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Abstract

Pedestrian trajectory prediction is a key technology in

autopilot, which remains to be very challenging due to com-

plex interactions between pedestrians. However, previous

works based on dense undirected interaction suffer from

modeling superfluous interactions and neglect of trajectory

motion tendency, and thus inevitably result in a considerable

deviance from the reality. To cope with these issues, we

present a Sparse Graph Convolution Network (SGCN) for

pedestrian trajectory prediction. Specifically, the SGCN ex-

plicitly models the sparse directed interaction with a sparse

directed spatial graph to capture adaptive interaction pedes-

trians. Meanwhile, we use a sparse directed temporal graph

to model the motion tendency, thus to facilitate the prediction

based on the observed direction. Finally, parameters of a

bi-Gaussian distribution for trajectory prediction are esti-

mated by fusing the above two sparse graphs. We evaluate

our proposed method on the ETH and UCY datasets, and the

experimental results show our method outperforms compara-

tive state-of-the-art methods by 9% in Average Displacement

Error (ADE) and 13% in Final Displacement Error (FDE).

Notably, visualizations indicate that our method can capture

adaptive interactions between pedestrians and their effective

motion tendencies.

1. Introduction

Given the observed trajectories of pedestrians, pedestrian

trajectory prediction aims to predict a sequence of future

location coordinates of pedestrians, which plays a critical

role in various applications like autonomous driving [3, 29],

video surveillance [28, 45] and visual recognition [9, 27, 16].

Despite the recent advances in the literature, pedes-

trian trajectory prediction remains to be a very challeng-

ing task due to the complex interactions between pedes-

trians. For example, the motion of a pedestrian is very

easy to be disturbed by other pedestrians [11], close friends
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Figure 1. Sparse Directed Interaction & Motion Tendency. Dif-

ferent pedestrians are marked in different colors. (A.1) Dense

undirected interaction, where any pedestrian interacts with all other

pedestrians. (A.2) Sparse undirected interaction with superfluous

interactions being removed. (A.3) Sparse directed interaction with

adaptive interaction pedestrians. (B.1) The predicted trajectory

severely deviates from the ground-truth as the pedestrians try to

avoid collision against each other. (B.2) Trajectory points enclosed

by the blue dotted circle indicate a motion tendency which may

be leveraged for trajectory prediction. (B.3) Variation of motion

tendencies with different sets of trajectory points.

or colleagues are likely to walk in groups [32], and differ-

ent pedestrians usually conduct similar social actions [38].

To model the interactions between pedestrians, extensive

works [31, 2, 11, 23, 19, 32, 46] have been done in

the past few years, in which the weighting-by-distance

methods [31, 2, 11, 32] and the attention-based meth-

ods [23, 19, 46, 8, 17, 18] have achieved the state-of-the-art

results in pedestrian trajectory prediction.

Most of the weighting-by-distance and attention-based

methods take a dense interaction model to represent the com-

plex interactions between pedestrians, in which they assume

that a pedestrian interacts with all the rest pedestrians. Be-

sides, the weighting-by-distance methods apply the relative

distance to model the undirected interaction, in which the in-

teraction between two pedestrians are identical to each other.

However, we argue that both the dense interaction and undi-

rected interaction will introduce the superfluous interactions

between pedestrians. As shown in Figure 1: (1) two pairs of
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pedestrians head towards from the opposite direction, while

only the trajectory of red pedestrian detours to avoid the col-

lision with green pedestrian; and (2) the trajectories of blue

and yellow pedestrians not influence each other. It is obvious

that the dense or sparse undirected interaction based methods

will fail to deal with the interactions in this case. For exam-

ple, the dense undirected interaction, as represented by A.1,

will generate superfluous interactions between yellow and

blue pedestrians, due to the trajectories of yellow and blue

pedestrians do not influence each other. Besides, the sparse

undirected interaction, as denoted in A.2, generates the su-

perfluous interactions between the green and red pedestrians,

because the red pedestrian detours to avoid collision with the

green pedestrian, while the green pedestrian walks straight

forward. To solve the above problems, it’s better to design

a Sparse Directed Interaction, as shown in A.3, which can

interact with the adaptive pedestrians in the prediction of

pedestrian trajectory.

