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Sferesv2: Evolvin’ in the Multi-Core World

Jean-Baptiste Mouret and Stéphane Doncieux

Abstract— This paper introduces and benchmarks Sferesv2,
a C++ framework designed to help researchers in evolutionary
computation to make their code run as fast as possible on a
multi-core computer. It is based on three main concepts: (1)
including multi-core optimizations from the start of the design
process; (2) providing state-of-the art implementations of well-
selected current evolutionary algorithms (EA), and especially
multiobjective EAs; (3) being based on modern (template-based)
C++ techniques to be both abstract and efficient. Benchmark
results show that when a single core is used, running time of
classic EAs included in Sferesv2 (NSGA-2 and CMA-ES) are of
the same order of magnitude than specialized C code. When
n cores are used, typical speed-ups range from 0.75n to 0.9n;
however, parallelization efficiency critically depends on the time
to evaluate the fitness function.

I. INTRODUCTION

Most evolutionary computation (EC) users experimented

how evolutionary algorithms (EAs) require a lot of compu-

tational power. The picture is worse for most EC researchers

who have to repeatedly run their algorithm, be it for de-

bugging their algorithm or for establishing statistically valid

benchmarks. As a result, in EC research—contrary to many

other research fields—faster implementations of the same

algorithms can make research more effective.

Fortunately for EC research, Moore’s observation that the

amount of computation achievable on a single chip doubles

every two years has been followed with a remarkable preci-

sion [1]. Manufacturers of micro-processors are nonetheless

reaching physical limits in improving the core of their chips.

Desirous to continue to follow Moore’s law, they now in-

crease the number of cores available in a single chip [2], thus

making parallel computing mainstream. Concretely, there is

a large probability that you are now using a multi-core

computer as your main development environment; hence,

the main question is: are you able to fully exploit this

computational power to improve your researches? If not, we

introduce in this paper Sferesv2
1: a C++ framework—a set

of classes and compilation tools—that aims at helping EC

researchers to implement efficient versions of their ideas in

a world of multi-core computers.

As this framework targets scientists, it is assumed that

users will have to design new genetic operators, new al-

gorithms, complex fitness, etc. We therefore focused on

allowing to easily write new code, with as little efforts as
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Pierre et Marie Curie (UPMC) - Paris 6, Institut des Systèmes Intelligents
et de Robotique (ISIR), CNRS UMR 7222, F-75005, Paris, France; e-mail:
{mouret,doncieux}@isir.upmc.fr

1The acronym SFERES stands for “SFERES is a Framework for Encour-
aging Research on Evolution and Simulation”. The version introduced in this
paper is the second one, in which the simulation part has been removed.
The first version, which shares no code with Sferesv2, has been described
in [3].

possible. One of the most common approaches to tackle

this challenge is to rely on object-oriented programming (see

e.g. [4]) but this abstraction model implies substantial run-

time costs [5], [6]. Nonetheless, the C++ community now

proposes a large set of “modern C++ techniques” (template-

based generic programming) [7], [8], [9] that promise to

combine the efficiency of hand-tuned C code with the ab-

straction of object-oriented programming. Besides bringing

multi-core programming to EC researchers, one of the goals

of Sferesv2 is to make these techniques easy to use in an EC

context.

This line of thought leads us to the following main

objectives for Sferesv2:

• Be multi-core from the ground-up: include multi-core

optimizations from the start of the design process.

• Be up-to-date and multiobjective: provide a few but

well selected implementations of “modern” EAs, and

especially multiobjective EAs (MOEA) [10].

• Be based on modern C++ techniques to be both abstract

and efficient.

Additionally, we set the following goals, which can be

summarized by “the framework should be a good and simple

piece of software”:

• Be extensible: adding new algorithms should be

straightforward.

• Be simple: simple experiments (e.g. optimizing real

parameters) should be simple to set-up and require the

minimum amount of code.

• Put the emphasize on efficient implementations rather

than on covering the largest number of algorithms.

• Be small: the source code should be a short as possible

to allow new users to quickly master the library and to

make maintenance easier.

• Be tested: each important feature should be accompa-

nied by a unit test.

• Be portable to all current Unix flavors (especially

GNU/Linux and MacOSX);

• Be open source (GPL-compatible).

• Be easy to interface with current existing code (espe-

cially for fitness functions).

