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This paper describes a framework for collecting, annotating, and archiving high-
throughput assays from multiple experiments conducted on one or more series
of samples. Specific applications include support for large-scale surveys of related
transcriptional profiling studies, for investigations of the genetics of gene expression
and for joint analysis of copy number variation and mRNA abundance. Our ap-

proach consists of data capture and modeling processes rooted in R/Bioconductor,
sample annotation and sequence constituent ontology management based in R,

secure data archiving in PostgreSQL, and browser-based workspace creation and
management rooted in Zope. This effort has generated a completely transparent,

extensible, and customizable interface to large archives of high-throughput assays.
Sources and prototype interfaces are accessible at www.sgdi.org/software.

1. Introduction

It is becoming increasingly clear that biomarker and molecular target dis-

covery in cancer, for example, will require the integrative analysis of multi-

ple datasets generated in different centers, at different times, using different

technology platforms. In fact, recent work suggests that integrative ap-

proaches can be highly useful for molecular target discovery [9, 11, 12],

but there are still significant hurdles at the level of dataflow and data
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analysis workflow architecture, and deficiencies in software infrastructure,

that retard progress in this research area. A very recent Nature Reviews

in Genetics Perspectives report [8] discusses disparities between standard

approaches to databasing genomic data and metadata and requirements

of systems biology. Among the issues identified are deficiencies in meta-

information necessary for resource discovery (by humans or by software),

impoverishment of search predicate formulation options, unavailability of

scalable/programmatic query resolution for queries with large payloads,

non-robustness of client applications to alterations in central server data

management patterns, resistance to adoption of XML markups (necessi-

tating detailed non-generic parser development efforts), inappropriate con-

ceptualizations (e.g., functions should be predicated of gene products, not

genes, owing to splice variation) and a variety of difficulties related to com-

munication, education, and licensing shortfalls.

To address some of these limitations, we have designed, developed, and

deployed a software infrastructure for the storage and integrative analy-

sis of biological data generated with high-thoughput tools in genomics and

proteomics (www.sgdi.org/software). The proposed System for Genomic

Data Integration (SGDI) is locally customizable. This is in contrast to

read-only analysis-oriented repositories such as Oncomine [10], WebQTL

[3], or SAGE-Genie [6], SGDI fills a critical gap in prevalent bioinformatics

infrastructure, by permitting individual investigators to perform integrative

analyses of unpublished data and to easily share unpublished data with col-

leagues, in a formally documented and auditable framework. In addition,

researchers will be able to integrate their latest private data with a myr-

iad of other publicly available data streams, thereby ensuring the greatest

use of available resources. SGDI will enable integrative studies that are

currently time-consuming and are difficult to standardize. It will facilitate

data sharing and data reuse and will allow for data collected in one set

of circumstances to be used to help test hypotheses in related areas. This

system has been purpose-designed to enable sharing and analysis of private

datasets that are generated either in single laboratories of through multi-

investigator collaborations such as SPORE programs and program-project

grants (PPGs).

While the ultimate objective of SGDI is an investigator-oriented

browser-driven interface, we have adopted an approach that permits pro-

grammatic access to and manipulation of all data and metadata collected

in the system. In this paper, we focus on elementary architecture and com-

ponent functionalities. The first section details Bioconductor’s approach to
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coherent container design for multiple high-throughput assays applied to

fixed series of samples. The second section describes the sample annota-

tion problem and SGDI’s ontoElicitor facilities for structuring and deploy-

ing regimented vocabularies for sample characteristics. The third section

describes the reporter annotation problem and SGDI’s reporter query fa-

cilities. The final section provides illustrations of the integrated framework

and discusses future intentions of the project.

2. Integrative data structure design in Bioconductor

Consider the problem of representing the fully preprocessed and normal-

ized data from an experiment in genetics of gene expression, as reported in

Cheung et al[4]. Let G denote the number of mRNA reporters (e.g., the

number of oligonucleotide probe sets in an Affymetrix(TM) microarray),

let N denote the number of samples (e.g., the number, 58, of CEPH CEU

founders studied by Cheung et al.), let S denote the number of SNPs geno-

typed on each of the N samples, and let r denote the number of clinical,

demographic, and technical variables recorded on the N samples. mRNA

abundance measures are recorded in a G × N table, genotype calls (un-

phased) are recorded in an S × 2N table, and clinical and demographic

characteristics of the N individuals are recorded in an N × r table. For the

analyses reported in Cheung et al., genotyping information is condensed

into SNP-specific rare allele counts, where allele rarity is reckoned relative

to the source population, necessitating only an N × S table.

