
1

SfM with MRFs: Discrete-Continuous
Optimization for Large-Scale
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Abstract—Recent work in structure from motion (SfM) has built 3D models from large collections of images downloaded from

the Internet. Many approaches to this problem use incremental algorithms that solve progressively larger bundle adjustment

problems. These incremental techniques scale poorly as the image collection grows, and can suffer from drift or local minima. We

present an alternative framework for SfM based on finding a coarse initial solution using hybrid discrete-continuous optimization,

and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF)

formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources

of information about both the cameras and points, including noisy geotags and vanishing point estimates. We test our method

on several large-scale photo collections, including one with measured camera positions, and show that it produces models that

are similar to or better than those produced by incremental bundle adjustment, but more robustly and in a fraction of the time.

Index Terms—Structure from motion, 3D reconstruction, Markov random fields, belief propagation
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1 INTRODUCTION

S TRUCTURE from motion (SfM) techniques have
recently been used to build 3D models from un-

structured and unconstrained image collections, in-
cluding photos from online social media sites such
as Flickr [2], [3], [4], [5]. Many of these approaches
operate incrementally, starting with a small seed re-
construction that is grown by repeatedly adding ad-
ditional cameras and scene points. While such incre-
mental approaches have been quite successful, they
have two significant drawbacks. First, these meth-
ods tend to be computationally intensive, making
repeated use of bundle adjustment [6] (a non-linear
optimization that jointly refines camera parameters
and scene structure) as well as outlier rejection to re-
move inconsistent measurements. Second, since these
methods do not treat all images equally, they produce
different results depending on the order in which
photos are considered. This can lead to failures due
to local minima or cascades of misestimated cameras.
Such methods can also suffer from drift, especially in
large scenes containing weak visual connections.

In this paper we propose a new SfM method for
unstructured image collections that considers all pho-
tos at once, rather than building up a solution in-

• David Crandall is with the School of Informatics and Computing,
Indiana University. E-mail: djcran@indiana.edu

• Andrew Owens is with the Computer Science and Artificial Intel-
ligence Laboratory, Massachusetts Institute of Technology. E-mail:
andrewo@mit.edu

• Noah Snavely and Daniel Huttenlocher are with the
Computer Science Department, Cornell University. E-mail:
{snavely,dph}@cs.cornell.edu

crementally. This method is faster than current incre-
mental bundle adjustment (IBA) approaches and more
resilient against reconstruction failures. Our approach
computes an initial estimate of the camera poses using
all available photos, and then refines that estimate
and solves for scene structure using bundle adjust-
ment. This approach is reminiscent of earlier work in
SfM, prior to recent work on unstructured collections,
which first solved for a good initialization (e.g., using
factorization methods [7]) and then applied bundle
adjustment as a final nonlinear refinement step to
obtain accurate camera parameters and scene struc-
ture. Similarly, our approach can be thought of as
estimating an initialization for unstructured image
sets which is readily refined using bundle adjustment.

In particular, we obtain such an initialization
through a two-step process combining modern dis-
crete and continuous optimization techniques. In the
first step, discrete belief propagation (BP) is used to
estimate camera parameters based on a Markov ran-
dom field (MRF) formulation of constraints between
pairs of cameras or between cameras and scene points;
while such discrete methods are common in vision
problems such as stereo or optical flow, we show
they are also useful for SfM. The second step is a
Levenberg-Marquardt nonlinear optimization related
to bundle adjustment, but involving additional con-
straints. This hybrid discrete-continuous optimization
allows for an efficient search over a very large param-
eter space of camera poses and 3D points. The method
requires a fraction of the time of IBA, due to both its
favorable asymptotic complexity and the fact that it is
highly parallelizable on distributed-memory clusters
(unlike IBA). In fact, most of the computation time of
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our approach is spent in the final bundle adjustment.
A key benefit of our approach is robustness; unlike

linear formulations of batch SfM, our approach can
use robust objective functions, which are key for han-
dling noisy, real-world data. An additional benefit is
our formulation can naturally incorporate noisy prior
information about camera poses. Such prior informa-
tion is becoming common for online photos because
many modern cameras (and smartphones) record GPS
and compass heading information. These measure-
ments are also highly noisy, however, presenting a
major challenge. Geotag errors are routinely in the
tens of meters, and geotags on the wrong continent
are not uncommon. Our MRF-based formulation can
naturally integrate this noisy information into the
optimization using unary potentials with robustified
distance functions. By using all of the available data
at once (rather than incrementally), and by allowing
additional types of constraints, we find that our ap-
proach is quite robust on large, challenging problems.

We evaluate our hybrid method on several large
datasets downloaded from photo-sharing sites, and
find that it produces comparable reconstructions—
and in the case of a particularly challenging dataset,
a much better reconstruction—to those produced by
state-of-the-art IBA [2] in significantly less time. We
also test it on a dataset of several thousand photos
of a university campus, with some photos that have
high precision, ground-truth camera positions (mea-
sured using survey-quality differential GPS). On this
dataset our method and IBA have similar accuracy
with respect to the ground truth, and thus our method
not only can yield similar results to those of IBA, but
the two achieve comparably accurate reconstructions.

2 RELATED WORK

Current techniques for large-scale SfM from un-
ordered photo collections ([2], [4], [8], [5]) make
heavy use of bundle adjustment to solve a non-linear
optimization problem. Bundle adjustment is highly
sensitive to initialization, so these systems are run
iteratively by starting with a small set of photos, then
repeatedly adding photos and refining 3D points and
camera poses using bundle adjustment while discard-
ing or downweighting outliers. While generally suc-
cessful, incremental approaches are time-consuming
for large image sets, with a worst-case running time
of O(n4) in the number of images (though efficient im-
plementations may avoid the worst case in practice).1

One way to reduce the cost is by pruning the image
set; recent work has used clustering or graph-based
techniques to reduce the number of images that must

1. If the problem is dense, so that all images see common features,
then direct methods for solving the reduced camera matrix in
bundle adjustment [6] take O(n3) time in the number of images. If
a constant number of images is added in each round of incremental
SfM, the total running time is O(n4); for some problems this can
be alleviated with sparse or iterative methods [9], [10].

be considered in SfM [4], [11], [12], [13]. For example,
Li et al. [4] first cluster a set of images to find ‘iconic
images,’ then compute 3D structure incrementally
using an approach based on spanning trees. These
techniques make SfM more tractable, but the graph
algorithms themselves can be costly, the number of
remaining images can be large, and the effects on
solution robustness are not well understood.

