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Abstract

Background: Non-small cell lung cancer (NSCLC) remains a lethal disease despite many proposed treatments.

Recent studies have indicated that epigenetic therapy, which targets epigenetic effects, might be a new

therapeutic methodology for NSCLC. However, it is not clear which objects (e.g., genes) this treatment specifically

targets. Secreted frizzled-related proteins (SFRPs) are promising candidates for epigenetic therapy in many cancers,

but there have been no reports of SFRPs targeted by epigenetic therapy for NSCLC.

Methods: This study performed a meta-analysis of reprogrammed NSCLC cell lines instead of the direct examination

of epigenetic therapy treatment to identify epigenetic therapy targets. In addition, mRNA expression/promoter

methylation profiles were processed by recently proposed principal component analysis based unsupervised feature

extraction and categorical regression analysis based feature extraction.

Results: The Wnt/β-catenin signalling pathway was extensively enriched among 32 genes identified by feature

extraction. Among the genes identified, SFRP1 was specifically indicated to target β-catenin, and thus might be

targeted by epigenetic therapy in NSCLC cell lines. A histone deacetylase inhibitor might reactivate SFRP1 based upon

the re-analysis of a public domain data set. Numerical computation validated the binding of SFRP1 to WNT1 to

suppress Wnt signalling pathway activation in NSCLC.

Conclusions: The meta-analysis of reprogrammed NSCLC cell lines identified SFRP1 as a promising target of epigenetic

therapy for NSCLC.

Background

Non-small cell lung cancer (NSCLC) is still lethal despite

many proposed therapeutic strategies. Among the many al-

ternative strategies, epigenetic therapy is regarded as a

promising method [1], and a histone deacetylase (HDAC)

inhibitor [2] or DNA methyltransferase inhibitor [3] were

shown to be promising NSCLC treatments, especially when

combined [1]. There has been extensive research regarding

the clinical usefulness of epigenetic therapy for NSCLC;

however, studies investigating the target genes of these

treatments are limited, although some promising candi-

dates have been proposed [4]. The potential reasons for the

small number of epigenetic therapy target gene reports

might be the difficulty of in vitro studies [5]. Compared

with many clinical studies regarding the efficiency of epi-

genetic therapy, there have been few in vitro studies of epi-

genetic therapy [6, 7]. Thus, alternative strategies to direct

in vitro experiments for epigenetic therapy such as the in-

vestigation of reprogrammed cancer cell lines are required

to investigate the effect of epigenetic therapy in NSCLC.

It is thought that epigenetic therapy targets epigenetic

effects, e.g., DNA methylation and/or histone modifica-

tion, which might be affected by reprogramming. Thus,

a detailed and extensive comparative study might indir-

ectly identify the effect of epigenetic therapy in NSCLC

cell lines.

This study performed a meta-analysis of reprogrammed

NSCLC cell lines to identify genes associated with epigenetic
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alterations and expression changes during reprogramming

and to identify promising candidate genes for targets of epi-

genetic therapy. Among those identified, secreted frizzled-

related protein (SFRP)1 was of interest. Using in vitro epi-

genetic therapy experiments, we confirmed that SFRP1

mRNA expression and its histone modification were altered.

Furthermore, SFRP1 might suppress the Wnt signalling

pathway by binding to Wnt genes. An in silico study indi-

cated the potential binding of SFRP1 with WNT1; thus, the

reactivation of SFRP1 suppressed in NSCLC might be a

promising candidate target for the epigenetic therapy of

NSCLC.

Results

Identification of biologically significant genes

To identify genes targeted by epigenetic therapy in NSCLC,

we analysed gene expression and promoter methylation in

reprogrammed NSCLC cell lines [8]. Although it is useful

to consider histone modification and promoter methylation

together because epigenetic therapies targets both, suitable

data sets were not publically available for histone modifica-

tion; therefore, as promoter methylation often reflects the

effect of histone modification [9], a data set containing

gene expression and promoter methylation information

was analysed. The primary aim of this analysis was to iden-

tify genes associated with aberrant gene expression and

promoter methylation during reprogramming because as-

sociated genes are most likely targeted by epigenetic

therapy.

Although promoter methylation was generally expected to

be negatively correlated with gene expression, this was not

always observed, especially when histone modification was

also considered [10]. Because this study aimed to identify

targets of epigenetic therapy including both DNA methyla-

tion and histone modification, we did not restrict candidate

biologically significant genes such as those associated with

negative correlations between promoter methylation and

gene expression, but considered all genes associated with

significant correlations between promoter methylation and

gene expression independent of the direction.