Some basic premises of the Bioconductor approach to dealing with high-

throughput data are now described. We use the symbol X to name a concrete

container for experimental data; the term phenodata is used to refer to all

information gathered on samples exclusive of the assay results.

Compact representation. All the information collected in a high-

throughput experiment should be available in a single object.

Tight binding of phenodata to assay data. Sample-level information

should be tightly bound to assay results and should be propagated through

workflows along with assay results unless intentionally excluded.

Array-like selection; closure of container type under selection. The id-

iom X[G, S] in the R programming language can be used to derive a new

instance of the container type of X restricted to data on reporters identi-

fied in the general predicate expression G and to samples identified in the

predicate expression S.

Tightly bound metadata components available. Representations allow for
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Table 1. Selected methods and operators for Bioconductor containers. Most
of the infrastructure for managing sample-level data is defined for the eSet

class and is inherited to specializations.

method example purpose replace?

eSet class

X$n obtain value for all samples yes
X[i,j] restrict to selection yes

abstract(X) return main publication abstract no
experimentData(X) return MIAME schema yes

featureData(X) return reporter metadata yes
phenoData(X) return sample-level data yes
varMetadata(X) return metadata on sample attributes yes
ExpressionSet class

exprs(X) return matrix of assay results yes
makeDataPackage(X) create an installable R package no
racExSet class

snps(X) return matrix of rare allele counts yes
snpNames(X) return SNP identifiers yes

cghExSet class
cloneNames(X) return clone identifiers no
cloneMeta(X) return clone metadata no
logRatios(X) return CGH assay results no

storage of additional (meta)data on the experiment (following the MIAME

[1] schema) and definitions of attributes defining reporters or samples.

Exemplary published experiments should be instantiated for distri-

bution as illustrations. See the Bioconductor packages Neve2006

(CGH+expression, discussed below) and GGtools (whole genome

SNP+expression).

Generic workflow operations. Methods development in Bioconductor

consists primarily of defining parameterized methods f() that interrogate

and transform experimental data to support biological inference through

evaluations of f(X, ...). Multiassay representations should inherit type

information from the constituent container types so that generic operations

continue to function for the extended container type.

The main abstract class used to define high-throughput containers is

called eSet, defined in the Biobase package of Bioconductor. Expression

microarray assay results and allied sample and metadata are stored in in-

stances of the ExpressionSet class. Table 1 sketches some of the meth-

ods/operations defined for eSet and some of its descendants for expression

and integrative experiments.
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3. Sample annotation; ontoElicitor

Careful analysis of the relationship of genomic phenomena to phenotypic

or clinical condition requires detailed description of phenotypic state of the

sample assayed. The data from Neve’s 2006 analysis of copy number and

expression variation in breast tumor cell lines [7] are a good illustration of

the sort of material published in this area. Here we excerpt two records

from the sample annotation:

> library(Neve2006); data(neveExCGH)

> pData(neveExCGH)[1:4,]

ind cellLine geneCluster ER PR HER2 TP53

600MPE 1 600MPE Lu + [-] <NA> -

AU565 2 AU565 Lu - [-] + <NA>

Source tumorType Agey Ethnicity cultMedia

600MPE <NA> IDC NA <NA> DMEM,10%FBS

AU565 PE AC 43 W RPMI, 10% FBS

cultCond commonPt reductMamm

600MPE 37c, 5% CO2 0 FALSE

AU565 37c, 5% CO2 1 FALSE

> table(neveExCGH$Source)

AF CWN P.Br PE PF Sk

2 1 24 19 0 1

> varMetadata(neveExCGH)["Source",]

[1] "PE = pleural effusion, P.Br = primary breast,

Sk = skin, CWN = chest wall nodule, AF = ascites fluid"

This illustrates Bioconductor facilitites for accessing and interpreting

sample-level data. The pData method extracts the R data frame of at-

tributes on samples, the $ operator confers direct access to variable values,

and the varMetadata method returns a subsettable data frame with defi-

nitions of symbols used.