Other approaches to SfM solve the problem in a
single batch optimization. These include classical fac-
torization methods [7], which in some cases can solve
SfM in closed form. However, it is difficult to apply
factorization to perspective cameras with significant
outliers and missing data (which are the norm for
Internet photo collections). Our work is most closely
related to batch SfM methods that solve for a global
set of camera poses given local estimates of geom-
etry, such as pairwise relative camera poses. These
include linear methods for solving for global camera
orientations or translations [14], [15], [16], and L∞

methods for solving for camera (and possibly point)
positions given known rotations [17], [18]. While effi-
cient, these methods do not have built-in robustness
to outliers, which we have found can cause them to
fail on the noisy, unstructured image collections that
we consider; similarily, it can be difficult to integrate
noisy prior pose information into the optimization. In
contrast, our MRF formulation can easily incorporate
both robust error functions and priors.

Other work has incorporated geotags and other
prior information into SfM, as we do here. Sinha et
al [19] propose a linear SfM method that incorpo-
rates vanishing points (but not geotags) in estimating
camera orientations. They use only a small number
of pairwise estimates of geometry (a spanning tree
on an image graph) for initializing translations, while
our method incorporates all available information.
Prior information has also been used in pre- or post-
processing for SfM, e.g., by applying vanishing point
or map constraints to straighten out a model [20],
[21], using sparse geotags to georegister an existing
reconstruction [22], or using geotags and GIS data to
register different connected components of a recon-
struction [3], [23]. We incorporate geotag and vanish-
ing point information into the optimization itself.

Work in other contexts has considered the problem
of estimating camera poses. MRFs have been used to
estimate camera pose in the Simultaneous Localiza-
tion and Mapping (SLAM) literature [24], [25], but
in SLAM there are strong sensor and motion models
and the optimization is conducted using continuous
techniques. In contrast, our approach handles large,
unstructured collections of images with weak pose
information utilizing both discrete and continuous
methods. Researchers in sensor networks have in-
vestigated message passing techniques for calibrating
distributed camera networks, including forms of dis-
tributed averaging [26] and belief propagation [27],



3

[28]. While efficient in their use of continuous opti-
mization methods, these prior techniques are based
on objective functions that are sensitive to outliers.
Further, Devarajan and Radke [27] estimate a locally
consistent reconstruction for each sensor, whereas our
goal is to reconstruct a single, globally consistent set
of camera poses.

Finally, other techniques for accelerating SfM have
been proposed, including methods for hierarchical
reconstruction and bundle adjustment [29], [30], [3].
These methods still depend on an incremental ap-
proach for initialization, but structure the computa-
tion more efficiently. We present an alternative that
avoids incremental reconstruction altogether.

3 ESTIMATING CAMERAS AND POINTS

Our method computes camera poses for an entire
image collection at once (or more precisely, for images
corresponding to each visually connected component
of the image set), allowing us to consider all avail-
able geometric constraints simultaneously, rather then
utilizing incremental reconstruction techniques. At a
high level we do this by first solving for consistent
camera orientations and then solving for camera and
3D point positions. These subproblems are both for-
mulated as MRFs, as we describe in this section.

Our approach represents a set of images as a graph
that models geometric constraints between pairs of
cameras or between cameras and scene points (as
binary constraints), as well as single-camera pose in-
formation such as geotags (as unary constraints). This
set of binary and unary constraints can be modeled
as a Markov random field (MRF) with an associated
energy function on configurations of cameras and
points. A key contribution of our work is to use
both discrete and continuous optimization to mini-
mize this energy function; in particular, we use belief
propagation (BP) on a discretized space of camera
and point parameters to find a good initialization,
and non-linear least squares (NLLS) to refine the es-
timate. Combining discrete and continuous optimiza-
tion techniques has been found to work well on other
vision problems, such as optical flow [31]. The power
and generality of this combination of techniques al-
low us to efficiently optimize a more general class
of energy functions than previous batch techniques
(e.g., factorization). This class includes robust error
functions, which are critical to obtaining good results
in the presence of noisy observations.

Figure 1 illustrates a typical large-scale SfM pipeline
and shows how our technique fits into it: our method
is the red box in this figure, and can be thought
of as taking geometric information including feature
matches, pairwise relative pose information, and geo-
tags as input, and producing a good initialization for
bundle adjustment as output. The following sections
first describe our formulation of the SfM problem,

followed by the belief propagation (BP)-based dis-
crete optimization and the continuous non-linear least
squares optimization (NLLS).

3.1 Problem formulation

The input to our problem consists of (a) a set of
images I = {I1, . . . , In}, (b) relative pose estimates
between some pairs of images (computed using two-
frame SfM, described in Section 4), (c) noisy point
correspondences between the images, and (d) noisy
absolute pose estimates for a subset of images (de-
rived from sources like geotags). Our goal is to es-
timate an absolute camera pose for each image, and
a location for each scene point, consistent with all
of the input measurements and in a geo-referenced
coordinate system. We denote the absolute pose of
image Ii’s camera as a pair (Ri, ti), where Ri is a
3D rotation specifying the camera orientation and ti
is the camera position in a global coordinate frame.
The 3D position of a scene point is denoted Xk.

Each pairwise estimate of relative pose between two
images Ii and Ij has the form (Rij , tij) where Rij is
a relative orientation and tij is a translation direction
(in the coordinate system of camera Ii). Given perfect
pairwise pose estimates, the absolute poses (Ri, ti)
and (Rj , tj) of the two cameras would satisfy

Rij = R⊤
i Rj (1)

λijtij = R⊤
i (tj − ti), (2)

where λij is an unknown scaling factor (because only
the direction of translation can be estimated from a
pair of images due to the gauge ambiguity in SfM). We
can also write constraints between cameras and scene
points. For a scene point Xk visible to camera Ii, let
xik denote the homogeneous 2D position of the point
in Ii’s image plane. Then we can relate the absolute
pose of the camera and the 3D location of the point,

µikxik = KiRi(Xk − ti), (3)

where Ki is the matrix of camera intrinsics for im-
age Ii (assumed to be known from EXIF metadata
as described in Section 4), and µik is an unknown
scale factor (the depth of the point). Equation (3) is
the basis for the standard reprojection error used in
bundle adjustment. The above three constraints can
be defined on a reconstruction graph G = (V,EC ∪EP )
having a node for each camera and each point, a set
EC of edges between pairs of cameras with estimated
relative pose, and a set EP of edges linking each
camera to its visible points (see Figure 2). Bundle ad-
justment typically only uses point-camera constraints
(as relative poses between cameras are implicit from
point correspondence), but in batch techniques con-
straints between cameras have proven useful. Figure 3
shows a sample reconstruction graph.

For real-world problems, Equations (1)–(3) cannot
be satisfied exactly because of noise and outliers in
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Fig. 1. A typical structure from motion pipeline (top row) turns 2D images into 3D geometry. Features are

detected and then matched across images, forming tracks. An initialization phase estimates camera and scene

geometry, typically using repeated (incremental) rounds of bundle adjustment, followed by a final round of bundle

adjustment to solve for camera and scene geometry. In contrast, we propose initializing with a multi-stage

optimization (bottom row) that combines discrete belief propagation and continuous optimization.