The purpose of this article is threefold: (1) introduce

the Sferesv2 framework, which can be useful to the EC

community; (2) argue our technical choices to fulfill the

previously described goals; (3) answer the question: what

speed-up/slow-down can we expect in EC by employing

modern C++ and by explicitly designing for multi-core

systems? Additionally, this paper may suggest some useful

ideas to designers of present and future EC software.



II. RELATED WORK

Despite the simplicity of the principles underlying EAs,

the many variants of the same EA (huge number of potential

genetic operators, various representations for solutions, etc.)

make most EC programs complex pieces of software. In

many ways, designing an EC software is like playing with a

LegoTM set in which each brick is a part of the “EC toolbox”

and in which some bricks (e.g. fitness function) have to be

specially built. This complexity of EC software lead many

research teams to mutualize their code by incorporating it

in software frameworks that aims at reducing the amount of

work required to implement a new EC experiment.

For instance, OpenBeagle [11], [12] is an object-oriented

C++ framework “designed to provide an EC environment that

is generic, user friendly, portable, efficient, robust, elegant

and free”2. This large framework (about 40,000 lines of

code3) relies on classic OOP and, to our knowledge, is

not specially designed for multi-core (however, it is able to

employ several threads by using an optional add-on).

Evolving Objects4 (EO) [13] is another popular framework

in C++. Programmed with template-based C++, it has been

recently extended to implement many MOEAs [14]. On top

of EO, Paradiseo [15] implements distributed and parallel

algorithms. Overall, EO and its extensions appears to be a

powerful but large (about 60, 000 lines of code) and complex

piece of software that targets more clusters than mainstream

multi-core workstations.

Numerous other frameworks for EC have been released on

the Internet. Some of them implement parallel algorithms,

for instance the DREAM project [16] and MALLABA [17].

However, like Paradiseo, the emphasis is more on parallel

computation on large clusters than on providing a simple

approach to implement EC on a multi-core workstation.

III. ARCHITECTURE

A. Main parts

Sferesv2 is divided into three main parts: (1) the frame-

work, (2) optional modules (that may be experimental or

require complex dependencies) and (3) the user experiments

(that may include new genotypes, fitness, . . . ). Everything

is compiled using the waf5 build tool, supplemented with

functions to easily compile user experiments and modules

modules.

The framework itself (Fig. 1) is divided into the classic

parts of evolutionary algorithms:

1) Evolutionary algorithms (EA): the main evolutionary

loops. Different single and multi-objective algorithms

are available (see next subsection).

2) Genotypes: data and genetic operators (mutation and

cross-over).

2http://beagle.gel.ulaval.ca/
3The number of lines of code is computed using David A. Wheeler’s

“SLOCCount”, http://www.dwheeler.com/sloccount/
4http://paradiseo.gforge.inria.fr
5http://code.google.com/waf: A modern replacement to automake/auto-

conf/make written in Python.

Fig. 1. Architecture of Sferesv2. Optional modules can be added to the
core framework (SFERESv2); each user experiment is a C++ file compiled
with the framework. The waf compilation tool is used to easily compile
user-defined experiments and optional modules.

3) Phenotypes: the transformed genotype to be used in

the fitness function (e.g. integer parameters from a bit-

string or developed neural networks from an indirect

encoding).

4) Statistics: observers of the current population (best

fitness, Pareto front, . . . ). They are the only data written

on the hard-disk, so they are also the standard way to

gather results.

5) Evaluators: evaluators take a list of genotypes, develop

them into the corresponding phenotypes and compute

the fitness function for each phenotype. Depending on

the kind of evaluator, this evaluation can be parallel or

sequential.

6) Fitness: abstract classes to program new fitness func-

tions.

7) Modifiers: functors to modify fitness function once the

whole population has been evaluated. For instance, this

allows to implement fitness sharing [18], behavioral

diversity [19] or novelty search [20].

B. Implemented algorithms

Sferesv2 is more focused on implementing the most ef-

ficient algorithms from the literature than on providing

an exhaustive list of algorithms. Such a choice keeps the

complexity of the framework and maintenance costs as low

as possible: it is easier to optimize and test a few useful

algorithms than a lot of algorithms almost never used (and

therefore less tested).