To select biologically significant genes, we used principal

component analysis (PCA) based unsupervised feature ex-

traction (FE) [11–24]. PCA based unsupervised FE is useful

when there is no information regarding how to order mul-

tiple classes. It also allows us to restrict number of pairs

whose correlations must be computed, which can reduce

the possibility that selected genes are rejected because of P-

values adjustments based on multiple comparison correc-

tion criteria. Therefore, because many cell lines, including

those that were reprogrammed and differentiated, were

used in this study, PCA based unsupervised FE was a suit-

able method for analysis. To select principal components

(PCs) with a significant correlation between gene expres-

sion and promoter methylation for FE, we performed

hierarchical clustering (see Methods) to identify a pair of

PCs associated with a high correlation between promoter

methylation and gene expression. PC3 and PC4 were the

most suitable candidate pairs (Fig. 1).

One may wonder why H1, IMR90, and iPSIMR90 must

be included in the analysis. As can be seen in Additional

file 1, reprogrammed cell lines have similar values to H1 or

iPSIMR90 that are pluripotent; this suggested that the in-

clusion of H1 and iPSIMR90 guaranteed that cell lines were

correctly reprogrammed. Similarly, inclusion of IMR90

guaranteed that reprogrammed cell lines are often distinct

from IMR90 that is differentiated. Thus, H1, IMR90, and

iPSIMR90 are worthwhile being included.

To determine the stability of pairs of PC3 and PC4 be-

tween gene expression and promoter methylation we

constructed hierarchical clustering with only 23 samples

(because there are 24 samples, there was a sequential re-

moval of one specific sample from the 24 samples; see

Methods and full results are Additional file 2). Pairs of

PC3 and PC4 between gene expression and promoter

methylation were conserved for 22 hierarchical clusters

among 24 samples. Thus, the pairs of PC3 and PC4 in

Fig. 1 are not accidental but robust.

Although we previously [24] considered only PC1 and

PC2 when analysing the same data set for another study,

gene expression and promoter methylation showed a

lower correlation when compared with PC3 and PC4 in

this study. This might explain why promising candidate

genes were not identified in our previous study [24].

Therefore, we used PC3 and PC4 for gene selection in

this study. In addition to PCA based unsupervised FE,

we used another FE that is also suitable for multiclasses

that lack a pre-decided order, FE based upon categorical

regression (see Methods).

Table 1 summarizes the genes selected by PCA based

unsupervised FE and categorical regression based FE.

In total, we identified 32 unique gene candidates (three

genes were identified by more than one method). Gene

expression and promoter methylation of specific PCs

and genes and their correlation information is summa-

rized in Table 1 and detailed in Additional files 1, 3, 4

and 5.

Biological significance of selected genes

Disease association of genes

To validate the biological significance of the selected genes,

we used the Gendoo server [25] to search the literature for

genes associated with diseases. For most of the genes

examined (excluding LAD1, KIF1A, SLC16A12, SCG3

and IGSF21), there were significant associations with

cancer-related diseases as summarized in Table 1A (and

Additional file 6). Many oncogenes and tumor suppres-

sors are not unique for specific cancers but are related to
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several cancers. This suggested that the genes selected in

this study have the potential to be involved with NSCLC

tumourigenesis.

Pathway/Gene Ontology (GO) term analysis

Because disease association is not always informative re-

garding how the genes are involved in tumourigenesis, we

uploaded a list including gene IDs to two gene annotation

servers [26, 27] (Table 2). The selection of “extracellular

region” was reasonable, because this is a reprogramming

study, thus cell surface receptors should be activated to

initiate differentiation, which is related to another selected

GO term, “cell proliferation”. When mapping selected

genes to the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) pathway, most were at the cell surface

(see Additional file 7).

Table 1 Genes selected by FEs

(A) (B) (C) (D) (A) (B) (C) (D) (A) (B) (C) (D)

Categorical regression SFRP1 ○ ○ ○ ○ LAMC2 ○ ○ ○ ○

SALL4 ○ ○ ○ ○ SLC16A12 HMGA1 ○ ○ ○ ○

TACSTD1* ○ ○ ○ ○ HOXA5 ○ ○ ○ ○ LAD1 ○ ○

ANGPT1 ○ ○ ○ KIF1A ○ ○ ○ PFKFB3 ○ ○ ○

TACSTD2* ○ ○ ○ ○ H2AFY ○ ○ ○ DEFB1 ○ ○

IGSF21 ATP5G2 SRGN ○ ○ ○

EFNB1 ○ ○ ○ TM4SF1 ○ ○ ○ ○ UCHL1 ○ ○ ○ ○

MEST ○ ○ ○ ○ GPR56* ○ ○ ○ ○ ALDH3A1 ○ ○ ○ ○

SCG3 ○ S100P ○ ○ ○ ○ EPB41L3 ○ ○ ○

PCA based unsupervised FE (PC4) PCA based unsupervised FE (PC4) RTN1 ○ ○ ○

F2R ○ ○ ○ ○ SPINT2 ○ ○ ○ ○ LAMA1 ○ ○ ○

DKK3 ○ ○ ○ ○ CDH1 ○ ○ ○ ○

Genes with asterisk were selected by more than one method

(A) Associations with cancer related genes reported by Gendoo server. (B) Significant negative correlations (P < 0.05) between gene expression and promoter