When different nomenclatures are used for phenotype characterization

in different experiments, a problem arises for users of public microarray

archives who wish to perform synthetic analyses [5]. It becomes difficult

to align samples across experiments. Figure 1 illustrates the situation in

a collection of 25 breast cancer microarray experiments. Sample-level data

available in public archives were reviewed. The union of the sets of terms

employed for sample annotation was formed, and the subset of terms related

to histopathology was selected. The left margin of Figure 1 lists all the
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terms in this set, and the bottom margin lists the experiments. A dark

square is plotted in cell (i, j) of the figure if term i is used in experiment j. It

is clear that terms with similar meanings are not uniformly named, and that

experimenters often do not report values of many relevant characteristics.

Figure 1. Rows: terms related to breast cancer histopathology. Columns: author-date
tokens identifying 25 published breast cancer datasets. A dark square is plotted at
location (i,j) if study i uses term j in characterizing its samples.

While Figure 1 indicates a problem with sparsity of shared annotation

across independently performed experiments, it does not indicate another

vulnerability: Even when experimenters do use a common term such as

‘grade’ in sample annotation, the values used for the term may not coincide.

SGDI has responded to this predicament with two novel tools. The first,

ontoElicitor, is a simple framework for iteratively presenting and receiving

feedback on a proposed structured vocabulary for sample annotation. Fig-

ure 2 illustrates a facet of the ontoElicitor for breast cancer samples.
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Figure 2. ontoElicitor facet for breast cancer, with expanded value set for histology
type displayed.

Our current approach to vocabulary design and management eschews

formal ontology engineering methodologies like OWL/RDF in favor of R

graphs. The OWL concepts of class, property and individual are typically

not familiar to experimentalists, and adaptation of OWL technology for

elicitation and revision of vocabularies and valuations required in microar-

ray archives does not seem cost-effective. We have found that practitioners

are interested in working with tree-structured displays of terms, with enu-

merated valuations, and with valuation classes such as“numeric”or“string”.

Bioconductor graph structures can easily represent trees of nodes that rep-

resent terms as string literals. Because arbitrary node attributes can be

attached, valuations and valuation classes can be bound directly to terms

in the graph structures. These ontology graph structures, defined in the

ontoElicitor package distributed with SGDI, can be serialized to HTML

(for use in the ontoElicitor application) or CSV (for review in Excel by

practitioners.) Note that we will support conversion between OWL/RDF

ontology models and R ontology graphs upon adoption of a suitable RDF

schematization for sample-level metadata. The Rredland package of Bio-

conductor exposes the librdf.org facilities for parsing, modeling, and

archiving RDF.

The second tool of use in promoting adoption of uniform sample annota-

tion is the phenoData editor application, with a demonstration instance at

the SGDI portal. Given an ontoElicitor-derived ontology, the phenoData

editor generates a page of fields with drop-down menus that are used to

populate a sample attribute table with standardized values.
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4. Reporter annotation and query facilities

Focused use of archives of high-throughput data is most convenient when

genomic contexts and biological roles of reporters are easily established. In

the case of SNP+expression experiments, it will be of interest to know rel-

ative locations of genotyped loci, assayed transcripts, and, e.g., locations of

promoters for genes exhibiting differential expression; for CGH+expression,

segmentation breakpoints need to be related to gene locations and pheno-

type. Substantial information on element locations is available through

Bioconductor platform annotation packages and through translations of

Entrez Gene and biomart-accessible annotation resources. It is frequently

of interest to interrogate using higher-level concepts and gene collections.

Figure 3 illustrates the interface for filtering reporters on the basis of mem-

bership in specific KEGG-catalogued pathways; GO categories and sets of

HUGO symbols may be used as well. We also have recently introduced

an R graph representing the KEGG orthology (a tree-structured hierarchy

of KEGG pathways, package keggorth) and tree-based navigation of this

structure will be supported.

Figure 3. Selection of reporters using KEGG pathway catalog.

5. The integrated interface; use cases

The primary object that is manipulated in the SGDI framework is the

workspace. This is an XML document that records all selections that have
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occurred. Workspaces can be exported for sharing with colleagues, can be

cloned so that multiple paths with common initial segments can be explored

and saved, and can be revised through rollback or continuation. In general,

a user will not be concerned with the contents or structure of the workspace

document, but will work with the system to define a data extract that will

be used for downstream analysis.