At this time, the following algorithms are available (other

ones are available as modules):

• NSGA-2 [21]: one of the most efficient multi-objective

evolutionary algorithms [22]. Contrary to classic imple-

mentations of NSGA-2, which have a run-time com-

plexity of O(GMN2) [21] (where G is the number of

generations, M the number of objectives and N the

size of the population), Sferesv2 implements the fast



dominance sorting algorithm introduced in [23], which

has a complexity of O(GN logM−1 N). NSGA-2 can

also be employed in single-objective optimization (it

is then equivalent to a tournament-based evolutionary

algorithm).

• ε-MOEA [24]: a recent multi-objective evolutionary al-

gorithm based on ε-dominance. It is often more efficient

than NSGA-II [24] but it is less versatile because it

is archive-based; for instance, multi-objective diversity

preservation approaches [19] are not compatible with

archive-based algorithms.

• CMA-ES [25]: one of the most efficient single-objective

evolutionary strategies; it is one of the best choices to

optimize real numbers with a single objective (MO-

CMA-ES [26], the multiobjective CMA-ES, is available

as an experimental module).

• a simple rank-based EA: this algorithm is a refer-

ence implementation for new evolutionary algorithms

in Sferesv2.

The following basic genotypes/phenotypes are available:

• Binary strings;

• Real numbers with the following operators:

– Gaussian mutation;

– Uniform mutation;

– Polynomial mutation [27];

– SBX cross-over [27];

– Exchange parameters during cross-overs.

Some other genotypes and phenotypes are available as mod-

ules. The most notable one is the direct encoding of neural

networks [28], a simple encoding to evolve the topology and

the parameters of neural networks.

C. Main classes

The main classes are organized in a classic object-oriented

manner, with abstract classes for each of the previously

defined main concepts, which are derived for each partic-

ular implementation (NSGA-2, bit-string, . . . ). Fig. 2 is a

simplified UML diagram. Each class is then combined as

LegoTM bricks by the user to form a particular experiment

(Fig. 3(a)). Fig. 3(b) offers a more dynamic view by showing

how each class uses the other ones during the evolutionary

loop.

IV. IMPLEMENTATION

A. Technical choices

The efficiency of C++ compilers and the large number

of available libraries (both for scientific computing and

for physically simulating agents, an important part of the

authors’ research activities) lead us to choose C++. While the

use of languages such as Java has been considered, modern

C++ techniques makes C++ the most promising combination

of abstraction without any compromise on efficiency.

The Message Passing Interface (MPI) [30] is often the

tool of choice when parallelizing evolutionary algorithms.

It is, for instance, the underlying interface employed by

ParadisEO [15]. MPI processes exchange data (genotypes,

fitness) via simple messages (typically strings of bytes)

transported on networks or unix sockets. This makes MPI

the standard approach to program clusters. However, trans-

forming genotypes to strings and then deciphering messages

can be a costly operation, especially for genotypes such as

graphs or trees. On multi-core and multi-processor systems,

all cores share the same memory and consequently all of

them can directly access genotypes. Consequently, since

Sferesv2 mainly targets multi-core machines, we focused on

shared memory parallelization. At least three main options

are available:

• Posix threads (or multi-platform abstractions of threads

such as boost::thread);

• OpenMP [31];

• Intel TBB6[32].

Posix threads are standards but they are not easy to use

in C++ (because it is a C API based on function pointers)

and some desirable properties, for instance automatically

selecting the number of threads according to the number of

cores, are not built-in. Moreover, they don’t propose high-

level functions to easily parallelize a loop or a sort.

OpenMP [31] is the industry-standard API for shared-

memory parallel computing. It employs annotations

(#pragma) in the source code to describe how to parallelize

loops. It has been more designed for C than C++ and

requires an OpenMP-enabled compiler (GCC compiles

OpenMP code only since a few years).

Intel TBB [32] is a recent alternative freely (GPL-

compatible) provided by Intel to program multi-core systems.

It relies on modern C++ techniques and provides an easy way

to parallelize loops and sort procedures with many automatic

optimizations (such as finding the optimal number of cores

and automatically dividing data between them). Overall, the

programming style of TBB and its features suits well the

Sferesv2 programming approach; that is why we chose to

use this library.

MPI is also available as an optional add-on to run opti-

mization of very costly fitness functions on clusters.

Having chosen the C++ language and a parallelization

layer, efficient C++ libraries have to be selected to write

genotypes on the file system (to save the results) and to

efficiently manipulate matrix/vectors. Using existing libraries

instead of designing our own has the obvious advantage

of keeping the source code of the framework as small as

possible. The following libraries were chosen:

• Boost7[8], [9], a set of peer-reviewed libraries that

provide to Sferesv2:

– memory management (via shared pointers);

– serialization, to write best genotypes on the hard

disk;

– system abstraction (creating directories, etc.);

– unit test framework.