methylation. (C) At least one study reported a direct/indirect relationship with NSCLC. (D) At least one study reported a direct/indirect relationship with Wnt/β-

catenin signalling pathways. Asterisked three genes are also identified by PCA based unsupervised FE with PC4

Fig. 1 Hierarchical clustering of PCs. Vertical axes represent distance that is negative signed absolute correlation coefficients between PCs. PCs

with “M” indicate promoter methylation and those without “M” were computed from gene expression
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Literature search

To determine whether the selected genes were specific-

ally related to NSCLC and pluripotency because the data

analysed was from reprogramming experiments, we per-

formed an extensive literature search. Studies regarding

the relationship between NSCLC and proteins reported

to bind to any of the 32 genes listed in Table 1 were col-

lected and analysed with BioGrid [28], which reports

literature-based protein-protein interactions. Most of the

genes identified were specifically related to NSCLC

tumourigenesis and some were also related to pluripo-

tency (Table 1C and Additional file 8). Thus, this meth-

odology is promising.

Discussion
The Wnt/β-catenin signalling pathway as an NSCLC

therapy target

Although we found that the genes identified in this

study were mostly related to NSCLC tumourigenesis,

genes should be selected according to their potential for

epigenetic therapy of NSCLC. However, as can be seen

in Table 2, no significant pathway enrichments were de-

tected. In order to investigate pathway enrichment, we

performed literature searches manually. Then we have

found that multiple genes selected in this study were re-

lated to the Wnt/β-catenin signalling pathway (Table 1D)

that was recently reported to be a major pathway in

NSCLC tumourigenesis [29]. One may wonder why

Wnt/β-catenin signalling pathway was not detected in

enrichment analyses in Table 2. First of all, even if no

significant enrichments were detected, it does not always

mean the lack of enrichment, but often simply means

the lack of ability of the specific statistical tests. Second,

as can be seen in the following, some genes detected by

literature searches, e.g., EPCAM and TACSTD2, are not

included into KEGG pathway. This means that we need

more sophisticated investigations than simple enrich-

ment analyses. This is the reason why we additionally

performed literature searches.

SALL4 is part of the Wnt signalling pathway [30] and

regulates the stemness of EPCAM-positive hepatocellular

carcinomas [31, 32]. EPCAM was recently reported to be

an endoderm-specific Wnt derepressor [32]. ANGPT1 was

reported to be upregulated via the overexpression of β-

catenin that is a key factor of the Wnt signalling pathway

[33]. TACSTD2 was proposed to be a Wnt target [34]

identified through consistent gene expression changes in

APC-mutant intestinal adenomas from humans and mice;

EFNB1 :Eph-related receptor is a Wnt signalling target

gene in colorectal cancer [35] that binds to the EFNB1 lig-

and. MEST inhibits Wnt signalling through the regulation

of LRP6 glycosylation [36]. F2R(PAR1) stabilizes β-catenin

in mammary gland tissues [37]. DKK3 binds to LRP5/6

and inhibits the initiation of Wnt signalling [29]. SFRP1

binds to FZD and WNT to suppress the activation of Wnt

signalling [29]. HOXA5 expression increased the retention

of β-catenin in adherens junctions and reduced permeabil-

ity [38]. KIF1A binds to at least two β-catenin binding pro-

teins [39], ESR1 [40] and AR [41]. TM4SF1 might have a

role in coordinating Wnt signalling and migration during

endocrine pancreas specification [42], and TM4SF1 and

TM4SF4 belong to the tetraspanin L6 domain family.

