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Abstract
Diabetic kidney disease not only has become the leading cause for ESRD worldwide but also, highly contributes to
increased cardiovascular morbidity and mortality in type 2 diabetes. Despite increased efforts to optimize renal and
cardiovascular risk factors, like hyperglycemia, hypertension, obesity, and dyslipidemia, they are often insufficiently
controlled in clinical practice. Although current drug interventions mostly target a single risk factor, more substantial
improvements of renal and cardiovascular outcomes can be expected when multiple factors are improved simulta-
neously. Sodium-glucose cotransporter type 2 in the renal proximal tubule reabsorbs approximately 90% of filtered
glucose. In type 2 diabetes, the maladaptive upregulation of sodium-glucose cotransporter type 2 contributes to the
maintenance of hyperglycemia. Inhibiting these transporters has been shown to effectively improve glycemic control
through inducing glycosuria and is generally well tolerated, although patients experience more genital infections. In
addition, sodium-glucose cotransporter type 2 inhibitors favorably affect body weight, BP, serum uric acid, and
glomerular hyperfiltration. Interestingly, in the recently reported first cardiovascular safety trial with a sodium-glucose
cotransporter type 2 inhibitor, empagliflozin improved both renal and cardiovascular outcomes in patients with type 2
diabetes and established cardiovascular disease. Because the benefits were seen rapidly after initiation of therapy and
other glucose-lowering agents, with the exception of liraglutide and semaglutide, have not been able to improve
cardiovascular outcome, these observations are most likely explained by effects beyond glucose lowering. In this mini
review, we present the drug class of sodium-glucose cotransporter type 2 inhibitors, elaborate on currently available
renal and cardiovascular outcome data, and discuss how the effects of these agents on renal physiology may explain
the data.
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Introduction
The increased risk for (micro)vascular complications
in type 2 diabetes (T2D), including diabetic kidney
disease (DKD), cannot be explained by chronic hy-
perglycemia alone but involves other risk factors, like
obesity, systemic hypertension, and dyslipidemia (1).
Despite intensified lifestyle and pharmacologic inter-
ventions (e.g., antihyperglycemic agents, statins, and
antihypertensives, especially renin-angiotensin sys-
tem [RAS] blockers) to strictly control these risk
factors, the prevalence of DKD continues to rise and
has become the leading cause for ESRD worldwide
(1,2). Moreover, DKD is strongly associated with
cardiovascular disease (CVD) and increases 10-year
mortality from 12% in patients with T2D without
DKD to 31% in patients with DKD (3). Several novel
therapeutic strategies, like dual/triple RAS blockade
and sulodexide and bardoxolone therapy, have been
explored to further improve renal outcome in di-
abetes. However, these approaches were either in-
effective or harmful, indicating that other avenues
should be explored. Although current drug develop-
ment is largely on the basis of the modification of one
risk factor, a single drug that simultaneously im-
proves multiple risk factors in T2D may lead to more
salutary renal and cardiovascular outcomes,

especially because they are often insufficiently con-
trolled in clinical practice (4).
The recently introduced selective sodium-glucose

cotransporter type 2 (SGLT2) inhibitors improve
glycemic control in an insulin-independent man-
ner by blocking glucose reabsorption in the renal
proximal tubule, thereby enhancing urinary glucose
excretion. SGLT2 inhibitors exert multiple beneficial
effects, including reductions in body weight and
serum uric acid (SUA) as well as BP lowering and
attenuation of glomerular hyperfiltration, which are
likely linked to glycosuria-accompanied natriuresis.
Collectively, these actions beyond glucose lowering may
help to explain the observed renal and cardiovascular
benefits of the SGLT2 inhibitor empagliflozin in the
large-sized randomized, placebo-controlled cardiovas-
cular outcome trial of empaglifozin (EMPA-REG OUT-
COME) (5,6).
Here, we review the mechanism of action and glucose-

lowering efficacy of SGLT2 inhibitors, discuss their
reported renal benefits in T2D, and address mecha-
nisms beyond glucose lowering by which these benefits
may be explained. We will not discuss the importance
of renal risk factors in DKD per se or the cardiovas-
cular outcome of the EMPA-REG OUTCOME Trial in
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detail, because they have been extensively covered in
recent literature (1,7).