Fig. 2. A reconstruction graph, containing a node for

each camera (blue), a node for each 3D point (red),

some camera-camera edges (representing overlap-

ping images having relative pose estimates) and some

camera-node edges (representing visibility of points

in images). Each camera-camera edge has estimates

Rij and tij of relative pose between the two cameras.

relative pose estimates and point correspondences, so
we pose the problem as an optimization which seeks
absolute poses most consistent with the constraints
according to a cost function. Ideally, one would op-
timize camera poses and points simultaneously, as
in bundle adjustment, but in practice many batch
techniques solve for camera rotations and translations
separately to reduce computational cost [16], [17], [19].
We follow this custom and define an MRF for each
of these two subproblems. A key concern will be to
use cost functions that are robust to incorrect geotags,
two-frame geometry, and point correspondence.

3.1.1 Rotations

We first solve for absolute 3D camera rotations Ri,
given the pairwise relative rotations Rij as well as any
available prior information about camera orientation.
From Equation (1) we see that for neighboring images
Ii and Ij in the reconstruction graph, we seek absolute

Fig. 3. A reconstruction subgraph from the Acropolis
dataset, showing camera nodes and sample images.

camera poses Ri and Rj such that dR(Rij ,R
⊤
i Rj) is

small for some choice of distance function dR between
3D rotations. This choice of distance function is tightly
linked with the choice of parameterization of 3D
rotations. Previous linear approaches to this problem
have used a squared L2 distance between 3 × 3 ro-
tation matrices (i.e., the Frobenius norm) or between
quaternions. Such methods relax the orthonormality
constraints on these representations, which allows for
an approximate least squares solution. In our case, we
instead define dR to be a robustified distance,

dR(Ra,Rb) = ρR(||Ra − Rb||), (4)

for a rotation parameterization detailed below and
robust function ρR (we use a truncated quadratic).

For some cameras we may have noisy orientation
evidence from information such as vanishing point
detection or electronic compass sensors in the camera.
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To incorporate this ‘unary’ evidence into our opti-
mization, we assume that for each image Ii there
is a distance function dO

i (R) that gives a cost for
assigning any absolute orientation R to Ii’s camera.
This function can have any form, including uniform
if no prior information is available; we propose a
particular cost function in Section 4.

We combine the unary and binary distances into a
total rotational error function DR,

DR(R) =
∑

eij∈EC

dR
(

Rij ,R
⊤
i Rj

)

+ α1

∑

Ii∈I

dO

i (Ri), (5)

where R is an assignment of absolute rotations to the
entire image collection, EC is the set of camera-camera
edges, and α1 is a constant weighting the unary term
with respect to the binary term.

3.1.2 Camera and point positions

Having solved for camera rotations, we fix them and
estimate the positions of cameras and a subset of scene
points by solving another MRF inference problem on
the graph G. As with the rotations, we define an error
function using both binary and unary terms, where
binary terms correspond to the pairwise constraints
in Equations (2) and (3), and unary terms correspond
to prior pose information from geotags.

Equation (2) implies that for a pair of adjacent
images Ii and Ij we seek absolute camera positions
ti and tj such that the relative displacement induced
by those absolute camera positions, tj − ti, is close
to the relative translation estimate t̂ij = Ritij . Sim-
ilarly, for a point Xk visible in image Ii, we want
the displacement Xk − ti to be close to the ‘ray
direction’ x̂ik derived from the 2D position of that
point in the image (where x̂ik = R⊤

i K−1
i xik given

observed position xik and known intrinsics Ki). Thus
we can utilize both camera-camera constraints (derived
from two-view geometry) and camera-point constraints
(derived from point correspondence).

Linear approaches in the literature have considered
one or the other of these constraints by observing that
the cross product t̂ij×(tj−ti) = 0 for camera-camera
constraints [14], or that x̂ik×(Xk−ti) = 0 for camera-
point constraints [15]. Taken together over an im-
age collection, these constraints form a homogeneous
linear system, but the corresponding least squares
problem minimizes a non-robust cost function and
disproportionately weights distant points. Alternative
formulations based on L∞ have been defined [18], [17]
but these too lack robustness. In contrast, we explicitly
handle outliers by defining a robust distance on the
angle between displacement vectors,

dT(va,vb) = ρ(angleof(va,vb)), (6)

where ρ again denotes a robust distance function.
We can also integrate geotags into the optimiza-

tion. For now we simply assume that there is a cost
function dG

i (ti) for each image Ii over the space of

translations, which may be uniform if no geotag is
available; we propose a particular form for dG

i in
Section 4. We define the translational error of an
assignment of absolute positions T to cameras and
points as a combination of binary and unary terms,

DT(T ) = α2

∑

eij∈EC

dT(tj − ti, t̂ij) + dT(ti − tj , t̂ji) +

α3

∑

eik∈EP

dT(Xk − ti, x̂ik) +
∑

Ii∈I

dG

i (ti) (7)

where EC is the set of camera-camera edges in G, EP
is the set of camera-point edges, and α2 and α3 are
constants. We could ignore either set by fixing α2 or
α3 to 0; we evaluate these options in Section 5.

3.2 Initial poses and points via discrete BP

The objectives in Equations (5) and (7) can be
minimized directly using Levenberg-Marquardt with
reweighting for robustness, as we discuss in Sec-
tion 3.3, but this algorithm requires a good initial
estimate of the solution. We tried using raw geotags
to initialize the camera positions, for example, but
we have found that they alone are too noisy for this
purpose. In this section we show how to compute
a coarse initial estimate of camera poses and point
positions using discrete belief propagation on an MRF.

The reconstruction graph G can be viewed as a first-
order MRF with hidden variables corresponding to
absolute camera orientations and camera and point
positions, observable variables corresponding to prior
camera pose information and constraints between
pairs of cameras and between cameras and points. In
discrete MRF inference one generally wishes to choose
a label for each hidden variable, which in our problem
corresponds to choosing a discretized rotation or po-
sition. The maximum a posteriori inference problem
can be viewed as an energy minimization,

min
L

∑

eij

dij(li, lj) +
∑

vi

di(li) (8)

where for each edge there is a binary term dij that
measures how well the labels li and lj at vertices vi
and vj are compatible with one another, and for each
vertex vi there is a unary term di measuring how well
the label li fits the observation for that vertex.

Finding an optimal labeling of an MRF is NP-hard
in general, but approximate methods work well on
problems like stereo [33]. However, unlike the grid-
structured graphs that arise in stereo, our MRF is
highly non-uniform (dense in some places and sparse
in others; see Figure 3) and the label space is very
large. We use loopy discrete belief propagation (BP) to
do approximate inference on this MRF efficiently [34].
BP is a message-passing technique in which in each
iteration t each node vi sends a message to each of its
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neighbors j ∈ N (i),

mt
i,j(lj) = min

li

dij(li, lj) + di(li) +
∑

r∈N (i)\{j}

mt−1
r,i (li).