GPR56: The Wnt/β-catenin signalling pathway regulates

genes involved in cell proliferation, survival, migration and

Table 2 Results from various annotation servers

P-value Number of genes

Targetmine

GO Term Extracellular region [GO:0005576] 2.03 × 10−3 21

Lateral plasma membrane [GO:0016328] 8.55 × 10−3 3

GOSlim Term Extracellular region [GO:0005576] 6.43 × 10−5 21

Locomotion [GO:0040011] 1.34 × 10−2 9

Cell adhesion [GO:007155] 1.34 × 10−2 7

Cell junction organisation [GO:0034330] 1.74 × 10−2 4

Anatomical structure development [GO:0048856] 1.76 × 10−2 14

g:Profiler

GO Term Cell proliferation [GO:0008283] 1.42 × 10−2 12

Regulation of cell proliferation [GO:0042127] 4.83 × 10−2 10

Regulation of cell adhesion [GO:0030155] 1.58 × 10−2 6

Cellular component movement [GO:0006928] 3.67 × 10−3 11

Extracellular region [GO:0005576] 3.94 × 10−4 19

TF PPAR, HNF-4, COUP, PAR [TF:M00762 4] 2.72 × 10−2 18

Adjusted P-values for target-mining is based on BH criterion
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invasion through by the regulation of T-cell factor (TCF)-4

transcription factor proteins that activate GPR56 in HCC

[43]. S100P: Increased expression of S100P promoted cel-

lular proliferation by increasing the nuclear translocation

of β-catenin in endometrial cancer [44]. SPINT2: The epi-

genetic silencing of SPINT2 promoted cancer cell motility

via HGF-MET pathway activation in melanoma [45], and

β-catenin formed a complex with c-Met (HGF receptor)

[46]. CDH1 (E-cadherin) is involved in the inactivation of

Wnt/β-catenin signalling in urothelial carcinoma and nor-

mal urothelial cells [47]. LAMC2 (Laminin γ2) mediated

the Wnt5a-induced invasion of gastric cancer cells [48].

HMGA1 interacted with β-catenin to positively regulate

Wnt/β-catenin signaling in colorectal cancer cells [49].

PFKFB3: The altered expression of PFKFB3 is associated

with Wnt signalling pathway genes [50]. UCHL1 is a colo-

rectal cancer oncogene that activated the β-catenin/TCF

pathway through its deubiquitinating activity [51].

ALDH3A1 is overexpressed in a subset of hepatocellular

carcinoma characterized by activation of the Wnt/β-ca-

tenin pathway [52]. EPB41L3 (DAL1) binds to YWHAZ

[53], and the YWHAZ/β-catenin axis promoted epithelial-

mesenchymal transition and lung cancer metastasis [54].

LAMA1 (laminin): Overexpression of the Wnt antagonist

FRZB1 decreased RNA levels of the essential basement

membrane genes fibronectin and laminin [55].

β-catenin is often reported to be related to NSCLC

Although β-catenin is extensively related to the selected

genes in this study, β-catenin was overexpressed in NSCLC

[56]. β-catenin expression was also prognostic for improved

NSCLC survival [57]. Nuclear β-catenin accumulation was

associated with the increased expression of NANOG protein

and predicted a poor prognosis of NSCLC [58]. Promoter

methylation-mediated silencing of β-catenin enhanced the

invasiveness of NSCLC and predicted an adverse prognosis

[59]. All of these studies strongly suggest the importance of

β-catenin in NSCLC.

These genes are also related to epigenetic therapy

The following genes were also suggested to be related to

epigenetic therapy. Recently, the combined usage of two

drugs, romidepsin and decitabine, restored SFRP1 activity

in four cancer cell lines, A498, KIJ265T, MDA-231, and

BT-20 [60]. This strategy might be useful for NSCLC ther-

apy because an HDAC inhibitor, MPT0E028, enhanced

erlotinib-induced cell death in epidermal growth factor re-

ceptor tyrosine kinase inhibitor (EGFR-TKI)-resistant

NSCLC cells [61] and SAHA, a HDAC inhibitor, had pro-

found anti-growth activity against NSCLC cells [62]. Other

evidence includes an organosulfur derivative of the HDAC

inhibitor, valproic acid, which sensitised human lung can-

cer cell lines to apoptosis and to cisplatin cytotoxicity [63].

EGFR-TKI resistance by BIM polymorphism was

circumvented when combined with HDAC inhibition [64],

and antitumour activity of histone deacetylase inhibitors

was observed in NSCLC cells [65]. The effect of HDAC in-

hibitors can be improved by in silico drug screening [66].

In addition, SALL4 was reported to form a protein com-

plex with HDAC [67–69] (Fig. 4a in [69]), which suggests

that epigenetic regulation of the Wnt signalling pathway is

a key factor in the tumourigenesis of NSCLC. Interestingly,

promoters of SALL4 and SFRP1 were methylated simultan-

eously [70–72]. Although there have been no reports to

suggest a direct relationship between HOXA5 and the Wnt

signalling pathway in NSCLC, HOX is related to the Wnt

signalling pathway, which controls HOX gene expression

in C. elegans [73], while HOX genes control Wnt signalling

[74]. Furthermore, WNT7A has a strong relationship with

HOX genes [75]. In addition, from an evolutionary point of

view, HOX and Wnt might be related [76]. Thus, HOXA5

might be involved in Wnt signalling in NSCLC and might

also be influenced by HDAC [77].