6http://www.threadbuildingblocks.org
7http://www.boost.org



Fig. 2. UML class diagram of the main classes of Sferesv2. Some abstract classes are not implemented because template-based C++ [29] does not require
them. However, these classes are implicit in the source code and the user should assume they exist. The main algorithms derive from ea::EA. Parallel
evaluation is handled by eval::Parallel.

phen_t

fit_t gen_t
eval_t

ea_t stat_t

modif_t

(1)

phen::Parameters

fit::ZDT2 gen::EvoFloat
eval::Parallel

ea::Nsga2 stat::ParetoFront

modif::Dummy

(2)

phen::Parameters

fit::FCigar gen::Cmaes
eval::Eval

ea::Cmaes stat::BestFit

modif::Dummy

(3)

(a) (b)

Fig. 3. (a) The Sferesv2 building set (1) General template. The user first selects a fitness function (fit t) and a genotype type (gen t); they are then
combined with a phenotype type (phen t); the user then selects a statistics list (stat t), an evalutator type (eval t) and a modifier (modif t); last, each type is
combined with an evolutionary algorithm type (ea t) to obtain a full specialized algorithm for the particular experiment. (2) Example of an experiment that
optimize the fitness ZDT2 with NSGA-2 [21] and a parallel (multi-core) evaluator (see section V-A). (3) Example of an experiment that use CMA-ES [25]
to optimize the function fcigar (see section V-B). (b) Overview of how Sferesv2’s objects interact. The main function first calls the run() method of the
defined EA class. This method initializes the population and enters the classic chain of mutation / cross-over / evaluation / modifier. Selection is handled
in ea t::epoch().



template <class Derived> struct Base {
void i n t e r f a c e ( ) {

sta t ic cast<Derived∗>( th is)−>implementat ion ( ) ;
}
void f ( ) {

for ( i n t i = 0 ; i < 3; ++ i ) i n t e r f a c e ( ) ;
}

} ;
struct Derived : Base<Derived> {

void implementat ion ( ) { s td : : cout<<” impl ”<<std : : endl ; }
} ;

Fig. 4. The “curiously recurring template pattern” [34]. This code mimics
a virtual call of an abstract method: in the abstract class (Base), a generic
algorithm can use methods which are only defined in the derived classes.
Extending this pattern to draw a full hierarchy of classes requires more
work; Sferesv2 relies on the method described in [29].

• Eigen28, a fast linear algebra library based on expression

templates [33]. It also supports SSE vector optimiza-

tions.

Thanks to these high-level libraries, the core of sferes

is made of only 4000 lines of code (LOC) and the test

suite of 1200 LOC (compare to about 60,000 LOC in

ParadiseEO [11] or to about 40,000 in OpenBeagle [13]).

B. Static Object Oriented C++

Object-oriented programming (OOP) has many advantages

that are desirable for complex high-level code. However,

classic OOP (e.g. in C++ or in Java) heavily relies on virtual

methods to implement abstraction and polymorphism. Such

an approach has a significant run-time overhead [5]:

• selecting the appropriate method to call requires an

indirection (the software has to check the virtual table);

• abstract/virtual methods cannot be inlined, resulting in a

overhead for very simple methods (e.g. setters/getters).

As a consequence, the use of virtual methods is one of the

main performance issues in object-oriented programming.

For instance, in an image processing benchmark, a speed-

up by a factor 3 has been measured by only getting rid of

virtual methods [6]. Nevertheless, the wide success of OOP

in scientific computing demonstrates the need of high-level

mechanisms such as polymorphism.

The success of the Standard Template Library (STL) [35],

which manages to combine efficiency and abstraction, in-

spired many work in generic programming in C++ [7],

[8], [9], [35], a set of C++ techniques that rely on the

“template” keyword for abstraction. Among the proposed

ideas, the “curiously recurring template pattern” [34] (Fig. 4)

mimics polymorphism without the cost of virtual methods.

This principle can be extended to a whole hierarchy of

classes, leading to “static C++ Object-Oriented Program-

ming” (SCOOP) [29]. In Sferesv2, all classes are imple-

mented using this programming style; no virtual methods

are employed. This mechanics is hidden in Sferesv2 by some

pre-processor macros so that users can use static OOP mostly

like classic OOP.