The Kidney, Glucose Handling, and SGLT2 Inhibition
The kidney has an important role in glucose homeostasis

through glucose utilization, gluconeogenesis, and tubular
glucose reabsorption. In healthy individuals, the kidney
accounts for 20%–25% of endogenous glucose production in
the fasting state, which increases to about 60% postpran-
dially (8). Furthermore, 180 L plasma is filtered through the
glomerulus per 24 hours, meaning that, in individuals
with a mean plasma glucose concentration of 100 mg/dl
(5.6 mmol/L), 180 g glucose is normally filtered, completely
reabsorbed, and returned to the circulation each day. Two
transporters that appear sequentially in the proximal tubule
are responsible for glucose reabsorption from the filtrate: (1)
the high-affinity, low-capacity SGLT2, which couples sodium
to glucose reabsorption with a 1:1 stoichiometry in the early
(S1) proximal tubule, and (2) the low-affinity, high-capacity
SGLT1 in the more distal part (S2/S3) (9). SGLT2 normally
accounts for approximately 90% of glucose reabsorption,
whereas SGLT1 accounts for the remaining 10% (9).
In T2D, renal changes contribute to the maintenance of

hyperglycemia. First, renal gluconeogenesis is increased
threefold in this population (8). Second, the maximum
reabsorptive capacity for glucose is increased by 30% in
T2D (10), whereas the threshold for plasma glucose at which
glycosuria first occurs is also raised (10). These latter
changes are paralleled by a fourfold upregulation of SGLT2
(and the basolateral facilitative glucose transporter
[GLUT2]) expression (11).
On the basis of observations that SGLT2 gene mutations

lead to benign glycosuria (familial renal glycosuria) (12) and
that pharmacologic blockage of SGLTs effectively reduces
plasma glucose in animals with diabetes (13), the proximal
tubule of the kidney was targeted to achieve glycemic control
in human diabetes. For this, specific SGLT2 inhibitors were
developed, because additional SGLT1 inhibition, achieved
with the first natural compound phlorizin, provoked in-
tolerable gastrointestinal side effects. Currently, three oral
SGLT2 inhibitors (i.e., canagliflozin, dapagliflozin, and em-
pagliflozin) are approved by the US Food and Drug
Administration (FDA) and the European Medicines Agency
(EMA) for patients with T2D and an eGFR.30 ml/min per
1.73 m2, and they are considered reasonable options as
second- or third-line antihyperglycemic treatment (2). In a
meta-analysis of 45 clinical trials including 11,232 patients
with T2D and baseline hemoglobin A1c (HbA1c) of
6.9%–9.2% and excluding severe renal impairment, SGLT2
inhibitors effectively reduced HbA1c by 0.79% when used as
monotherapy and 0.61% when used as add-on therapy
compared with placebo (14). More compounds within this
drug class are in global or regional development (Table 1).
The glucose-lowering mechanism of SGLT2 inhibitors

has been detailed in a proof of principle study in patients
with well controlled T2D and normal renal function (10).
Seven days of dapagliflozin treatment reduced the calcu-
lated renal threshold for plasma glucose from 196 to
22 mg/dl (10.9–1.2 mmol/L) (10). Notably, the glucose-
lowering efficacy of SGLT2 inhibitors is directly related to
the filtered glucose load and thus, is related to not only the

degree of hyperglycemia but also, GFR (15), which explains
the reduced glucose-lowering efficacy in patients with T2D
and reduced kidney function (Figure 1) (16–18). Interestingly,
SGLT2 inhibitor–associated urinary glucose excretion in
patients with a normal GFR is only about 60–80 g/d, which
is markedly less than can be expected given the complete
inhibition of SGLT2 (9). Evident increases in SGLT1-medi-
ated glucose reabsorption account for the 50%–60% of renal
glucose reabsorption that persists (9). Other factors also
reduce the glucose-lowering efficacy of SGLT2 inhibition,
including SGLT2 inhibitor–induced reductions in insulin
and increments in glucagon levels, thereby enhancing
endogenous glucose production (19).