What’s worse, previous works focus on collision avoid-

ance, which leads to the predicted trajectories tend to gener-

ate detour trajectories to avoid the collision for green and red

pedestrians, as indicated in B.1, while the green pedestrian

deviates from the ground truth. In this case, we propose

motion tendency, which is represented by a short-term tra-

jectory enclosed by the blue dotted circle as shown in B.2,

the trajectory direction of the green pedestrian is straight

forward, and that of the red pedestrian deflects to avoid the

collision with the green pedestrian. Based on the assumption

that the direction of a trajectory will not change too abruptly,

the motion tendency is beneficial to the prediction for green

pedestrian. It should be noted that the motion tendency is

versatile, as shown in B.3, in which the last one performs

better than others, because it can jointly capture the “straight

forward” and “temporary deviation” tendencies. Once the

effective set of intermediate points can be found, the motion

tendency will facilitate pedestrian trajectory prediction.

In this paper, we present a novel Sparse Graph Convolu-

tion Network (SGCN) which combines the Sparse Directed

Interaction and Motion Tendency for pedestrian trajectory

prediction. As shown in Figure 1 (A+B), the Sparse Directed

Interaction discover the set of pedestrians that effectively

influence the trajectory of a particular pedestrian, and the

Motion Tendencies improve the future trajectory of inter-

acted pedestrians. In particular, as shown in Figure 2, the

Sparse Directed Spatial graph and Sparse Directed Tempo-

ral graph are jointly learned to model the Sparse Directed

Interaction and the Motion Tendency of trajectory. Specifi-

cally, the Sparse Graph Learning, as illustrated in Figure 3,

leverages self-attention [40] mechanism to learn the asym-

metric dense and directed interaction scores between trajec-

tory points. Then, these interaction scores are fused and fed

into asymmetric convolutional networks to obtain high-level

interaction features. Finally, a sparse directed spatial and a

sparse directed temporal adjacency matrix can be obtained

after pruning the superfluous interactions using a constant

threshold and a normalization step of our “Zero-Softmax”

function. The final asymmetric normalized sparse directed

adjacency matrices can represent the sparse directed graph.

Once the above two graphs are obtained, we further learn

the trajectory representation by a cascade of Graph Convo-

lution Networks [22], and employ the Time Convolution

Network [4] to estimate the parameters of the bi-Gaussian

distribution, which are used to generate the predicted trajec-

tories.

Extensive experimetal results on the ETH [34] and

UCY [24] datasets show that our method outperforms all the

comparison state-of-the-art works.

To our best knowledge, this is the first work that explicitly

models the Sparse Directed Interaction and Motion Tendency.

In summary, our contributions are three-fold: (1) we propose

to model the Sparse Directed Interaction and Motion Ten-

dency to improve the predicted trajectories; (2) we design an

adaptive method to model the Sparse Directed Interaction

and Motion Tendency; and (3) we propose a sparse graph

convolution network to learn the trajectory representations,

where the advantage of explicit sparsity is demonstrated by

the experiments.

2. Related Works

Pedestrian Trajectory Prediction. Thanks to its pow-

erful representational ability, deep learning becomes in-

creasingly prevalent for predicting the pedestrian trajecto-

ries. Social-LSTM [1] models the trajectory of each pedes-

trian with Recurrent Neural Networks (RNNs) [14, 20, 6],

and computes the interaction between pedestrians within a

certain radius from the pooled hidden states. SGAN [11]

predicts multi-modal trajectory using the Generative Ad-

versarial Network (GAN) [10, 48, 5], and proposes a new

pooling mechanism to compute interactions based on rel-

ative distance between pedestrians. TPHT [30] represents

each pedestrian by an LSTM and employs a soft-attention

mechanism [42] to model interactions between pedestrians.

Moreover, subsequent works leverage the scene features

to improve the prediction accuracy. PITF [26] considers

the human-scene interaction and human-object interaction.

Sophine [37] extracts scene features and social features by a

two-way attention mechanism, and computes the weights for

all agents with a social-attention. TGFP [25] predicts both

coarse and fine locations by using scene information.

Since the graph structure can better fit the scene, another

track of works model the human-human interaction using

graph. Social-BiGAT [23] models the trajectory of each

pedestrian using LSTM, and the interactions by the Graph

Attention Network (GAT) [41]. To better represent the inter-

action between pedestrians, Social-STGCNN [32] directly

models the trajectory as a graph, where the edges weighted
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Figure 2. The framework of our proposed SGCN. The trajectories are reformed as spatial and temporal graph inputs. Sparse Graph Learning

involves the learning of sparse directed spatial graph representing the Sparse Directed Interaction and sparse directed temporal graph

representing the Motion Tendency from the graph inputs. Trajectory representations are learned by subsequent sparse spatial and temporal

graph convolution networks, and then fed into a TCN to estimate the parameters of the bi-Gaussian distribution for future trajectory point

prediction.

by the pedestrian relative distance represent interactions

between pedestrians. RSGB [38] notes there are strong inter-

actions between some distant pedestrian pairs, hence invites

sociologists to manually divide the pedestrians into different

groups according to specific physical rules and sociologi-

cal actions. STAR [46] models the spatial interaction and

temporal dependencies by the Transformer [40] framework.