Figure 4 gives a view of the workspace obtained when three experiments

are in scope. armstrong2002 and blalock2004 are classical breast cancer

expression array experiments; testOGTES is a test instance of expression

data (obtained on the u133x3p platform) and SNP data (obtained with

the Affymetrix(TM) 500K Nsp+Sty platform). Expression assay results

and standard errors of estimated expression are provided in two tables;

enzyme-specific tables are provided for both the genotype calls and the

call confidence as measured by the crlmm algorithm in development by

Carvalho, Irizarry and colleagues [2].

Figure 4. top level interface

Figure 5 depicts the interface to SNP selection using only physical co-

ordinates on chromosomes. Additional facilities are available to employ an-

notation provided by Affymetrix detailing cytoband, harboring transcript,

harboring gene, role of transcript in gene to form and condition queries.

The exposition of these resources to simplify interrogation is complete for

cytoband and gene relationships; more work is needed to take advantage of

the detailed contextual vocabulary described in section 4 above.

Finally, a partial view of the HTML rendering of a workspace display

for genotyping assays is given in Figure 6. Reporter metadata occupies the
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Figure 5. Selecting SNPs by location on chromosome.

first six columns, and sample characteristics occupy the first 13 rows. Some

genotype calls are found at the lower right corner of the display.

Figure 6. Reporting on selected SNPs.

6. Deployment; conclusions

One of the most significant problems tackled by SGDI is the challenge

of providing fine-grained, investigator-friendly access to preprocessed and

carefully annotated archives of high-throughput data. SGDI allows in-

vestigators to discover (using flexible but standardized query resolution)

and extract (using a browser-based workflow) data on values of specific

reporters associated with samples possessing specific phenotypic or experi-

mental characteristics for their own local analysis. As the public instance of

SGDI grows, this “read-only” facility will provide access to public datasets
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with high interpretability and integrability established through the use of

ontoElicitor-based sample annotation.

Our open design and distribution approach helps to solve another sig-

nificant problem in the management and analysis of high-throughput data.

Centers and investigators are free to establish (and customize) their own

instances of SGDI for use with private or pre-publication data. We have

adopted a “clean room” deployment, in which all but the most basic in-

frastructure is wrapped in a single tarball, including specific versions of

R, python, PostgreSQL, and Zope, so that intercomponent version consis-

tencies are guaranteed. The administrator who installs the system on a

reasonable unix/mac platform need only set a few Make variables, type

‘make’, and provide passwords when asked. The ‘veil’ system for securing

PostgreSQL at the table access level ( veil.projects.postgresql.org) is in-

cluded and initialized so that group and individual access control lists can

be established for any experiments. The administrator populates the sys-

tem data store using code that transforms R data packages (exemplars in

the ExperimentData archive at Bioconductor) into secured PostgreSQL ta-

bles. The use of R as middleware (between raw assay output files and

PostgreSQL/Zope) permits extension to workflows based on other data

formalisms such as MAGE-OM. The RMAGEML package of Bioconduc-

tor can be used to transform MAGE-ML experiment serializations into

ExpressionSet instances, which then admit rapid incorporation into SGDI.

A referree has expressed concern with R’s capacity to function with very

large data resources. The adoption of PostgreSQL for main data archiv-

ing and interrogation processes represents a proper matching of technology

with task. When workspaces yield tables of manageable size they can be

passed to R directly for numerical analysis and visualization; otherwise

’chunking’ procedures can be adopted to solve many analysis problems in

limited memory. At present our software has run on CentOS Linux, Suse

Linux, and Mac OSX. A Windows port is believed to be feasible but has

not been undertaken. Use of this software requires only a browser, but

administration of the system requires familiarity with PostgreSQL, Zope,

and R.

Forthcoming revisions to the software will facilitate targeting data ex-

tracts to Bioconductor using serialization of a class instance (or package,

if appropriate) so that the provenance of the data extract, the associated

workspace document, and the utilities to which the extract is suited are

included in a self-documenting object or artifact. This will serve as a pro-

totype for targeting other analytical systems with defined APIs.
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