8http://www.eigen2.org

C. Multi-Core parallelization

Evolutionary algorithms are parallel in essence: the eval-

uation of each individual is independent from the evaluation

of the other ones. In multi-core programming, all cores share

the same memory so in first approximation there is no cost to

evaluate each individual on a different core. This scheme is

close to the classic master-slave distribution [36]; this is what

is implemented in Sferesv2, mainly because of its simplicity.

Nevertheless, it should be noted that:

• This parallelization is more efficient if the computation

of the fitness function is slow. This is often the case in

real-world EC and for instance in evolutionary robotics

but it is not in all benchmarks.

• This parallelization assumes that the cost of distributing

the computation (which is low because all cores access

the same memory but is not zero because the data have

to be split, threads have to be handled and memory

bandwidth is shared between cores) is lower than the

cost of evaluating the fitness of the whole population.

This can be a problem when very small population are

used, as in CMA-ES [25].

• This approach to parallelization is designed for genera-

tional evolutionary algorithms. Steady state algorithms

can also be used but only if a group of individuals is

created at each iteration.

The sorting procedures, widely used in EA, can also be

parallelized and TBB provides built-in parallel sort proce-

dures. However, this parallelization should be useful only

with large populations.

Last, many algorithms use loops that compute a value for

each individual that is independent from the value corre-

sponding to other individuals. This is for instance the case

of the crowd assignment procedure in NSGA-2 [21]. These

loops can be easily parallelized.

D. Compile-time configuration

Evolutionary algorithms have a lot of parameters (e.g.

population size, mutation rate, etc.) and a convenient way to

set them is needed. A configuration file (e.g. an XML file) is

often used. Such a method has, however, several drawbacks:

• some code to read the files has to be written and kept

synchronized with the definition of classes; this has to

be done each time the framework is extended for a

particular EC experiment.

• parameters are unknown at compile time so some checks

(e.g. if (mutation type == x) else ...) have to be done

many times whereas they are useless;

• users cannot rely on the compiler to detect type errors

nor exploit it to define complex configuration schemes

(such as including the same set of parameters in several

experiments).

The last drawback encourages many software designers to

progressively increase the expressive power of their con-

figuration language until it reaches the expressiveness and

complexity of classic programming languages. This obser-

vation suggests a radical point of view: why not use the



struct Params
{

struct pop
{

s t a t i c const unsigned s ize = 200;
/ / . . .

} ;
} ;

Fig. 5. Example of static parameter setting.

programming language used in the framework as a configura-

tion language? Combined with static programming, this also

avoids the first two drawbacks: only the minimum amount

of code (the declaration of the parameter) has to be written

and, provided that these parameters are defined as constants,

the compiler can propagate parameters to the whole program,

hence removing useless branches and optimizing as much as

possible. Incidentally, writing the parameters in C++ allows

to specify them in the same file than fitness functions and

algorithm specification. This makes it possible to define a

whole experiment in a single file.

This approach of parameter setting obviously imposes

to recompile the source code for each parameter change,

a step that can be substantially long with template-based

generic programming. However, given that many EC ex-

periments need several hours of computation, we assumed

that a substantial improvement in simplicity and in speed

counterbalances the time to compile the program.

From a practical viewpoint, Sferesv2 parameters are de-

fined at compile time using a structure that contains only

constants. This structure is passed to all Sferesv2 classes so

they can access the parameters. This method allows to avoid

to write read/write code for parameters. It also allows the

compiler to propagate constants and settings in the whole

source code, resulting in an executable optimized for the

specific parameters. Fig. 5 is an example of such a static

parameter setting in Sferesv2.

V. BENCHMARKS

To evaluate the efficiency of Sferesv2, we measured the

speed achieved by Sferesv2 and reference implementations in

two typical scenarios9: a two objectives problem optimized

by NSGA-II [21] and a single objective one optimized by

CMA-ES [25]. The following questions have been tackled:

• Is Sferesv2 as fast than hand-tuned C code when a single

core is used?

• How does the performance vary when the number of

cores is increased?

• How is multi-core efficiency modified by the time to

evaluate the fitness?

