second ‘‘segmented

line’’ was drawn along the centerline of the MTM, to estimate the

cranio-caudal length of ML and MTM. The area measurements

(ML, LL; P, A1, A2, A3) and both length measurements (ML and

MTM) were made at 10 points equally distributed over the dorso-

ventral length of the labia, starting dorsally at the point where the

pessulus and medial labium part from the dorso-lateral tracheal

wall, and ending ventrally where pessulus and medial labium fuse

again. All measurements were made in reference to a known

distance measured at identical magnification.

Measurements (area, length) at 10 levels of female syringes were

tested for differences along the dorso-ventral axis using a one-way

analysis of variance (ANOVA). This test revealed significant

differences along the dorso-ventral axis in the syrinx of males [9].

Measurements (area, length) of female syringes were also tested for

differences between left and right syrinx using only the mid-organ

section level (level 5) (two-sample t-test). This test revealed no

significant differences for male syringes [9]. Differences between

male and female syrinx were tested by two-sample t-test and are

presented here.

To assess sexual dimorphism of the syrinx, we consider

morphological differences of measured volumes between males

and females that deviate from an expected difference based on

isometric scaling with body size (i.e., volumes should be 1.16 fold

greater in males than in females, because mean body mass of

males was 1.16 fold greater than that of females in our sample of 6

individuals of each sex). If structures scale isometrcially with body

mass, we expect a ratio of 1.04 for length measurements and 1.09

for area measurements. For example, the mass of the syrinx is

sexually dimorphic as the male zebra finch syrinx is twice as heavy

as that of females [14].

The CV for most parameters was relatively large and ranged

from 11 to 44%. We therefore considered the mean CV of 25% as

the confidence range around each expected isometric scaling as a

cutoff value, i.e., the range of 0.78–1.3 for linear distances and

0.82–1.36 for area measurements.

Nerve cut experiments
To assess how morphological differences may contribute to the

frequency range of vocalizations, we recorded male and female

distance calls before and after bilateral denervation of the syringeal

muscles. The denervation enabled us to determine the respective

contributions of lung pressure and muscle activity to frequency

regulation (Figure 1A–E). After denervation, birds also produced

sound during deep breathing (respiratory sounds) (Figure 2) which

provided an estimate of the lowest fundamental frequency

produced with minimal air sac pressure.

We denervated the syringeal muscles in order to determine the

basic rate of oscillation of the labia. The oscillating frequency of

labia depends on labia position (ad/abduction), their tension as

well as subsyringeal air sac pressure. The first two functions are

regulated by intrinsic syringeal muscles [6,26,27,28,29]. The third

mechanism, i.e. fundamental frequency regulation by changes in

the pressure differential between subsyringeal and atmospheric

pressure, is less well understood. Disabling the intrinsic syringeal

muscles will only leave the third mechanism in place, thereby

creating a system regulated only by pressure changes, and allowing

determination of vibration frequency of unstrained labia at the

threshold pressure for phonation.

a) Housing: Five adult males and five adult females were used in

this study. All birds were more than 120 days old. Ani-

mals were separately housed in a small cage (32 cm6
24 cm625 cm).

b) Neurotomy and pressure recording: The tracheosyringealis

branch of the hypoglossal nerve runs laterally along the

trachea. Using isoflurane anaesthesia, a skin incision was

made in the ventral neck. On each side, a 1 cm-long piece of

the tracheosyringealis nerve was excised in all ten birds.
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In 3 of 5 birds of each sex, we also measured subsyringeal air sac

pressure in the posterior thoracic air sac. An elastic belt with a

Velcro tab on the back was placed around the thorax of each

experimental bird. Birds were deprived of food and water for 1 h

before surgery. Using isoflurane anaesthetic, a small hole was

made in the abdominal wall into the left posterior thoracic air sac,

and the tip of a flexible cannula (Silastic tubing; 1.65 mm o.d.,

6 cm length) was inserted into this hole. The cannula was sutured

to the rib cage. The cannula insertion site was sealed with tissue

adhesive (Nexaband) to prevent leakage of air. The free end of the

tube was connected to a piezoresistive pressure transducer (MSI,

Model 1451), which was mounted on the Velcro tab.

A wireless custom-built transmitter-receiver system was used to

transmit the transducer signal. The pressure transducer is DC

excited and then connected to an amplifier. The amplified signal

frequency modulates an oscillator connected to an antenna. The

circuit board and components were then potted in epoxy for

strength. The transmitter is very small and light weight and

operates from a single Zinc Air cell for up to 30 days. It accepts

pressure signals from 0 to 4 kPa and has a bandwidth of DC to

1 kHz. The transmitter antenna is capacitively coupled to positive

(top of cage) and negative (bottom of cage) antennae. The

difference between these antennae is amplified, filtered, and sent

to a frequency to voltage converter reconstructing the original

pressure signal from the transducer. A metal bird cage was used

and grounded, providing shielding and noise immunity. The

pressure transducer was calibrated before and after the experi-

ments (Omega HHP-90). The signal is not affected by movements

of the bird in the cage. The frequency modulated technology is

immune to signal strength variations.

c) Sound recordings: Calls were recorded at three time points,

1) before the first surgery to implant the pressure transducer,

2) after the implantation of the pressure tube and before the

nerve cut and 3) after the nerve cut. Calls and respiratory

sounds were recorded with a microphone (AT8356; Audio-

technica, Stow, OH, USA) placed in front of the cage. The

voltage output of the pressure transducer was recorded

simultaneously with sound using a multi-channel A/D board

(BNC 2110, National Instruments, Texas, USA) and Avisoft

Recorder software (www.avisoft.de). All signals were recorded

with a 44.1 kHz sampling frequency.

d) Call analysis: Zebra finches produce three call types [35].