In brief, previous works model the interactions for either

the neighborhood within a fixed physical range, or unexcep-

tionally all pedestrians. Presumably, this may result in dis-

crepancies on the predictions due to superfluous interactions.

In contrast, we propose a Sparse Directed Interaction, which

is capable of finding the adaptive pedestrians involved in

the interaction, thus to alleviate such problem. Besides, our

method also captures the effective Motion Tendency, which

is helpful to improve the accuracy of predicted trajectory.

Graph Convolution Networks. Graph convolution net-

works (GCNs) are suitable for handling non-Euclidean data.

The existing GCN models can be divided into two cate-

gories: 1) the spectrum domain GCNs [22, 7] design the

convolution operation based on Graph Fourier Transform.

It requires the adjacency matrix to be symmetric due to the

eigen decomposition of Laplacian matrix; 2) the GCNs in

spatial domain directly conduct convolution on the edge,

which is applicable on asymmetric adjacency matrices. For

example, GraphSage [12] aggregates the nodes in three dif-

ferent ways and fuses adjacent nodes in different orders to

extract node features. GAT [41] models the interaction be-

tween nodes using an attention mechanism. In order to deal

with the spatio-temporal data, STGCN [43] extends the spa-

tial GCN to spatio-temporal GCN for skeleton-based action

recognition, which aggregates the nodes from a local spatio-

temporal scope. Our SGCN differs from all the above GCNs,

since it aggregates the nodes based on a learned sparse adja-

cency matrix, which means the set of nodes to be aggregated

is dynamically determined.

Self-Attention Mechanism. The core idea of the Trans-

former [40], i.e., self-attention, has been demonstrated suc-

cessfully in place of RNNs [20, 6] on a series of sequence

modeling tasks in natural language processing, such as text

generation [44], machine translation [35], etc. Self-attention

decouples the attention into the query, key and value which

can capture long-range dependencies, and takes advantage

of parallel computation compared with RNNs. To represent

the relationship between every pair of elements of the in-

put sequence, self-attention computes attention scores by a

matrix multiplication between the query and key.

In our method, we only compute a single layer atten-

tion scores to model Sparse Directed Interaction and Mo-

tion Tendency. Compared to the most recent work [46],

which predicts future trajectories by stacking Transformer

block (computation and memory expensive [15]), our

method is parameter-efficient and achieves better perfor-

mance.

3. Our Method

Pedestrian trajectory prediction aims to predict future lo-

cation coordinates of pedestrians. Given a series of observed

video frames over time t ∈ {1, 2, . . . , Tobs}, we can obtain

the spatial (2D-Cartesian) coordinates {(xn
t , y

n
t )}

N
n=1 of all

pedestrians with a tracking algorithm. Based on these trajec-

tories, our objective is to predict the pedestrian coordinates

within a future time t ∈ {Tobs + 1, Tobs + 2, . . . , Tpred}.

As discussed above, the existing works suffer from super-

fluous interactions by dense undirected graphs. Meanwhile,

they also neglect the exploitable Motion Tendency clue. To

mitigate these limitations, we propose a Sparse Graph Con-

volutional Network (SGCN) for trajectory prediction, which
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Figure 3. Sparse Graph Learning. The self-attention generates the dense spatial interaction scores and dense temporal interaction scores

based on the spatial and temporal graph inputs, respectively. Subsequent spatial-temporal fusion of the spatial interaction scores of each time

step and the temporal interaction scores of each pedestrian are done by 1× 1 convolution layers and self-attention mechanism. The sparse

adjacency matrices are computed by asymmetric convolution networks.

mainly involves Sparse Graph Learning and bi-Gaussian dis-

tribution parameter estimation based on the trajectory repre-

sentations. The overall architecture of the proposed network

is represented in Figure 2. First, the Sparse Directed Interac-

tion (SDI) and Motion Tendency (MT) are learned from the

spatial and temporal graph inputs using self-attention mech-

anism and asymmetric convolution networks, respectively.