A. NSGA-2

a) Experimental setup: NSGA-2 [21] is one of the most

popular multiobjective evolutionary algorithms. To evaluate

its implementation in Sferesv2, the ZDT2 function [22], a

9The source code of the benchmarks can be downloaded on the Sferesv2

website: http://www.isir.upmc.fr/˜mouret/sferes2

TABLE I

MEAN RUNNING TIME AND STANDARD DEVIATION TO OPTIMIZE ZDT2

WITH NSGA-2, WITH REGARD TO TIME SPENT IN FITNESS.

Implem./fit. slowdown 0 µs (s.d.) 500 µs (s.d.) 2000 µs (s.d.)

Deb 2.45s (0.41) 79.26s (0.03) 304.3s (0.04)

Sferesv2 (1 core) 2.92s (0.3) 80.09s (0.04) 305.13s (0.04)

Sferesv2 (2 cores) 7.75s (0.94) 47.11s (0.81) 159.24s (0.99)

Sferesv2 (3 cores) 8.3s (0.7) 35.35s (0.41) 110.26s (0.1)

Sferesv2 (4 cores) 7.8s (0.52) 28.79s (0.1) 85.17s (0.06)

classic two-objective benchmark function, has been chosen.

It is defined as follows:

Minimize (f1(x1), f2(x))

Subject to f2(x) = g(x2, ..., xm)h(f1(x1), g(x2, ..., xm))

where:

m = 30,x = (x1, · · · , xm) ∈ [0, 1]m

f1(x1) = x1

g(x2, · · · , xm) = 1 + 9 ·

m∑

i=2

xi

m − 1

h(f1, g) = 1 − (f1/g)2

As additional cores are mostly employed to parallelize

fitness evaluation, we can hypothesize that problems with

slow fitness functions will benefit more from multi-cores

than problems with fast fitness. To investigate the efficiency

of Sferesv2 with regard to fitness evaluation duration, ZDT2

has been artificially slowed down (via a usleep call) from 0
to 2000 microsecond10.

Sferesv2 is compared in four versions (single thread, two

threads, three threads and four threads) to the reference

implementation in C provided by K. Deb11. Deb’s code

implements only NSGA-II with binary and real variables;

it is not designed to be an abstract framework and it should

therefore be faster than a framework.

A population of 200 individuals was employed with a

total budget of 100, 000 evaluations. To provide statistically

significant results, 30 runs have been launched for each case,

on an Intel Quad core Q6600 at 2.40 Ghz.

b) Results: Let first analyze the running time when the

fitness evaluation is not slowed down (table I, first column).

In the single core case, Sferesv2 is slightly slower (19%)

than the reference code. However, it should be reminded

that the two implementations of NSGA-2 employ different

algorithms to sort solutions by dominance. Sferesv2 is faster

with large populations (because of its better algorithm) while

Deb’s code is faster with small population (because of faster

specialized C code). Hence, despite the abstraction offered by

Sferesv2, the speed of the two codes is of the same order of

magnitude. This validates the use of modern C++ techniques

as an alternative to hand-tuned C code. The same experiment

10It should be noted that slowing down with usleep() is an ideal case
of slow fitness calculation because there is no memory access during the
sleeping time.

11http://www.iitk.ac.in/kangal/codes.shtml
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Fig. 6. Speed-up ( Ts

Tr

, where Ts is the time to run the code with Sferesv2

and Tr the time to run the same optimization with Deb’s code) with regard
to time spent in fitness and number of cores used. Sf(1) means Sferesv2

(one core), Sf(2) means Sferesv2 (2 cores), etc.

has been launched with EO [13] and running time larger than

60 seconds were observed (more than 20 times slower than

Deb’s code and Sferesv2). We are currently investigating this

difference to double-check that it is not a misuse of EO.

When the number of cores is increased, Sferesv2 is in-

creasingly slower. This counter-intuitive result means that

time spent to parallelize the evaluation (creating threads,

splitting data, ...) is larger than time spent to evaluate

individuals. ZDT2 only requires a few cycles to be computed,

consequently even computing it a few hundred times is easily

faster than a few complex system calls.

This picture is reversed with a slower, more realistic,

fitness function (table I, columns 2 and 3). In the best case

(2000µs and 4 cores), Sferesv2 is 3.6 faster than Deb’s code,

a speed-up close to the theoritical value (4). When two cores

are used, Sferesv2 is 1.9 times faster than the Deb’s code,

showing how a now basic dual-core workstation can benefit

from a parallel evaluation. To further understand when more

than one core should be employed, we computed the speed-

up with regard to time spent in fitness evaluation (Fig. 6).