(9)
After running BP for T iterations, each node chooses
a label based on its incoming messages,

l∗i = min
li

Dp(li) +
∑

r∈N (i)

mT
r,i(li). (10)

Belief propagation is not guaranteed to converge
when applied to graphs with cycles, but it has been
found to perform well on many loopy graphs in prac-
tice. The running time of BP is O(mL2) per iteration,
where m is the number of edges in the MRF and L
is the number of possible labels. However, for certain
classes of pairwise distance functions, including the
ones we propose here, the messages can be computed
in O(mL) time, as we describe in Section 4.

We first solve for absolute camera rotations R by
minimizing Equation (5) using discrete BP. Instead
of solving for full 3D rotations, we reduce the state
space by assuming that most cameras have little twist
(in-plane rotation) because most photos are close to
landscape or portrait orientations and modern digital
cameras automatically orient images correctly. (We
estimate that about 80% of photos in our datasets have
less than 5◦ twist, and 99% have less than 10◦ twist.
The no-twist assumption is made only during the BP
stage; in the later NLLS and bundle adjustment stages
we allow twist angles to vary.) Under this assumption,
camera orientations Ri can be represented as a single
unit 3-vector vi (the viewing direction). The distance
function in Equation (4) then simplifies to

dR0(vi,vj) = ρR(||vij − R0(vi)
−1vj ||), (11)

where vij is the expected viewing direction of camera
j in camera i’s coordinate system (which can be
computed from Rij) and R0(v) is a 3D orientation
with viewing direction v and no twist.2 This distance
function simply measures the difference between two
viewing directions. For the robust error function
we use a truncated quadratic, ρR(x) = min(x2, KR),
where KR is a constant (we use 1.0).

Having solved for absolute camera orientations,
estimating camera and point positions involves min-
imizing equation (7). This minimization can also be
formulated as an MRF and solved through BP since
its form is the same as the MRF energy minimization
in Equation (8), where DT is the binary potential for
each edge and DG is the unary term for each vertex.

3.3 Refining poses using non-linear least squares

Using the coarse estimates of rotations or translations
determined by BP, we apply continuous optimization

2. R0(v) is unique unless v points straight up or down; in these
cases we arbitrarily pick a rotation matrix consistent with v, which
may cause (11) to overestimate the error. We found that such cases
were uncommon enough to not have an effect on the optimization.

to the objective functions in Equations (5) and (7),
using the Levenberg-Marquardt (LM) algorithm for
non-linear least squares [35]. Rather than using a
robust objective for LM, we simply remove edges and
geotags from the reconstruction graph that disagree
with the BP estimates by more than a threshold, then
run LM using squared residuals. These NLLS steps are
related to bundle adjustment in that both minimize a
non-linear objective by joint estimation of camera and
point parameters. However, our NLLS stages separate
rotation estimation from translation estimation, and
integrate camera-camera constraints in addition to
point-camera constraints. For the optimization over
camera rotations, we use an outlier threshold of 20◦

and for the optimization over camera/point transla-
tions, we use an outlier threshold of 40◦.

4 LARGE-SCALE RECONSTRUCTION

We now show how to perform SfM on large image sets
using the approach described in the previous section.
Our method consists of the following steps:

1) Build the reconstruction graph G through image
matching and two-view relative pose estimation;

2) Compute noisy priors for some images using
geotags and vertical vanishing points;

3) Estimate camera orientations, R, with discrete
BP (Section 3.2) followed by continuous opti-
mization (Section 3.3);

4) Estimate positions T of cameras and a subset of
3D points with BP and continuous optimization;

5) Solve for cameras and points with a single stage
of bundle adjustment, initialized with pose esti-
mates from steps 3 and 4.

4.1 Step 1: Producing pairwise transformations.

We use feature matching and two-frame SfM to es-
timate correspondence and pairwise poses between
images. To avoid all-pairs matching, we use two
heuristics to quickly find candidate matching image
pairs. The first is similar to [2]. We use a vocabulary
tree [37] to find, for each image, 80 similar images. For
each such candidate image pair, we compute detailed
SIFT matches [36] using approximate nearest neigh-
bors [38]. For matching pairs, we estimate relative
pose using the 5-point algorithm [32] followed by
bundle adjustment. The second heuristic uses geotags
to find nearby pairs of photos, as in [3]. For each photo
p, we sample 80 photos with probability proportional
to exp(−d2/2σ2), where d is the distance to p’s geotag,
and σ = 40. We match and reconstruct each candidate
pair, adding an edge to the graph G if successful.
We then alternate between (1) densifying G using
query expansion [2], (2) sampling pairs from different
connected components (CCs) of G with probability
based on proximity, and (3) sampling pairs where
exactly one image belongs to the largest CC of G.
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During matching we attempt to remove images that
are problematic for SfM. In particular, we discard
images wthout EXIF focal length metadata since the 5-
point algorithm requires camera intrinsics. We remove
panoramas by filtering out photos with aspect ratios
outside of [0.5, 2.0]. Finally, since our discrete BP as-
sumes that cameras have nearly zero twist, we remove
images for which the twist angle of most pairwise
transformations in the match graph is above 20◦.

4.2 Step 2: Computing prior evidence

The estimation technique presented in Section 3 can
make use of prior pose information on individual
cameras, if available. We currently incorporate two
sources of information: geotags for estimating posi-
tions, and a combination of vanishing point detection
and geotags for estimating camera orientation.

4.2.1 Prior on camera position

For an image Ii with geotag gi, we define the posi-
tional cost function dG

i as a distance from the geotag,

dG

i (ti) = ρT (|| en(gi) − π(ti)||), (12)

where ρT is a truncated quadratic (for robustness),
π is a projection of 3D camera positions into a local
Cartesian plane tangent to the surface of the earth,
and en maps geotags in latitude-longitude coordinates
to this plane.3 Robust distances are essential because
geotags are typically noisy and contaminated with
outliers [23]. For images without geotags we use a
uniform function for dG

i .

4.2.2 Prior on camera orientation

For rotations, we define a cost function for each image
as a sum of distances over the three rotational axes,

dO

i (Ri) = dθi (Ri) + dφi (Ri) + dψi (Ri), (13)

where dθi , dφi , and dψi measure the error between an
absolute camera rotation Ri and prior pose informa-
tion in pan, tilt, and twist, respectively. These prior
estimates of camera orientation could come from a
variety of sources, including the compass and gy-
roscopes that are common in modern smartphones;
in our implementation, we use image analysis to
estimate vertical vanishing points (VPs).