SGLT2 Inhibition Seemingly Improves Renal and
Cardiovascular Outcome
The first in class EMPA-REG OUTCOME Trial, which was

designed according to the 2008 US FDA regulations to assess
cardiovascular safety and not benefit, compared two doses of
empagliflozin (10 and 25 mg/d) with placebo on cardiovas-
cular events in 7020 patients with T2D, established CVD, and
eGFR.30 ml/min per 1.73 m2 (Tables 2 and 3) (6). After a
median follow-up of 3.1 years, empagliflozin significantly
(albeit by a small margin) improved the occurrence of the
primary major adverse cardiovascular event outcome of the
trial (cardiovascular death, nonfatal myocardial infarction,
and nonfatal stroke) by 14% compared with placebo (hazard
ratio [HR], 0.86; 95% confidence interval [95% CI], 0.74 to
0.99; P50.04), which was mainly driven by a significant 38%
reduction in cardiovascular death (HR, 0.62; 95% CI, 0.49 to
077; P,0.001) (6). A nonsignificant 13% reduction in nonfatal
myocardial infarction and a 24% nonsignificant increase in
nonfatal stroke were observed in the empagliflozin group.
Added to the facts that cardiovascular benefit occurred
too early (i.e., within months) to be explained by antiathero-
sclerotic effects and that there was a substantial reduction in
hospitalizations for heart failure (HR, 0.65; 95% CI, 0.50 to
0.85; P50.002) makes empagliflozin-induced hemodynamic
changes a likely explanation for the observed benefit.
Furthermore, empagliflozin-treated patients (pooled doses)
had an HR of 0.61 (95% CI, 0.53 to 0.70; P,0.001) for the
secondary renal outcome of new-onset or worsening of
nephropathy (consisting of progression to macroalbuminu-
ria, doubling of serum creatinine accompanied by an eGFR
of#45 ml/min per 1.73 m2, initiation of RRT, or renal death)
compared with placebo. The HR was 0.54 (95% CI, 0.40 to
0.75; P,0.001) when progression to macroalbuminuria,
which may be explained by a concomitant reduction in
eGFR, was excluded from the analysis (5). The individual
components progression to macroalbuminuria, doubling of
serum creatinine accompanied by eGFR of #45 ml/min per
1.73 m2, and initiation of RRT were significantly reduced
(Table 3). However, renal death (three with empagliflozin
versus zero with placebo) and incident microalbuminuria
(HR, 0.95; 95% CI, 0.87 to 1.04; P,0.25) were not affected.
Furthermore, because doubling of serum creatinine did not
have to be confirmed after a predefined period of time by an
additional measurement and the initiation of RRT did not
exclude temporary dialysis, discussion has been raised about
whether these end points necessarily represented irreversible
nephropathy progression (20).
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Interestingly, a recent meta-analysis of regulatory sub-
missions made to United States, European Union, and
Japanese drug agencies and 57 prospective randomized,
controlled trials (70,910 patients) found that seven dif-
ferent SGLT2 inhibitors all reduced the relative risk (RR) for
major adverse cardiovascular events by 16% (95% CI, 5% to
25%; P50.001) (21). Although this indicates a favorable class
effect, it should be noted that the EMPA-REG OUTCOME
Trial accounted for the majority of cardiovascular events in
this analysis. The benefit of other SGLT2 inhibitors on renal