Then, subsequent sparse spatial and temporal Graph Convo-

lution Networks extract the interaction and tendency features

from the asymmetric adjacency matrices representing sparse

directed spatial graph (i.e., SDI) and sparse directed temporal

graph (i.e., MT). Finally, the learned trajectory representa-

tions are fed into a Time Convolution Network (TCN) to

predict the parameters of a bi-Gaussian distribution, which

generates the predicted trajectory.

3.1. Sparse Graph Learning

Graph Inputs. Given input trajectories Xin ∈
R

Tobs×N×D, where D denotes the dimension of spatial co-

ordinate, we construct a spatial graph and a temporal graph

as illustrated in Figure 3. The spatial graph Gspa = (V t, U t)
at time step t represents locations of pedestrians, while tem-

poral graph Gtmp = (Vn, Un) for pedestrian n represents

the corresponding trajectory. V t = {vtn|n = 1, . . . , N}
and Vn = {vtn|t = 1, ..., Tobs} represent nodes of Gspa

and Gtmp, respectively, and the attribute of vtn is the co-

ordinate (xt
n, y

t
n) of the n-th pedestrian at time step t.

U t = {ut
i,j |i, j = 1, . . . , N} and Un = {uk,q

n |k, q =
1, . . . , Tobs} represent edges of Gspa and Gtmp, respectively,

where ut
i,j , u

k,q
n ∈ {0, 1} indicate whether the nodes vti , v

t
j

or nodes vkn, v
q
n are connected (denoted as 1) or discon-

nected (denoted as 0), respectively. Since there is no prior-

knowledge on the connections of nodes, the elements in Un

are initialized as 1, while U t is initialized as upper triangular

matrix filled with 1 because of the temporal dependency,

namely the current state is independent to future states.

Sparse Directed Spatial Graph. To increase the sparsity

of the spatial graph inputs, i.e., identify the exact set of

pedestrians involved in interactions in the spatial graph, we

first adopt the self-attention mechanism [40] to compute the

asymmetric attention score matrix, namely the dense spatial

interaction Rspa ∈ R
N×N between pedestrians, as follows:

Espa = φ(Gspa,W
spa
E ),

Qspa = φ(Espa,W
spa
Q ),

Kspa = φ(Espa,W
spa
K ),

Rspa = Softmax(
QspaK

T
spa

√

dspa

),

(1)

where φ(·, ·) denotes linear transformation, Espa are the

graph embeddings, Qspa and Kspa are the query and key of

the self-attention mechanism, respectively. W
spa
E ∈ R

D×D
spa

E ,

W
spa
Q ∈ R

D×D
spa

Q , W
spa
K ∈ R

D×D
spa

K are weights of the linear

transformations, and
√

dspa =
√

D
spa
Q is a scaled factor [40]

to ensure numerical stability.

Since Rspa is computed at every time step independently,

it does not contain any temporal dependency information

of the trajectories. Hence, we stack the dense interactions

Rspa from every time step as Rs-t
spa ∈ R

Tobs×N×N , and then

fuse these stacked interactions with 1× 1 convolution along

the temporal channel, resulting in spatial-temporal dense

interactions R̂s-t
spa ∈ R

Tobs×N×N .

A slice of R̂s-t
spa at each time step is an asymmetric square

matrix, where its (i, j)-th element represents the influence

of node i to node j. Then, the initiative and passive re-

lations represented in the rows and columns of the matrix

respectively can be combined to obtain high-level interaction

features. Specifically, a cascade of asymmetric convolution
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kernels [39] are applied on the rows and columns of R̂s-t
spa,

respectively, i.e.,

F (l)
row = Conv

(

F (l−1),Krow
(1×S)

)

,

F
(l)
col = Conv

(

F (l−1),Kcol
(S×1)

)

,

F (l) = δ
(

F (l)
row + F

(l)
col

)

,

(2)

where F
(l)
row and F

(l)
col are the row-based and column-based

asymmetric convolution feature maps at the l-th layer, re-

spectively, F (l) is the activated feature map, and δ(·) denotes

a non-linear activation function. Krow
(1×S) and Kcol

(S×1) are the

convolution kernels of sizes (1× S) and (S × 1) (i.e., row

and column vectors), respectively. Note, F (0) is initialized

as R̂s-t
spa, and all the convolution operations are padded with

zeros in order to keep the output size as same as the input

size. Thus, the activated feature map obtained from the last

convolution layer is the high-level interaction feature Fspa of

size (Tobs ×N ×N).
We proceed to generate the sparse interaction mask

Mspa by element-wise threshold on σ (Fspa) with a hyper-

parameter ξ ∈ [0, 1]. When Fspa[i, j] ≥ ξ, the (i, j)-th
element of Mspa is set to 1, otherwise 0, i.e.,