Many images of man-made scenes feature promi-
nent vertical lines, which can be used to estimate
camera tilt and twist angles. We roughly follow Sinha
et al. [19], running Canny edge detection, edge linking,
line fitting, and Hough voting, where each detected
line segment longer than a threshold (40 pixels) votes
for a set of VP hypotheses. We then find the three
distinct VPs with the highest votes, and take the
topmost one (in image coordinates) as the vertical

3. This frame is often called local east-north-up; we use only the 2D
east and north coordinates since geotags do not include altitudes.

VP (provided it has at least 10 supporting lines and
corresponds to a reasonable tilt angle below 45 de-
grees). For a VP with vertical image coordinate yi,
we compute the tilt angle as φi = arccos(yi

fi
), where

fi is the focal length (from EXIF metadata), and then
define dφi (Ri) to penalize the tilt of Ri as a function of
angular distance to φi. (If no vertical VP is found, we
use a uniform function for dφi .) This simple technique
typically yields estimates within a few degrees of the
true tilt, as we show in Section 5.5. We could similarly
estimate twist angle to define a function dψi (Ri), but
do not do this in our current implementation.

To estimate pan angle we observe that Equation (2)
constrains the absolute orientation Ri of camera Ii,
given absolute positions of cameras Ii and Ij and the
relative translation between them. Using geotags as
estimates of the camera positions, we obtain a weak
cost distribution for camera pan (heading direction),

dθi (Ri) =
∑

j∈N(i)

wgiw
g
j min(||Ritij−

gij
||gij ||

||, KG)2, (14)

where N(i) are the neighboring cameras of Ii, gij =
en(gj) − en(gi), wgi and wgj indicate whether Ii and Ij
have geotags, and KG is set empirically to 0.7.

4.3 Step 3: Solving for absolute rotations

We do inference on our MRFs using discrete loopy
belief propagation (BP), as described in Section 3.2.
To parameterize the rotations for BP, we assume zero
twist angle and represent the viewing direction as a
point on the unit sphere. We discretize the sphere
into a 3D grid with 11 cells in each dimension, for a
total of 113=1331 labels. This parameterization allows
the distance in Equation (11) to separate into a sum
over dimensions, so that messages can be computed
in O(mL

4

3 ) time instead of O(mL2). Substituting the
rotational prior and pairwise error terms from Equa-
tions (11) and (13) into Equation (9), the message
update equation for the MRF in Equation (5) becomes,

mt
i,j(lj) = min

li

ρR(||µij(lj) − li||) + Di(li), (15)

where

µij(lj) = [µxij(lj) µyij(lj) µzij(lj)]
T = R0(lj)vij and,

Di(li) = α1d
O

i (li) +
∑

r∈N (i)\{j}

mt−1
r,i (li),

and we set α1 = 1.0 in all our experiments reported
here. Equation (15) can be written as nested minimiza-
tions over the viewing direction dimensions,

mt
i,j(lj) = min (K2

R + min
li

Di(li),

min
lz
i

(µzij(lj) − lzj )
2 + (min

l
y
i

(µyij(lj) − l
y
j )

2

+ (min
lx
i

(µxij(lj) − lxj )
2 + Di(li)))),
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where li = [lxi l
y
i lzi ] [39]. Note that Di can be com-

puted for all labels in O(L) time, each of the inner
minimizations can be performed in O(L

4

3 ) time, and
the outer minimization can be performed in O(L)
time, yielding an overall time of O(mL

4

3 ) to compute
all messages along all edges of the MRF. Note that
in this parameterization only the 482 (of 1331) cells
intersecting the surface of the unit sphere are valid
states, so all other states are clamped to infinite cost.

We then run non-linear least squares to optimize
Equation (4) (using a squared distance), initializing
viewing directions to the BP solutions and twist an-
gles to 0. In this optimization, we represent displace-
ment rotations using Rodrigues parameters and allow
twist angles to vary. We used Matlab’s sparse precon-
ditioned conjugate gradients solver in lsqnonlin.

4.4 Step 4: Solving for translations and points

We next use discrete BP to estimate the positions
of cameras and some scene points. We identify
scene points by finding point tracks [2]—interest
points across multiple images that have similar SIFT
descriptors—and add some of these points as nodes
in the MRF. To avoid adding too many nodes, we
greedily select a subset of tracks that covers each
camera-camera edge in the reconstruction graph at
least k1 times, and that covers each image at least
k2 ≥ k1 times (we use k1 = 5 and k2 = 10).

Applying BP to this problem is straightforward,
but the large label space (the set of all possible 3D
positions) makes a naive implementation costly. We
use two strategies for reducing this cost. First, we
reduce the label space by solving only for 2D posi-
tions, as in most scenes the camera and point posi-
tions vary predominantly over the ground plane. (We
make this assumption only during discrete BP; the
later non-linear least squares and bundle adjustment
stages relax this constraint.) We discretize the space
according to the geographic size of the region being
reconstructed (estimated using geotags), typically us-
ing a 300×300 grid where each cell represents an area
of about 1-4 meters square (so that L = 90, 000).

Second, we compute messages efficiently using the
generalized distance transform [39]. To allow this, we
approximate the distance function in Equation (6) as,

dT

app(va,vb) = ρT (||va × vb||) (16)

= ρT (||va − (va · vb)vb||)
with robust distance function ρT (x)= min(x, KT )2

with KT set to about 10m. Recall that the param-
eters to this function are translation directions, not
absolute displacements, due to the gauge ambiguity
in pairwise SfM. This approximation penalizes dis-
tant cameras or points more than nearby cameras or
points, even if their angular differences are the same
(Figure 4). This approximation is related to the linear
approach of [14], which uses a non-robust version of

dT dT
app

Fig. 4. Visualization of Equations (6) and (16), in which

ti is at a fixed location and tij = (0, 1) (the expected

translation is north), and grayscale intensity shows cost

as a function of tj . dT penalizes based on angular

distance from tij , while dT
app penalizes distant choices

of tj more than nearby choices that do not lie along tij .

dT
app and estimates translations by reweighted least

squares; such approaches are sensitive to outliers, as
without the truncation the error terms grow quadrat-
ically. Hence, we found the use of robust objective
functions to be critical in practice.

We use discrete BP to minimize Equation (7) using
this approximate distance function. We show how to
efficiently compute the BP messages between cam-
eras in detail, but the messages between points and
cameras can be computed in a similar manner. The
message update in Equation (9) that is implied by the
pairwise cost in Equation (7) is difficult to compute
efficiently, so we approximate it as

mt
i,j(lj) =min

li

2α2ρT (||(lj − li) × t̂ij ||) + Di(li). (17)

Supposing that we rotate the coordinate system such
that t̂ij=(0, 1), the messages simplify to

mt
i,j(lj) = min(2α2K

2
T + min

li

Di(li),

min
l
y
i

(min
lx
i

2α2 (lxj − lxi )
2 + Di(li))), (18)

where li = [lxi l
y
i ] and lj = [lxj l

y
i ]. We set α2 = α3 =

0.5, determined empirically. The innermost minimiza-
tion can be performed for all lj in linear time using the
generalized distance transform [39], while the other
minimizations and the computation of Di can also be
performed in linear time. Thus the overall running
time for computing all messages is O(mL), where m
is the number of edges in the MRF, versus the O(mL2)
time that would normally be required. Rotating the
coordinate system such that t̂ij = (0, 1) means apply-
ing a rotation to the sampled (discrete) distribution
Di, performing the minimizations on those buffers,
and then applying the opposite rotation to yield mi,j

in the global coordinate frame.