and cardiovascular outcome should thus be confirmed in
ongoing dedicated trials (Tables 2 and 3).
Although improved glycemic control with empagli-

flozin could have contributed to the observed renal and
cardiovascular benefits, the small HbA1c reductions in
the EMPA-REG OUTCOME Trial (0.45% at 90 weeks and
0.28% at 204 weeks compared with placebo) are unlikely to
explain the rapid onset and effect size, especially because no
other glucose-lowering agent, except liraglutide and semaglu-
tide in the recently published Liraglutide Effect and Action in
Diabetes: Evaluation of Cardiovascular Outcome Results
(LEADER) Trial and the Trial to Evaluate Cardiovascular
and Other Long-Term Outcomes with Semaglutide in Subjects
with Type 2 Diabetes (SUSTAIN-6) (22), has shown to improve
cardiovascular outcome (6). Therefore, mechanisms beyond
glucose lowering are most probably involved (Figure 2).

Effects beyond Glucose Lowering
Weight Loss
Reducing body weight in T2D favorably affects various

renal and cardiovascular risk factors and quality of life but
did not improve cardiovascular morbidity and mortality in
the Look AHEAD (Action for Health in Diabetes) Study (23).
However, a post hoc analysis of this lifestyle intervention trial
showed that the 2.5% weight loss achieved in the intensive
treatment arm compared with the control group reduced the
incidence of very high risk (CKD; from the 2013 Kidney
Disease Improving Global Outcomes classification) by 31%
(24). The fact that achieving or maintaining reduced body
weight is often unsuccessful in the overweight or obese T2D
population highlights the relevance of glucose-lowering
agents that induce weight loss (2), especially because many
of the currently available glucose-lowering drugs are asso-
ciated with weight gain. Clinical trials with SGLT2 inhibitors
in patients with T2D showed significant weight reductions of
about 1.7 kg or 2.4% comparedwith placebo (14). A fast decline
in body weight is seen during the first weeks of treatment and
likely caused by SGLT2 inhibitor–associated osmotic diuresis
(25). Then, body weight declines more gradually toward 20
weeks, which is most probably related to reductions in body
fat mass (26), and subsequently, it reaches a plateau phase.
Interestingly, empagliflozin-treated patients with T2D lost only
3.2 kg after 90 weeks of treatment, whereas on the basis of the
calories lost with observed glycosuria (approximately 240–320
kcal/d), the weight loss should have been 11 kg (27). This
could be explained by a 13% compensatory increase in caloric
intake and confirms earlier findings in diet-induced obese rats
(28). Therefore, combining SGLT2 inhibition with strate-
gies that reduce appetite and caloric intake (e.g., glucagon-
like peptide-1 receptor agonists) may further enhance
body weight reduction in T2D.

Antihypertensive Effect
T2D is frequently associated with systemic hypertension,

which contributes to the high risk for DKD and cardiovascular
events. Although strict BP control is widely recommended (2),
the fact that it proves difficult to reach therapeutic targets
(usually ,140/90 mmHg) in daily practice emphasizes the
need for additional BP-lowering strategies (4). SGLT2 inhib-
itors may be helpful in this regard, because they reduce
systolic and diastolic BP by 3.77 and 1.75mmHg, respectively,

Table 2. Baseline characteristics of the EMPA-REGOUTCOME
Trial

Baseline
Characteristics

Proportion
Affected, %

Cardiovascular disease
Coronary artery disease 75.6
History of myocardial infarction 46.6
History of stroke 23.3
Cardiac failure 10.1

Renal disease
Microalbuminuriaa 28.6
Macroalbuminuriaa 11.0
eGFR560 to ,90 ml/min
per 1.73 m2

52.2

eGFR,60 ml/min per 1.73 m2 25.9

Created with data from the supplemental appendix of the
Randomized, Placebo-Controlled Cardiovascular Outcome
Trial of Empaglifozin (EMPA-REGOUTCOME) (5,6).At baseline,
the study population had an average eGFR of approximately
74 ml/min per 1.73 m2.
aMicroalbuminuria is defined as urinary albumin-to-creatinine
ratio of 30–300 mg/g, and macroalbuminuria is defined as
urinary albumin-to-creatinine ratio .300 mg/g.