Mspa = I {σ (Fspa) ≥ ξ} , (3)

where I{·} is the indicator function, which outputs 1 if

the corresponding inequality holds, otherwise 0. The σ is

Sigmoid activation function. To ensure the nodes are self-

connected, we add an identity matrix I to the interaction

mask, and then fuse it with the spatial-temporal dense in-

teraction R̂st
spa by element-wise multiplication, resulting in a

sparse adjacency matrix Aspa, i.e.,

Aspa = (Mspa + I)⊙ R̂s-t
spa, (4)

where ⊙ denotes element-wise multiplication.

Some previous works (e.g., [22]) suggest the normaliza-

tion of adjacency matrix is essential for GCN to function

properly. Nevertheless, the related works in the vertex do-

main directly adopt Softmax function for adjacency matrix

normalization, which leads to a side-effect that the sparse

matrix will be back to dense matrix because Softmax outputs

non-zero values for zero inputs. In this case, the pedestrians

that do not interact with each other are forced to interact

with each other again. To avoid this problem, we design

a “Zero-Softmax“ function to to keep the sparsity and the

experimental results of ablation study represent the “Zero-

Softmax“ can further improve the performance. Specifically,

given a flattened matrix x = [x1, x2, . . . , xD],

Zero-Softmax(xi) =
(exp(xi)− 1)2

∑

D

j (exp(xj)− 1)2 + ǫ
, (5)

where ǫ is a neglectable small constant to ensure numerical

stability, and D is the dimension of the input vector. Upon

this, we can obtain the normalized sparse adjacency ma-

trix Âspa = Zero-Softmax(Aspa). Thus, a spatial-temporal

sparse directed graph Ĝspa = (V t, Âspa) representing the

Sparse Directed Interactions is eventually obtained from the

spatial graph inputs. The whole process is illustrated in

Figure 3.

Sparse Directed Temporal Graph. Following a simi-

lar way with the sparse directed spatial graph, we can also

obtain the effective Motion Tendency, namely the normal-

ized adjacency matrix Âtmp from the temporal graph inputs,

except for two differences.

First, a position encoding tensor E [40] is added to Etmp,

i.e., Etmp = φ(Gtmp,W
tmp
E ) + E , because trajectory points

in different order indicate different Motion Tendencies. No-

tably, the dense temporal interaction Rtmp is also an upper

triangular matrix like U t due to temporal dependency.

The second difference lies in the temporal-spatial fusion

step as illustrated in Figure 3, where we can not perform

convolution on Rt-s
tmp ∈ R

N×Tobs×Tobs obtained by stacking

Rtmp ∈ R
Tobs×Tobs , because the number of pedestrians N

is variable for different scenes. To simplify operation, we

directly view the Rt-s
tmp as the temporal-spatial dense interac-

tion.

Thus, we eventually obtain a temporal-spatial sparse di-

rected graph Ĝtmp = (Vn, Âtmp) representing the Motion

Tendency from the temporal graph inputs.

3.2. Trajectory Representation and Prediction

GCNs can aggregate the nodes of sparse graphs repre-

senting Âspa (SDI) and Âtmp (MT), and learn the trajectory

representation. As illustrated in Figure 2, we use two GCNs

to learn the trajectory representation, where in one branch

Âspa is fed to the network ahead of Âtmp, while in the other

branch they are fed in the reverse order. Thus, the first branch

produces interaction-tendency feature HITF, while the other

branch produces tendency-interaction feature HTIF, i.e.,

H
(l)
ITF = δ

(

Âtmp · δ(ÂspaH
(l−1)
ITF W

(l)
spa1)W

(l)
tmp1

)

,

H
(l)
TIF = δ

(

Âspa · δ(ÂtmpH
(l−1)
TIF W

(l)
tmp2)W

(l)
spa2

)

,
(6)

where Wtmp1,Wspa1, Wtmp2 and Wspa2 are GCN weights,

and l represents the l-th layer of GCN. H
(0)
ITF is initialized

as Ĝspa, and H
(0)
TIF is initialized as Ĝtmp. The trajectory rep-

resentation H is the sum of the last GCN outputs HITF and

HTIF.