Additionally, the approximate distance function lets
us store each BP message in O(

√
L) space. Each

message contains at most O(
√

L) distinct values, since
mi,j(lj) in Equation (18) is a function only of lxj in
the rotated space. Thus we can compress mi,j(lj) by
storing a single row of the message in the rotated
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space along with the rotation angle.
We next apply non-linear least squares optimiza-

tion with the solution found via BP as initialization,
using lsqnonlin to minimize the squared residuals
in Equation (7), allowing cameras and points to vary
in height as well as ground position.

4.5 Step 5: Bundle adjustment

We use the estimates for the cameras and a sparse set
of 3D points obtained in the last step as initialization
to a global bundle adjustment stage in which all
parameters including camera twist and height are
refined simultaneously. We bundle adjust cameras and
the subset of 3D points selected in the previous step,
triangulate the remaining points with angular repro-
jection error below a threshold (in our implementa-
tion, we use 6◦), and run a final bundle adjustment.
For bundle adjustment, we use a preconditioned con-
jugate gradients bundle adjuster [10]. Because there
are still outliers present in the correspondences, we
use a robust Huber norm, with a parameter of 25
pixels, on the reprojection error.

5 EXPERIMENTAL RESULTS

5.1 Datasets

We applied our reconstruction system to several large-
scale image datasets, as summarized in Table 1. Three
of our datasets were collected by downloading public
images from Flickr, a popular photo-sharing website:
Acropolis has 2,961 images geotagged within 100m
of the Acropolis in Athens (37.9714◦N, 23.7261◦E),
Dubrovnik has 12,092 photos tagged dubrovnik or
geotagged within 500m of the center of Dubrovnik,
Croatia (42.6415◦N, 18.1084◦E), and CentralRome has
74,394 images geotagged within 1km of the Roman
Forum (41.8925◦N, 12.4857◦E). We used the public
Flickr API to collect these datasets, downloading the
highest-resolution image available for each photo.

We also use two datasets for which some ground
truth is available. Quad consists of 6,514 images of the
Arts Quad at Cornell University taken by the authors.
For this dataset we recorded very accurate camera
positions (error under 10cm) for a subset of 348 photos
using differential GPS, in addition to geotags from a
consumer GPS device (an iPhone 3G). We use the pre-
cise geotags as ground-truth and the iPhone geotags
as priors in our optimization (as proxies for noisy geo-
tags from photo-sharing sites). SanFrancisco consists
of images of downtown San Francisco collected from
NavTeq [40] and includes accurate camera position
and orientation observations.

5.2 Qualitative results

For each dataset we ran our complete reconstruction
system described in Section 4, including image match-
ing and 2-frame SfM to build a match graph, discrete

BP and continuous NLLS to solve for camera rotations
and camera and point positions, and then a final
round of bundle adjustment. Figure 5 shows sample
views of our 3D models after applying a multiview
stereo algorithm [41] to densify the point clouds.

Alternatively, we can visualize the reconstructions
from above by overlaying estimated point and cam-
era positions on a satellite map. Figure 6 shows
reconstructions of CentralRome aligned to a map,
comparing the results of our approach with those of
the incremental technique of Agarwal et al. [2]. We
see that our estimated scene points (in blue) align
well with structures visible in the satellite map, and
our estimated camera positions (in black) coincide
well with sidewalks and roadways. In contrast, IBA
produced a poor reconstruction; our approach likely
performed better because the geotag priors helped to
avoid problems with sparsely-connected components
of the reconstruction graph. Figure 7 illustrates how
the stages of our approach take noisy geotags and
successively refine them into accurate camera poses.

5.3 Quantitative evaluations

Ideally, we would compare our reconstructions to
dense, high-quality 3D ground truth (e.g., from a laser
scanner), but it is difficult to collect this data for
the scale of scenes that we consider here (and for
this reason most papers do not attempt quantitative
evaluations [3], [5], [10]). Instead, we evaluate our
system using two imperfect techniques that neverthe-
less give some quantitative measurements. We first
compare to reconstructions produced by state-of-the-
art incremental bundle adjustment, showing that our
approach produces similar point clouds and camera
poses. Second, we measure the accuracy of the esti-
mated camera poses on two datasets for which we
have (incomplete) ground truth on camera pose.

5.3.1 Comparison to IBA

We compared our method to state-of-the-art IBA: a
version of Bundler [5] that uses an efficient bundle
adjuster with preconditioned conjugate gradients [10],
then georegisters the model with the geotags using
RANSAC. Table 2 summarizes the results of this com-
parison, including distances between corresponding
camera positions and viewing directions. It is impor-
tant to note that the IBA solution has errors and is thus
not ground truth, but is a state-of-the-art SfM system
and thus provides a useful comparison. Our results
show that raw geotags are quite noisy, with a median
translation error of over 100 meters for some datasets.
The estimates from BP are significantly better, and re-
sults from the full process agree with the IBA solution
within a meter for all datasets except CentralRome.
The differences for CentralRome are large because IBA
produced a low-quality reconstruction on this dataset,
as discussed above. The median differences between
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TABLE 1

Summary of datasets.

Images Largest component Camera-camera Camera-point % images Scene size Reconstructed
Dataset matched size (|V |) edges (|EC |) edges (|EP |) geotagged (km2) images
Acropolis 2,961 463 22,842 42,255 100.0% 0.1×0.1 454
Quad 6,514 5,520 444,064 551,670 77.2% 0.4×0.3 5,233
Dubrovnik 12,092 6,854 1,000,178 835,310 56.7% 1.0×0.5 6,532
CentralRome 74,394 15,242 864,758 1,393,658 100.0% 1.5×0.8 14,754
SanFrancisco 17,357 7,866 203,024 515,100 100.0% 1.0×0.4 5,197

Fig. 5. Sample reconstructions for (clockwise from top left) Acropolis, Dubrovnik, Quad, and CentralRome.

scene point positions for the two methods are also
less than 1m for all datasets except CentralRome. The
median angle between camera viewing directions for
the IBA and BP solutions is between about 5◦ and
14◦, with the continuous optimization reducing the
difference below 5◦, and the final BA further reducing
it below 0.5◦ for all scenes except CentralRome. In
terms of reconstruction size, our method produced
a somewhat larger reconstruction for Quad than did
IBA (5,233 versus 5,017 images), whereas IBA pro-
duced somewhat larger reconstructions for the other
scenes (e.g. 462 vs. 454 images for Acropolis, and
6,844 vs. 6,532 images for Dubrovnik). Upon further
inspection, we observed that our approach was better
at bridging weak connections between two larger
components, while IBA was better at connecting indi-
vidual weakly connected images (e.g., blurry or low-
resolution photographs), possibly due to our use of a
subset of points for the initial bundle adjustment.