Results show that if more than 100µs are spent in evaluating

the fitness function, using more cores is profitable.

B. CMA-ES

c) Experimental setup: CMA-ES [25] is a powerful

evolution strategy based on covariance matrix adaptation. It

represents a different class of EA than NSGA-2: it is a single

objective algorithm, it only handles real-valued parameters,

it involves complex matrix manipulations (notably an eigen

vector decomposition) at each generation and relies on a

small population (less than 10). The small population and the

matrix manipulations are expected to decrease the benefits of

parallelization.

In this work, CMA-ES has been evaluated on the mini-

mization of fcigar(x), one of the basic benchmark functions

described in [25]:

fcigar(x) = x2

1
+

n∑

i=2

(1000xi)
2

where x ∈ [0, 1]22 is the candidate solution to be evaluated.

The minimization is stopped when fcigar(x) < 10−12. The

TABLE II

MEAN RUNNING TIME AND STANDARD DEVIATION TO OPTIMIZE fCIGAR

WITH CMA-ES, WITH REGARD TO TIME SPENT IN FITNESS EVALUATION.

Implem./fit. slowdown 0 µs (s.d.) 500 µs (s.d.) 2000 µs (s.d.)

Hansen 0.73s (0.1) 9.26s (0.17) 34.61s (0.58)

Sferesv2 (1 core) 0.96s (0.32) 9.47s (0.2) 33.95s (0.71)

Sferesv2 (2 cores) 0.99s (0.3) 5.66s (0.13) 18.86s (0.39)

Sferesv2 (3 cores) 0.94s (0.18) 4.46s (0.19) 13.8s (0.21)

Sferesv2 (4 cores) 0.97s (0.23) 3.81s (0.09) 11.36s (0.22)
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Fig. 7. Speed-up ( Ts

Tr

, where Ts is the time to run the code with Sferesv2

and Tr the time to run the same optimization with Hansen’s code) with
regard to time spent in fitness evaluation and number of cores used (Sf(1)
means Sferesv2 (one core), etc.).

parameters are those suggested by Hansen [25]; notably,

the population is made of only 7 individuals. Sferesv2 is

compared with Hansen’s implementation in C12.

d) Results: When only one core is used, Sferesv2 is

about 30% slower than Hansen’s code (Table II). We think

that a 30% slow down is satisfying because Sferesv2 is

more abstract and high-level than the hand-tuned C-code

provided by Hansen. The difference in abstraction level is

easily illustrated by the length of the two source codes: about

2000 lines of code for Hansen’s implementation and 200
lines for Sferesv2’s implementation. This result validates the

use of template-based C++ as an alternative to hand-tuned C

code.

Contrary to the experiments with NSGA-2, Sferesv2 does

not significantly slows down when more than one core is

employed with a fast fitness. However, adding more cores in

this situation appears useless13. When time spent in fitness

increases (Fig. 7), it becomes more profitable to use several

cores. In the best case (2000µs spent in fitness), a speed-up

of 3.0 is observed with 4 cores and one of 1.8 with two

cores.

VI. CONCLUSION

This paper introduced Sferesv2, a C++ framework for

evolutionary computation based on multi-core parallelization

and template-based C++. The current implementation and

benchmarks results show that Sferesv2 fulfills the initial

goals:

12http://www.lri.fr/˜hansen/cmaes_inmatlab.html
13This may be caused by the heuristics of TBB that could consider that

the parallelization is inefficient and, consequently, only use one core.



• Sferesv2 is only made of 4, 000 lines of code, making

it easy to learn;

• when a single core is used, running time are of the same

order of magnitude than hand-tuned C code;

• when n cores are used, typical speed-ups range from

0.75n (CMA-ES with four cores, slow fitness) to 0.9n
(NSGA-2 with two cores, slow fitness).

These results validate the use of multi-core programming and

template-based C++ to combine efficiency and abstraction

in evolutionary computation. However, benchmarks results

also revealed that parallelization in Sferesv2 was inefficient

with very fast fitness functions (evaluation time lower than

100µs). This issue should be further investigated because

fast fitness functions are employed by some researchers to

test their algorithms.

Sferesv2 is currently distributed under the CECILL li-

cense14 (GPL-compatible). It can be downloaded with

its documentation on: http://www.isir.upmc.fr/

˜mouret/sferes2
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