SFRP1 is a potential epigenetic therapy target

Overall, we concluded that the Wnt signalling pathway is a

likely target of epigenetic therapy in NSCLC cell lines. A

previous study suggested that the reactivation of Wnt an-

tagonists, including DKK3 and SFRP1, in NSCLC might be

a beneficial epigenetic therapy [78]. Among the genes po-

tentially related to Wnt signalling, we considered SFRP1 to

be the most promising candidate gene targeted by epigen-

etic treatment. A previous study reported that treatment

with 5-aza-2’-deoxycytidine, a DNA methyltransferase in-

hibitor, enhanced SFRP1 expression in NSCLC [79].

Transcriptional silencing of the gene was also due to

hypermethylation of its promoter region in NSCLC [80].

SFRP1 has been reported as a marker for NSCLC [81, 82].

In addition, SFRP1 was also reported to be related to β-

catenin. For example, SFRP1, SFRP2, and SFRP5 regulate

Wnt/β-catenin and planar cell polarity pathways during

early trunk formation in mice [83]. Loss of SFRP1 expres-

sion was associated with aberrant β-catenin distribution

and tumor progression in mucoepidermoid carcinoma of

salivary glands [84].

To confirm whether the HDAC inhibitor affected SFRP1

regulation in NSCLC, we analysed a public domain data set.

Miyanaga et al. [65] compared various cell lines to deter-

mine whether they were resistant to HDAC inhibitors. We

investigated SFRP1 expression between HDAC inhibitor-

resistant cell lines and non-resistant cell lines for adenocar-

cinoma and squamous cell carcinoma and found different

levels of SFRP1 expression (Table 3). SFRP1 expression was

upregulated in non-resistant cell lines compared with resist-

ant cell lines because cell lines with downregulated SFRP1

required greater levels of HDAC suppression to increase

SFRP1 expression. In addition, histone acetylation of SFRP1

in NSCLC was enhanced by HDAC inhibitors compared
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with DKK3 and TACSTD1 [85], but not in CL1-1 generated

from the cervix. These results are in accord with the hy-

pothesis that the therapeutic effect of HDAC in NSCLC is

caused by the reactivation of SFRP1. Interestingly, the his-

tone acetylation of SALL4 in NSCLC was also enhanced by

the HDAC inhibitor in an A549 cell line (Table 3, P-values

for the CL1-1 cell line were very small, but because of the

deacetylation, this effect is not likely to be caused by the

HDAC inhibitor). Unfortunately, the microarray analysis by

Miyagawa et al. [65], did not include SALL4, thus we can-

not check whether SALL4 expression was coincident with

HDAC inhibitor resistance.

Potential of SFRP1 binding to WNT1

Next, we validated the ability of SFRP1 to bind to

WNT1 as it was the most promising target from our

study that affected the Wnt signalling pathway. Al-

though Wnt8 and FZ8 share a cysteine-rich domain

(CRD) that forms a protein complex with SFRP1 [86]

and FRZB1 that is a similar protein to SFRP1 [87] was

reported to bind to WNT1 in Xenopus [88], there have

been no direct reports investigating the binding of

SFRP1 to WNT1 [89]. Therefore, we examined the for-

mation of a SFRP1-WNT1 protein complex using nu-

merical simulation. The tertiary structures of WNT1

and SFRP1 were inferred by RaptorX [90]. Then, the ob-

tained structures were uploaded to the ZDOCK server

[91], a rigid body based protein complex predictor. The

10 top ranked protein complex structures obtained were

further uploaded to Fiberdock [92] that refines the protein

complex structures obtained by other methods by consid-

ering the flexible structures of the proteins. Finally, the

best candidate (with the minimum energy) reported by

Fiberdock was identified as the most reliable candidate for

the WNT1-SFRP1 protein complex. Figure 2a shows the

structure of the protein complex obtained using this pro-

cedure. This structure is very similar to the WNT8-FZ8

complex (Fig. 2d) because the CRDs of SFRP1 and FZ8

were similarly sandwiched by two arms of the Wnt pro-

tein. This suggests that SFRP1 can bind to WNT1 and

suppress the Wnt signalling pathway.

To confirm the reliability of this structure, we performed

two tests. The first was to upload WNT8 and the CRD of

FZ8 separately to ZDOCK and Fiberdock, as for the pro-

tein tertiary structures of SFRP1 and WNT1 obtained by

RaptorX, to determine whether the correct structure was

identified as that with the minimum energy. Figure 2b

shows a protein complex identified by the combined usage

of ZDOCK and Fiberdock. The expected structure con-

tains an FZ8 CRD sandwiched by two arms of WNT8,

thus, this confirms the use of our strategy using the com-

bined ZDOCK and Fiberdock systems.