5.3.2 Comparison to ground truth

For a comparison with ground truth, we used two
datasets for which we have good absolute pose infor-
mation for some cameras: Quad, which has camera

positions for several hundred images, and SanFran-
cisco, which has camera positions and orientations
(see section 5.1). Table 3 presents median camera pose
errors for these two datasets at various stages of
our method. For Quad, IBA produces slightly better
camera position estimates than our approach, but the
difference is quite small (1.01m median error versus
1.16m). The table also studies the sensitivity of our
approach to the fraction of photos having geotags.
As the fraction of geotagged images decreases below
about 10%, the accuracy starts to decrease. This seems
to be due to less accurate global rotation estimates, in-
dicating that weak orientation information is helpful.

5.4 Running times

As shown in Table 4, our approach is significantly
faster than incremental bundle adjustment on all of
our datasets, but especially the larger ones: our ap-
proach is about six times faster than IBA on Central-
Rome, for example. We used a multi-threaded imple-
mentation of rotations BP on a single 16-core 3.0GHz
machine, a single-threaded implementation of NLLS
on the same machine, and a map-reduce implementa-
tion of translations BP on a 200-core 2.6GHz Hadoop
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Our approach Incremental bundle adjustment [2]

Fig. 6. CentralRome reconstruction, using our approach (left) and incremental bundle adjustment (right), overlaid

on a map. Black points are cameras while blue points are scene points. The IBA solution exhibits a large drift:

the scale of the Colosseum (lower right) is too small given the scale of Il Vittoriano (upper left), while the inside

and outside of the Colosseum do not align. The scale and alignment in our solution is much more consistent.

Raw geotags After BP After NLLS After bundle adjustment

Fig. 7. Camera position estimates for CentralRome at different stages of optimization. Raw geotags (left) are

noisy with little visible structure. BP estimates camera positions on a discrete grid, providing initialization for

non-linear least squares. These estimates in turn initialize a final round of bundle adjustment.

TABLE 2

Comparison with Incremental BA in terms of median differences for point positions and camera poses.

Rotational difference Translational difference Point difference
Our approach Linear approach [14] Our approach Our approach

Dataset BP NLLS Final BA Linear NLLS Geotags BP NLLS Final BA Final BA
Acropolis 14.1◦ 1.5◦ 0.2◦ 1.6◦ 1.6◦ 12.9m 8.1m 2.4m 0.1m 0.2m
Quad 4.7◦ 4.6◦ 0.2◦ 41◦ 41◦ 15.5m 16.6m 14.2m 0.6m 0.5m
Dubrovnik 9.1◦ 4.9◦ 0.1◦ 11◦ 6◦ 127.6m 25.7m 15.1m 1.0m 0.9m
CentralRome 6.2◦ 3.3◦ 1.3◦ 27◦ 25◦ 413.0m 27.3m 27.7m 25.0m 24.5m

cluster. For BA and IBA we used the highly-optimized
bundle adjuster of [2], which uses a multi-threaded
BLAS library, on a single 16-core 3.0GHz machine.
One of the reasons for our speed-up is that BP (unlike
IBA) is easily parallelizable on a distributed memory
cluster; if we had instead run BP on a single machine,
our running times would have increased but would
still be faster than IBA (about 0.4 hours versus 0.5
on Acropolis, 18.0 hours versus 62 hours on Quad,
11.1 hours versus 28 hours on Dubrovnik, and 48.9
hours versus 82 hours on CentralRome). The majority
of our approach’s running time is spent in the final
bundle adjustment stage; this step can be omitted if
one simply wants to infer coarse camera pose without
reconstructing the scene.

The asymptotic running time of our approach also
compares favorably to that of IBA. In contrast to the

worst case O(n4) running time of IBA (using dense
linear algebra and adding images at a constant rate),
where n is the number of images, our approach is
O(n3): each application of belief propagation takes
time O(n2L) per iteration, where L is the size of the
label space, and the final bundle adjustment step takes
O(n3) time in the worst case. Memory use is O(n2L)
for the rotations BP and O(n2

√
L) for the translations

BP (assuming a dense reconstruction graph).

5.5 Discussion

Role of priors. Table 3 shows that the geotag-based
priors are important in producing accurate reconstruc-
tions with our method. When pan angle priors are
removed from the rotations estimation, the median er-
ror increases to 72.1◦ after BP and to 33.6◦ after NLLS
and bundle adjustment on SanFrancisco. This is due



12

TABLE 3

Comparison with ground truth for Quad and SanFrancisco at various stages of reconstruction, in terms of

median error, as the number of images with (noisy) geotags is varied. Median error of IBA on Quad was 1.01m.

% of images Quad translations SanFrancisco rotations SanFrancisco translations
geotagged BP NLLS Final BA BP NLLS Final BA BP NLLS Final BA

100% — — — 5.78◦ 3.91◦ 3.30◦ 4.26m 4.98m 3.83m
80% 7.50m 7.24m 1.16m 5.94◦ 3.84◦ 3.39◦ 5.48m 4.86m 4.02m
40% 7.67m 7.37m 1.21m 6.29◦ 3.96◦ 3.79◦ 6.58m 5.75m 4.94m
16% 7.66m 7.63m 1.22m 8.99◦ 4.30◦ 3.18◦ 5.95m 6.47m 4.84m

8% 8.27m 8.06m 1.53m 17.97◦ 4.44◦ 4.15◦ 8.19m 7.07m 5.23m
4% 18.25m 16.56m 5.01m 24.33◦ 5.98◦ 5.24◦ 9.70m 8.85m 6.49m

TABLE 4

Running times of our approach compared to incremental bundle adjustment.

Our approach Incremental
Dataset Rot BP Rot NLLS Trans BP Trans NLLS Bund Adj Total BA

Acropolis 50s 16s 7m 24s 49s 5m 36s 0.2 hours 0.5 hours
Quad 40m 57s 8m 46s 53m 51s 40m 22s 5h 18m 00s 7.7 hours 62 hours
Dubrovnik 28m 19s 8m 28s 29m 27s 7m 22s 4h 15m 57s 5.5 hours 28 hours
CentralRome 1h 8m 24s 40m 0s 2h 56m 36s 1h 7m 51s 7h 20m 00s 13.2 hours 82 hours

TABLE 5

Effect of BP label space discretization on median camera errors for SanFrancisco with geotags for 40% of

photos. Running times include both BP and NLLS and are on a single machine (not parallelized).