Female calls display only little modulation, while male calls

typically show modulation starting at a relatively high F0. We

used distance and stack calls for analysis measuring the

highest and the lowest fundamental frequency of male calls

and the fundamental frequency in the middle of a call of the

female calls (Figure 2). Differences in F0 before and after

nerve cuts were tested within subjects with paired t-tests.

Supporting Information

Supporting Information S1 Results: The histological compo-

sition of the labia as well as the dorso-ventral and left-right

asymmetry of the syrinx comparing males and females.

Found at: doi:10.1371/journal.pone.0011368.s001 (0.03 MB

DOC)

Figure S1 Female zebra finch syrinx frontal sections (H&E stain)

in ventral aspect of the organ. A: Schematic external ventral view

of the excised organ in the upper part and of a frontal section of

the syrinx (at mid-organ level indicated by the vertical plate in the

upper part). The dotted square indicates the aspect that is shown

in B through G. TL, tracheolateralis muscle; ST, sternotrachealis

muscle; dTB and vTB, dorsal and ventral tracheobronchial

muscle; dS and vS, dorsal and ventral syringeal muscle; ML,

medial labium; LL, lateral labium; Tr, trachea; Br, primary

bronchus; A1, A2, A3, first, second and third bronchial half ring. B

through G: consecutive sections through the ventral aspect of the

syrinx indicating how the bronchial half rings A2 (between D and

E) and A1 (between F and G) become separately visible in the

lateral wall of the bronchus and in the medial labium. Bars in B

through G are 500 mm. H through K: The bronchial half rings A2

and A3 are composed of more than one type of material

(cartilage/bone and hyaline cartilage). The images are larger

magnifications of aspects indicated by squares in B, C and D. Bars

in H through K are 100 mm.

Found at: doi:10.1371/journal.pone.0011368.s002 (9.48 MB TIF)

Figure S2 Female zebra finch syrinx frontal sections (H&E

stain). A: Section come from the ventral aspect of the syrinx, B:

from mid-organ and C: from the dorsal syrinx. Pessulus (P), medial

labium (ML), medial tympaniform membrane (MTM), lateral

labium (LL), the first, second and third bronchial half ring (A1, A2,

A3), interclavicular air sac (ICAS). Bars are 100 mm.

Found at: doi:10.1371/journal.pone.0011368.s003 (4.55 MB TIF)

Figure S3 Masson’s Trichrome stain of a zebra finch syrinx

cross section. A: Section of a female syrinx showing the pessulus

(P), medial labium (ML), medial tympaniform membrane (MTM)

and first bronchial cartilage ring (B1). The square indicates the

location of the higher magnification image in B and C. B: Part of

the medial labium at larger magnification from a female syrinx. C:

Part of the medial labium at larger magnification from a male

syrinx. The arrows in B and C point to accumulations of collagen

fibers (blue stain). Bars are 100 mm.

Found at: doi:10.1371/journal.pone.0011368.s004 (3.44 MB TIF)

Figure S4 Elastica-van-Giesson stain of a zebra finch syrinx

frontal section. A: Section of a female syrinx showing the pessulus

(P), medial labium (ML), medial tympaniform membrane (MTM),

lateral labium (LL), the second and third bronchial half ring (A2,

A3), and the first bronchial ring (B1). The squares indicate the

location of the higher magnification images in B to E. Arrows in B

to E indicate longitudinal and cross sections of elastic fibers (black

stain). Bars are 100 mm.

Found at: doi:10.1371/journal.pone.0011368.s005 (10.08 MB

TIF)

Figure S5 A female zebra finch syrinx frontal section stained

with alcian blue before (A) and after Hyaluronidase digestion (B).

Pessulus (P), medial labium (ML), medial tympaniform membrane

(MTM), lateral labium (LL), the second and third bronchial half

ring (A2, A3), bronchial ring (B). Bars are 100 mm.

Found at: doi:10.1371/journal.pone.0011368.s006 (8.97 MB TIF)

Figure S6 A and B: Frontal section area measurements of

medial (ML) and lateral labia (LL) in female syringes. Squares (left

syrinx) and triangles (right syrinx) indicate means (error bars are

standard deviation). C and D: Cranio-caudal length of the medial

labium (ML) and the medial tympaniform membrane (MTM).

Squares (left syrinx) and diamonds (right syrinx) indicate means

(error bars are standard deviation). Level refers to ten subsequent

section levels along the dorso-ventral axis of the syrinx organ.

Found at: doi:10.1371/journal.pone.0011368.s007 (8.05 MB TIF)
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