Trajectory Prediction and Loss Function. We follow

Social-LSTM [1] to assume that the trajectory coordinates

(xt
n, y

t
n) at time step t of pedestrian n follow a bi-variate

Gaussian distribution N (μ̂t
n, σ̂

t
n, ρ̂

t
n), where μ̂t

n is the mean,
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Model Year ETH HOTEL UNIV ZARA1 ZARA2 AVG

Vanilla LSTM [1] 2016 1.09/2.41 0.86/1.91 0.61/1.31 0.41/0.88 0.52/1.11 0.70/1.52

Social LSTM [1] 2016 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

SGAN [11] 2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

Sophie [37] 2019 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15

PITF [26] 2019 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00

GAT [23] 2019 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07

Social-BIGAT [23] 2019 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

Social-STGCNN [32] 2020 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75

RSBG w/o context [38] 2020 0.80/1.53 0.33/0.64 0.59/1.25 0.40/0.86 0.30/0.65 0.48/0.99

STAR [46] 2020 0.56/1.11 0.26/0.50 0.52/1.15 0.41/0.90 0.31/0.71 0.41/0.87

SGCN (Ours) - 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

Table 1. Comparison with the baselines approach on the public benchmark dataset ETH and UCY for ADE/FDE. All approaches input 8

frames and output 12 frames. Our SGCN significantly outperform the comparison state-of-the-art works. The lower the better.

σ̂t
n is the standard deviation, and ρ̂tn is the correlation co-

efficient. Given the final trajectory representation H , we

can predict the parameters of the bi-Gaussian distribution

with a TCN [4] on the time dimension following Social-

STGCNN [32]. Note, TCN is chosen because it does not

suffer from gradient vanishing and high computational cost

like traditional RNNs [14, 20, 6]. Hence, the method can be

trained by minimizing the negative log-likelihood loss as

Ln(W) = −

Tpred
∑

t=Tobs+1

logP
(

(xt
n, y

t
n)

∣

∣ μ̂t
n, σ̂

t
n, ρ̂

t
n

)

, (7)

where W denotes all trainable parameters in the method.

4. Experiments and Analysis

Evaluation Datasets. To validate the efficacy of our

proposed method, we use two public pedestrian trajectory

datasets, i.e., ETH [34] and UCY [24], which are the most

widely used benchmarks for the trajectory prediction task.

In particular, ETH dataset contains the ETH and HOTEL

scenes, while the UCY dataset contains three different scenes

including UNIV, ZARA1, and ZARA2. We use the “leave-

one-out” [38] method for training and evaluation. We follow

existing works that observing 8 frames (3.2 seconds) trajec-

tories and predicting the next 12 frames (4.8 seconds).

Evaluation Metrics. We employ two metrics, namely

Average Displacement Error (ADE) [36] and Final Displace-

ment Error (FDE) [1] to evaluate the prediction result. ADE

measures the average L-2 distance between all the predicted

trajectory points obtained from the method and all ground-

truth future trajectory points, while FDE measures the L-2

distance between the final predicted destination obtained

from the method and final destination of the ground-truth

future trajectory point.

Experimental Settings. In our experiments, the embed-

ding dimension of self-attention and the dimension of graph

embedding are both set to 64. The number of self-attention

layer is 1. The asymmetric convolution network comprises

7 convolution layers with kernel size S = 3. The spatial-

temporal GCN and temporal-spatial GCN cascade 1 layer,

respectively. And the TCN cascade 4 layers. The thresh-

old value ξ is empirically set to 0.5. PRelu [13] is adopted

as the nonlinear activation δ(·). The proposed method is

trained using the Adam [21] optimizer for 150 epochs with

data batches of size 128. The initial learning rate is set to

0.001, which is decayed by a factor 0.1 with an interval

of 50 epochs. During the inference phase, 20 samples are

drawn from the learned bi-variate Gaussian distribution and

the closest sample to ground-truth is used to compute the

ADE and FDE metrics. Our method is implemented on

PyTorch [33]. The code has been published†.

4.1. Comparison with State-of-the-Arts

We compare our method with nine state-of-the-art

methods, including Vanilla LSTM [1], Social-LSTM [1],

SGAN [11], Sophie [37], PITF [26], Social-BiGAT [23],

Social-STGCNN [32], RSGB [38], and STAR [47], in the

past four years. The results are shown in Table 1, which

are evaluated by using the ADE and FDE metrics. The re-

sults indicate that our method significantly outperforms all

the competing methods on both the ETH and UCY datasets.