Rotations Translations Rotations Translations Rotational error Translational error
label space label space running time running time BP NLLS Final BA BP NLLS Final BA
3 × 3 × 3 151 × 151 9m 49s 2h 17m 23s 24.98◦ 7.82◦ 6.76◦ 7.17m 7.13m 6.13m
7 × 7 × 7 151 × 151 14m 31s 2h 20m 16s 7.91◦ 3.69◦ 3.52◦ 6.53m 5.64m 4.67m

11 × 11 × 11 151 × 151 20m 47s 2h 28m 56s 6.29◦ 3.96◦ 3.79◦ 6.58m 5.75m 4.94m
15 × 15 × 15 151 × 151 28m 31s 2h 20m 19s 5.03◦ 4.01◦ 3.78◦ 6.72m 5.85m 4.82m
19 × 19 × 19 151 × 151 38m 33s 2h 22m 08s 4.30◦ 3.86◦ 3.59◦ 6.26m 5.39m 4.34m
11 × 11 × 11 51 × 51 20m 47s 33m 40s 6.29◦ 3.96◦ 3.79◦ 15.26m 13.69m 10.77m
11 × 11 × 11 101 × 101 20m 47s 1h 7m 39s 6.29◦ 3.96◦ 3.79◦ 8.67m 7.61m 5.28m
11 × 11 × 11 151 × 151 20m 47s 2h 28m 56s 6.29◦ 3.96◦ 3.79◦ 6.58m 5.75m 4.94m
11 × 11 × 11 201 × 201 20m 47s 7h 3m 36s 6.29◦ 3.96◦ 3.79◦ 5.03m 4.97m 4.50m
11 × 11 × 11 251 × 251 20m 47s 20h 5m 4s 6.29◦ 3.96◦ 3.79◦ 4.40m 4.92m 4.22m

in part to weak connections between tightly connected
components in the graph, which can cause estimated
camera orientations to be consistent with one another
inside each component but not globally. Geotags help
to enforce consistency across such weakly-connected
parts of the graph. For the translations MRF, geotags
play a similar role but also prevent the MRF from find-
ing a trivial, zero-cost solution in which all cameras
are placed at exactly the same 3D position.

The tilt priors from vertical vanishing point esti-
mation (Section 4.2.2) produce a small but significant
improvement in reconstruction accuracy: for Quad
with 40% of images geotagged, removing these priors
increases median camera position error after bundle
adjustment from 1.21m to 1.25m, and for SanFran-
cisco increases the rotational error from 3.79◦ to 3.89◦

and the translational error from 4.94m to 5.17m. To
measure the accuracy of the tilt priors, we compared
the tilts estimated from vanishing points with those
obtained from a reconstruction of the scene using
IBA. The median angular difference was 3.7◦ for
Acropolis, 2.1◦ for Quad, 4.3◦ for Dubrovnik, and 9.0◦

for CentralRome. In contrast, if we simply assumed
that all cameras have no tilt, our errors would have

been significantly higher: 15.8◦ for Acropolis, 10.5◦ for
Quad, 6.8◦ for Dubrovnik, and 9.3◦ for CentralRome.

Role of label space discretization. The discretiza-
tion of the label space during BP is important to both
the running time and the quality of the solution, as
shown in Table 5 for SanFrancisco. For rotations, a
relatively coarse space of 7×7×7 produces almost the
same reconstruction results as much finer discretiza-
tions at a fraction of the computational cost. The
reconstructions begin to suffer when the label space
drops to 3×3×3. For translations, we find that very
coarse discretizations yield poor reconstructions while
finer discretization produce better results, but that at
some point the increase in computational cost out-
weighs the marginal improvement in reconstruction
quality; for SanFrancisco the camera position error
drops from 5.28m to 4.50m when the label space is
increased from 101×101 to 201×201, but the running
time increases by about a factor of 5.

Role of scene points. As discussed in Section 3, in
the translations MRF we include pairwise constraints
between pairs of cameras and between camera-point
pairs. We have found that including both of these
edge types improves the results: using only camera-
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Fig. 8. Rotational MRF energy (top) and error with

respect to ground truth after BP (bottom), as a function

of number of BP iterations, for SanFrancisco.

point edges increases the final median camera po-
sition error after bundle adjustment by about 60%
(from 1.21m to 1.9m) for Quad and only very slightly
(4.94m to 4.97m) for SanFrancisco. Using only camera-
camera edges increases the error by more than 300%
for Quad (from 1.21m to 3.93m) and by almost 50%
for SanFrancisco (from 4.94m to 7.14m).

BP energy minimization. The number of iterations
required for BP to find a good solution is proportional
to the diameter of the graph, since evidence only
propagates a single hop in each iteration. Figure 8
plots the rotational MRF energy and angular error
with respect to ground truth for SanFrancisco. When
40% of photos are geotagged, BP reaches a local
minimum in 4 iterations; when only 4% of photos are
geotagged, BP still reaches a local minimum within
about 12 iterations. Since BP is not guaranteed to
converge, we run BP for at least 30 iterations and use
the iteration with minimum energy as the solution.

Importance of robustness. We tried the linear batch
approach of Govindu [14] on these datasets, and
found that it produced reasonable rotation estimates
for the densely-connected Acropolis and Dubrovnik
sets, but poor results for the others (see Table 2), even
after running NLLS and bundle adjustment on its out-
put. The translation estimates were very poor for all
datasets, even after modifying it to use geotag priors.
This suggests that robust optimization is important
for large, noisy datasets (as most evaluations of linear
approaches are on much simpler datasets [14], [19]).
We also tried simpler initializations to BA and NLLS,
including random initialization of camera pose and
point locations as well as initializing translations us-
ing geotags, but both resulted in poor reconstructions,
suggesting that good initialization is also critical.

6 CONCLUSION

We have presented a SfM approach that avoids solv-
ing sequences of incremental bundle adjustment prob-

lems by initializing all cameras at once using hybrid
discrete-continuous optimization on an MRF and in-
tegrating prior evidence from geotags and vanish-
ing points. Our approach is faster than incremental
SfM in practice and asymptotically, and it gives bet-
ter reconstructions on scenes with weakly-connected
match graphs. These results demonstrate the utility
of discrete optimization, long used in other vision
problems such as stereo, in the domain of SfM, when
used in conjunction with continuous optimization. In
future work we plan to study the performance and
tradeoffs of our algorithm on even larger datasets.
We also plan to study improvements to our approach,
including solving for rotations and translations in a
single optimization step and exploring optimization
schemes tailored to our MRFs (which are much more
complex than the simple grid graphs with 1D label
spaces that arise in low-level vision). For example,
the distribution of photos across space is highly non-
uniform, so we might use hierarchical or adaptive
discretizations of the label space.
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