The second test was a molecular dynamics (MD) simu-

lation to test the stability of the protein complex predicted

by the combined usage of ZDOCK and Fiberdock. The

protein complex inferred by ZDOCK and Fiberdock was

used as the initial state and MD simulation was performed

by GROMACS [93]. The obtained structure was modified

to have minimum energy and was simulated under NVT

(constant number of molecules, volume and temperature)

and NPT (constant number of molecules, pressure and

temperature) conditions over 0.1 ns, respectively. Then, a

2 ns equilibration MD was performed. Figure 3 shows the

time developments of the root mean square deviation

(RMSD) during the first and second 1 ns in equilibration

MD. Although the structure heavily fluctuates because

RMSD increased with time, the SFRP1 CRD structure was

sandwiched by two arms of WNT1 and was maintained

even after 2 ns equilibration MD (Fig. 2c) indicating this

structure was stable. Thus, SFRP1 binds to WNT1 to sup-

press the Wnt signalling pathway.

Possibilities that proteins other than SFRP1 are epigenetic

therapy targets

Although this study focused on SFRP1 as a promising can-

didate for epigenetic therapy of NSCLC, 31 other proteins

Table 3 Comparison of gene expression between resistant and

non-resistant cell lines for adenocarcinoma and squamous cell

carcinoma [65], and H3K9K14ac during treatment with an HDAC

inhibitor for NSCLC cell lines [85]

Gene expression

Adenocarcinoma

P-value Non-resistant
cell lines

resistant cell lines

SFRP1 4.64 × 10−4 611.06 >92.60

DKK3 6.73 × 10−2 263.27 >30.59

Squamous cell carcinoma

SFRP1 7.42 × 10−3 304.53 >49.53

DKK3 4.61 × 10−1 261.38 <506.25

Histone modification (H3K9K14ac)

P-value 0 hours 2 hours

(A549) 2.90 × 10−2 −1.29 <−0.52

SFRP1 (H1299) 4.06 × 10−2 −2.51 <−1.85

(CL1-1) 8.71 × 10−1 −1.38 <−1.34

(A549) 6.19 × 10−1 −1.17 <−1.01

DKK3 (H1299) 1.98 × 10−3 −1.70 <−0.48

(CL1-1) 1.48 × 10−1 −0.59 >−1.13

(A549) 4.74 × 10−1 −1.70 <−1.37

TACSTD1 (H1299) 1.51 × 10−1 −2.61 <−2.20

(CL1-1) 8.62 × 10−1 −2.03 >−2.09

(A549) 1.71 × 10−3 −2.44 <−1.05

SALL4 (H1299) 5.23 × 10−1 −2.62 >−2.86

(CL1-1) 1.03 × 10−4 0.97 >−0.59

Significant P-values (<0.05) are shown in bold
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selected in Table 1 might also have potential for NSCLC

epigenetic therapy. SALL4, DKK3 and HOXA5 were sug-

gested to be related to the Wnt signalling pathway. DKK3

suppresses the Wnt signalling path-way by binding to

LPR5/6 proteins. Other genes also contribute to many

other pathways involved in tumourigenesis (Additional

files 6 and 8). Thus, although no strong evidence that pro-

teins other than SFRP1 were epigenetic therapy targets for

NSCLC was obtained, it is likely that other proteins identi-

fied in this study are epigenetic therapy targets.

Conclusion

In conclusion, this meta-analysis of reprogrammed

NSCLC cell lines indicated that SFRP1 was a promising

candidate for NSCLC epigenetic therapy. The reliability

of SFRP1 binding to WNT1 to suppress the Wnt signal-

ling pathway was confirmed using numerical investiga-

tions. Thus, we propose that SFRP1 is an epigenetic

therapy target for NSCLC.

Methods

Gene expression and promoter methylation profiles

during reprogramming of NSCLC cell lines

Gene expression and promoter methylation profiles were

downloaded from the Gene Expression Omnibus (GEO)

using GEO ID: GSE35913. Files including gene expression,

GSE35911_SampleProbeProfile.txt.gz, were provided as a

supplementary file in the subseries GEO ID: GSE35911.

Columns annotated as “AVG Signal” were used. Promoter

methylation profiles were obtained from “Series Matrix

File(s)” in the subseries GEO ID: GSE35912. They

consisted of eight cell lines, H1 (ES cell), H358 and

H460 (NSCLC), IMR90 (Human Caucasian foetal lung

fibroblast), iPCH358, iPCH460, iPSIMR90 (repro-

grammed cell lines), and piPCH358 (re-differentiated

iPCH358) with three biological replicates. In total,

there were 3 replicates × 8 cell lines × 2 properties (gene

expression and promoter methylation) = 48 samples. No

further normalization processes were applied. Multiple

probes attributed to the same gene were not integrated

before feature selection and if genes with more than one

attributable probes were selected, the genes were regarded

as extracted features.