Especially for the ADE metric, our method surpasses the

previous best method STAR [47] by 9% averaging on ETH

and UCY datasets. For the FDE metric, our method is better

than the previous best method Social-STGCNN [32] by a

margin of 13% averaging on the ETH and UCY datasets.

To our best knowledge, the under-lying reason is that our

method can remove the interference from the superfluous

interactions by leveraging Sparse Directed Interaction, and

the Motion Tendency is leveraged to improve the prediction.

Interestingly, our method outperforms all the dense in-

teraction based methods, such as SGAN [11], Sophie [37],

†code available at https://github.com/shuaishiliu/

SGCN
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Variants ETH HOTEL UNIV ZARA1 ZARA2 AVG

SGCN w/o MT 0.92/1.23 0.69/1.53 0.61/1.80 0.52/0.60 0.40/0.80 0.62/1.19

SGCN w/o ZS 0.73/1.39 0.34/0.59 0.38/0.75 0.34/0.65 0.26/0.45 0.41/0.76

SGCN w/o SDI 0.81/1.66 0.67/1.42 0.79/1.78 0.59/0.72 0.44/0.82 0.66/1.28

SGCN (Ours) 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

Table 2. The ablation study of each components. SGCN (Ours) combines with each components.

Variants ETH HOTEL UNIV ZARA1 ZARA2 AVG

SGCN-V1 0.91/1.82 0.36/0.62 0.41/0.83 0.43/0.83 0.34/0.65 0.49/0.95

SGCN-V2 0.69/1.11 0.32/0.57 0.41/0.78 0.31/0.53 0.27/0.45 0.40/0.68

SGCN-V3 0.66/1.07 0.38/0.46 0.54/0.77 0.30/0.52 0.25/0.47 0.42/0.65

SGCN-V4 0.66/1.16 0.38/0.58 0.58/0.79 0.40/0.47 0.27/0.51 0.45/0.70

SGCN (Ours) 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

Table 3. The ablation study of threshold ξ. SGCN (Ours) sets the ξ = 0.5.

GAT [23], Social-BiGAT [23], Social-STGCNN [32], and

STAR [47], on the UNIV sequence which mainly contains

dense crowd scenes. We speculate that the dense interaction

based methods may capture superfluous interaction objects,

which will cause prediction discrepancies. What’s different,

our method is capable of removing the superfluous inter-

actions by Sparse Directed Interaction, which is benefit to

obtain a better performance.

4.2. Ablation Study

Firstly, we conduct ablative experiments on both ETH

and UCY datasets, so as to isolate the contribution of each

component to the final performance. Secondly, we set differ-

ent values of threshold ξ to evaluate the effectiveness of the

proposed sparse graph with different sparsity. The detailed

experiments are introduced in the following paragraphs.

Contribution of Each Component. As illustrated in Ta-

ble 2, we evaluate three different variants of our method, in

which: (1) SGCN w/o MT denotes the Motion Tendency

is removed in our method, in which it merely models the

Sparse Directed Interaction; (2) SGCN w/o ZS indicates

that the Zero-Softmax is replaced by Softmax for sparse

adjacency matrix normalization; and (3) SGCN w/o SDI

represents that the Sparse Directed Interaction is removed in

our method, in which it merely models the Motion Tendency.

From the results, we can see that removing any component

from our model will result in a large performance reduc-

tion. In particular, the results of SGCN w/o MT show 67%
performance degradation in ADE and 83% in FDE, which

clearly validate the contribution of the Motion Tendency

to the final performance of pedestrian trajectory prediction.

Besides, the results of SGCN w/o SDI show 78% perfor-

mance degradation in ADE and 96% in FDE, which indicate

that the sparse directed interaction is also important for the

pedestrian trajectory prediction .

Effectiveness of Sparse Graph. As illustrated in Table 3,

we evaluate five different variants of our method, in which:

(1) SGCN-V1: it means there is no interaction between each

pair of pedestrians by setting ξ = 1; (2) SGCN-V2: it leads

to very sparse directed interaction by setting ξ = 0.75;

(3) SGCN-V3: it leads to relatively dense directed interac-

tion by setting ξ = 0.25; (4) SGCN-V4: it leads to dense in-

teractions by setting ξ = 0; and (5) SGCN: it responds to our

full method by setting ξ = 0.5. The experimental results are

presented in Table 3. We find that the overall performances

of our method reaches a peak when ξ = 0.5, which means

enforcing sparsity to a certain extent is effective enough. Be-

sides, SGCN-V1 achieves the lowest performance, implying

the necessity of modeling interactions between pedestrians.