PCA-based unsupervised FE

PCA based unsupervised FE was performed as previously

described [15]. Briefly, xij is ith feature that represents

gene expression/promoter methylation/histone modifica-

tion of the jth sample. In contrast to the standard usage of

PCA, features but not samples were embedded into low

Fig. 2 Protein complex. a WNT1 (cyan) + SFRP1 (light green) by Fiberdock + ZDOCK, b WNT8 (cyan) + CRD of FZ8 (light green) by Fiberdock +

ZDOCK, c WNT1(cyan) + SFRP1(light green) by GROMACS (time = 2 ns), d WNT8 (cyan) + CRD of Fz8 (light green) in PDB (PDB ID: 4F0A)
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dimensional space. Then, kth PC score attributed to ith

feature, xik, was expressed as

xik ¼
X

j
cjk xij−<xi’j>i’

� �

where cjk is the contribution of jth sample to kth PC (PC

loadings) and 〈· · ·〉i is the mean over i. After identify-

ing biologically critical PCs (in this study, PC3 and PC4,

based on hierarchical clustering, Fig. 1), features that are

outliers along the specified PC were extracted, because

outliers were expected to reflect biological significance

(in this study, there was a high correlation between gene

expression and promoter methylation) that specified PCs

represent. The number of features to be extracted as out-

liers was decided empirically. In this study, the top 300

outliers, those with larger or smaller (larger absolute

values of) xik of kth PC selected for FE, were selected for

gene expression and promoter methylation profiles, re-

spectively. Genes listed in Table 1 were those commonly

selected as the top ranked outliers for gene expression and

methylation profiles in the following four combinations of

rankings: larger xik for gene expression and larger xik for

promoter methylation; larger xik for gene expression and

smaller (negatively larger) xik for promoter methylation;

smaller (negatively larger) xik for gene expression and lar-

ger xik for promoter methylation; and smaller (negatively

larger) xik for gene expression and smaller (negatively lar-

ger) xik for promoter methylation.

Identification of biologically meaningful PCs

Although there are several ways to identify biologically

meaningful PCs, this study used the coincidence of cjk be-

tween gene expression and promoter methylation. To iden-

tify mostly coincident PCs between gene expression and

promoter methylation, we computed the correlation coeffi-

cients between kth and k’th PCs of gene expression or pro-

moter methylation as follows: (all pairs were considered

among PCs of gene expression and promoter methylation)

ρkk ’ ¼ <△cjk△cjk ’>j

△cjk ¼ cjk−<cj1k>j1
� �

= < cj2k−<cj3k>j3
� �2

>j2
� �0:5

where 〈· · ·〉j is the mean over j. Then, the negative

signed absolute value of ρkk′, − |ρkk′|, was used as the

distance for hierarchical clustering (Unweighted Pair

Group Method with Arithmetic mean, [UPGMA], was

employed). If a pair of PCs for gene expression and pro-

moter methylation were clustered together with a

smaller distance, i.e., with a larger absolute value of cor-

relation coefficient, we employed the pair of PCs of gene

expression and promoter methylation, for FE.

Hierarchical clustering with 23 samples

PCs were computed with 23 samples and hierarchical

clustering was performed. As a result, we had 24 hierarch-

ical clusters. Because the correspondence between PCs

with a distinct set of 23 samples is incomplete, we re-

labelled the first five PCs (PC1, PC2, PC3, PC4 and PC5)

and compared them with PCs obtained using 24 samples.

Categorical regression-based FE

Categorical regression-based FE was defined as follows:

xij reflects the ith feature of the jth samples as described

above; therefore xij can be represented as:

Fig. 3 RMSD for GROMACS MD for those from 0 ns to 1 ns and

those from 1 ns to 2 ns
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xij ¼ ai0 þ
X

l
ailδjl;

with δjl = 1 only when the jth sample belongs to the lth

category (in this study, each category corresponds to the

type of cell line), otherwise it is 0. Category summation was

determined and ajls were the fitting parameters. Because in-

dependent variables are categorical, the above regression

equation belongs to a category of equations often named

categorical regression. For each ith feature, P-values were

computed using the lm function implemented in R [94]

(this can be easily performed if factors corresponding to the

types of cell lines are used as independent variables in lm).

Genes were ranked based upon obtained P-values and

the top 300 ranked significant genes (those with smaller

P-values) were extracted. Genes listed in Table 1 were

those commonly selected as top ranked genes for gene ex-

pression and methylation profiles.