Furthermore, the results of SGCN-V2 and SGCN-V3 are

better than that of SGCN-V4, which indicates that the sparse

interaction indeed can lead to performance improvement.

4.3. Visualization

Trajectory Prediction Visualization. We visualize sev-

eral common interaction scenes in Figure 4, where the solid

dot at the end of each trajectory denotes the start. More scene

visualizations will be presented in the supplementary mate-

rials. We compare our method with Social-STGCNN [32]

and SGAN [11], because both of them learn a parameterized

distribution of future trajectories.

Specifically, the scenarios 1 and 2 depict two pedestrians

walking in parallel in the same or opposite direction, respec-

tively. In these cases, the pedestrians are not likely to collide.

The visualization reveals that our predicted distribution has a

better tendency along the ground-truth, while both the Social-

GCNN and SGAN generate larger overlap which implies

potential collisions, and thus deviate from the ground-truth.

The scenarios 3 and 4 show two pedestrians heading towards

another one that stays still, and one pedestrian meets an-

other pedestrian in a perpendicular direction, respectively.

The Social-STGCNN and SGAN again both suffer from the

overlap issue, indicating high possibility of collision, while

there are less overlaps in our predicted distribution. Particu-
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SGCN (Ours)

Social-STGCNN

SGAN

1 2 5 643

Figure 4. Visualization of predicted trajectories distribution. Different colors represents different pedestrians. 1 and 2 shows two

pedestrians walking in parallel from the same direction and different direction, respectively. 3 and 4 shows the scene where two pedestrians

meet. 5 shows a pedestrian meets multiple pedestrians. 6 shows several pedestrians walking side-by-side.

A

a1

a2

c1

b2 c2

A B Cb1

Observed Trajectory Ground TruthCurrent Position

Figure 5. Visualization of Sparse Directed Interaction. The rightmost colorbar indicates the weight of SDI corresponding to different

colors. In particular, purple indicates strong relationship while blue means week relationship. Some pedestrians are unmarked because there

is no record in the dataset.

larly, the green pedestrian stands still in scenario 3, thus our

predicted distribution has smaller variance, indicating our

method captures the fact that the still pedestrian is not influ-

enced by other pedestrians in scenario 3. The scenarios 5 and

6 represent the meeting of more than one pedestrian, where

our results considerably match the ground-truth, while the

results of Social-STGCNN and SGAN have serious overlap

and diverge from the ground-truth.

To summarize, both Social-STGCNN and SGAN predict

overlapping distributions and deviate from the ground-truth,

while our predicted distributions exhibit less overlapping

and have a better tendency along the ground-truth. For the

overlaps, the reason maybe that Social-STGCNN and SGAN

model the dense interaction which inevitably introduces su-

perfluous interactions to disturb the normal trajectory and

generate a large detour to avoid collision. In contrast, SGCN

models the sparse directed interaction and motion tendency

together and leads to a better prediction distribution.

Sparse Directed Interaction Visualization. The Sparse

Directed Interaction is visualized in Figure 5, from which

we find that our method is able to capture effective interac-

tion objects on different interaction scenes. The graphs (a2),

(b1), (c1) and (c2) illustrate the sparse directed interactions

that one node is only influenced by part of other nodes. For

instance, the graph (a2) represents the sparse directed inter-

action between the blue node and red node, and it conforms

the scene of A, where the trajectory of blue node is only

influenced by the red node according to the ground-truth.

Furthermore, we find our method can capture interaction

objects dynamically, except the sparse directed interaction

given by graphs (a2), (b1), (c1) and (c2). The graphs (a1) and

(b2) show the green node interacts with all marked nodes.

5. Conclusion

In this paper, we present a sparse graph convolution net-

work for trajectory prediction, which leverages the Sparse

Directed Interaction and Motion Tendency. According to

the extensive experimental evaluations, our method achieves

better performances than previous methods. Moreover, our

method can predict trajectories more accurately even under

some complex scenes, such as a group of pedestrians walk-

ing in parallel. These improvements can be attributed to the

abilities of identifying the Sparse Directed Interactions and

Motion Tendencies of our method.
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