Disease associations with genes

Disease associations with genes were investigated by

Gendoo [25], a literature-based disease-gene associ-

ation database.

Probe annotation

For gene expression, probe annotations were based on the

“Accession” column (for RefSeq gene ID) or “Symbol” col-

umn (for gene symbol) in the GSE35911_SampleProbePro-

file.txt.gz file. For promoter methylation, GPL849065.txt

available from the GEO ID: GSE35912 file was used and

the “Accession” column was used to assign a Refseq gene

ID to each probe.

Gene expression for comparison of resistant and non-

resistant cell lines

Gene expression profiles used for the comparison between

resistant and non-resistant cell lines were obtained from

GSE4127 [65]. The data set included in the “Series Matrix

File(s)” was used for analysis without further normalization.

RERF-LC-MS, PC14, PC9, A549, and RERF-LC-KJ were

regarded as non-resistant cell lines and CP7, ABC-1, PC3

and LC2/ad were regarded as resistant cell lines.

Histone modification during treatment with an HDAC

inhibitor

Histone modification profiles used for analysis during

treatment with an HDAC inhibitor were obtained

from GSE20304 [85]. Data sets included in the “Series

Matrix File(s)” were used for analysis without further

normalization.

Inference of protein tertiary structures

Amino acid sequences extracted from Uniprot (Q8N474.1

for SFRP1 HUMAN and P04628.1 for WNT1 HUMAN)

were uploaded to the RaptorX server and inferred protein

structures were used for further analyses, i.e., uploading to

ZDOCK, Fiberdock and MD by GROMACS.

MD by GROMACS

GROMACS 5.0.4 compiled with enabling mpi (Message

Passing Interface) and GPU usage was used for MD. The

protein complex of SFRP1 and WNT1 inferred by the

combined usage of ZDOCK and Fiberdock (Fig. 2a) was

used as the initial structure of the protein complex. Force

field used was OPLS-AA/L (all-atom force field) and group

13 “SOL” was employed for embedding ions. At first, en-

ergy minimization was performed and NVT and NPT con-

ditions of the simulation followed. Finally, an equilibration

run was executed over 2 ns. For all the procedures, we

followed the instructions shown in [95].

Additional files

Additional file 1: cjk of PC3 and PC4 employed for feature extraction.

The left column corresponds to gene expression and the right column

corresponds to promoter methylation. PC3 and PC4 show distinct sample

dependence. PC3 represents sample dependence that distinguishes between

two NSCLC cell lines and non-NSCLC cell lines, while PC4 represents the

distinction between two NSCLC cell lines in addition to that between two

NSCLC cell lines and non-NSCLC cell lines. (PDF 7 kb)

Additional file 2: Hierarchical clustering with 23 samples. Hierarchical

clustering between PCs with 23 samples. Left (right) column corresponds

to those before (after) re-labelling. (PDF 77 kb)

Additional file 3: FE based upon categorical regression. Gene expression/

promoter methylation of genes selected by categorical regression. FE based

upon categorical regression does not always guarantee a high correlation

between gene expression and promoter methylation, because it simply

filters those with distinct expression/methylation among samples. However,

among eight genes selected, four had a significant (P < 0.05) negative

correlation coefficient between gene expression and promoter methylation.

This suggested the feasibility of FE based upon categorical regression. The

correlation between gene expression and promoter methylation is very high.

However, only one gene had a significant positive correlation. (PDF 19 kb)

Additional file 4: Genes selected based upon PC3. Gene expression/

promoter methylation of genes selected by PCA based unsupervised FE

employing PC3. Among eleven selected genes, eight genes had a significant

(P< 0.05) negative correlation between gene expression and promoter

methylation. Because we did not restrict the selection of genes to those with

negative correlations, large numbers of genes with negative correlations

demonstrate the feasibility of our methodology. (PDF 26 kb)

Additional file 5: Genes selected based upon PC4. Gene expression/

promoter methylation of genes selected by PCA based unsupervised FE

employing PC4. Among 16 selected genes, 12 genes had a significant

(P < 0.05) negative correlation between gene expression and promoter

methylation. Because we did not restrict the selection of genes to those

with negative correlations, large numbers of genes with negative

correlations indicate the feasibility of our methodology. (PDF 36 kb)

Additional file 6: Disease associations of genes in Table 1. Disease

associations listed with Gendoo server and associated P-values. (PDF 99 kb)

Additional file 7: KEGG pathways associated with genes in Table 1.

Pathway image files downloaded from KEGG and the html file is linked

to these images. (ZIP 963 kb)

Additional file 8: Literature searches of genes in Table 1. (PDF 127 kb)
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