Figure 1. | Glucose lowering efficacy the SGLT-2 inhibitors dapagli-
flozin (10 mg once-daily) is reduced with declining eGFR. This graph
represents pooled data from monotherapy as well as add-on therapy
studies in patients with type 2 diabetes. Dapagliflozin leads to a lesser
placebo-corrected reduction in HbA1c in patients with moderate renal
impairment (eGFR$30and,60mL/minper1.73m2)atbaseline. Similar
effectshavebeenobservedwithcanagliflozin (17)andempagliflozin (18).
95% CI, 95% confidence interval; HbA1c, hemoglobin A1c. Modified
from ref. 51, with permission.
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compared with placebo and 4.45 and 2.01 mmHg, respec-
tively, compared with other glucose-lowering agents
without a potentially harmful increase in heart rate (14).
However, because patients in the EMPA-REG OUTCOME
Trial were well controlled at baseline (approximately 135/
76 mmHg), the modest BP reductions achieved with
empagliflozin do not seem sufficient to fully explain im-
proved renal and cardiovascular outcome, especially because
the Action to Control Cardiovascular Risk in Diabetes
(ACCORD) Trial did not show significant benefit of strict
systolic BP control (,120 versus ,140 mmHg) (29).
The mechanisms by which SGLT2 inhibitors reduce BP

remain incompletely understood, although several have

been proposed. First, the glycosuria-accompanied osmotic
diuresis, resulting in excess urine output by about 200–600
ml/d, may reduce BP by decreasing intravascular volume. In
line with this hypothesis, dapagliflozin reduced 125I-albumin–
measured plasma volume by 7.3% and increased hematocrit
2.2% after 12 weeks (25). Also, the empagliflozin-induced
systolic BP reduction of approximately 4 mmHg was paral-
leled by a 5% increase in hematocrit after a median follow-up
of 3.1 years, indicating a sustained effect on volume status (6).
Second, because SGLT2 inhibitors also decrease sodium
reabsorption in the proximal tubule, potentially by inhibiting
the sodium/hydrogen exchanging channel isoform 3 (30),
these agents can be regarded as proximal diuretic.

Figure 2. | The SGLT2 inhibitors affect multiple sites in the diabetic kidney. This figure summarizes the effect that SGLT2 inhibition has on an
individual nephron, which in turn, improves different renal risk factors in type 2 diabetes. ATPase, adenosine triphosphatase; GLUT2, glucose
transporter 2.

Table 3. End points of the EMPA-REG OUTCOME Trial

Outcome Hazard Ratio Compared with Placebo (95% CI)

Prespecified
Primary MACE (CV death, nonfatal MI, or nonfatal stroke) 0.86 (0.74 to 0.99)
CV death 0.62 (0.49 to 0.77)
All-cause mortality 0.68 (0.57 to 0.82)
Hospitalization for heart failure 0.65 (0.50 to 0.85)

Exploratory
New onset of macroalbuminuria 0.62 (0.54 to 0.72)
New onset or worsening of DKD 0.61 (0.53 to 0.70)
Doubling of serum creatininea 0.56 (0.39 to 0.79)
Initiation of RRT 0.45 (0.21 to 0.97)

Created with data from the supplemental appendix of the Randomized, Placebo-Controlled Cardiovascular Outcome Trial of Em-
paglifozin (EMPA-REG OUTCOME) (5,6). At baseline, the study population had an average eGFR of approximately 74 ml/min per
1.73 m2. 95% CI, 95% confidence interval; MACE, major adverse cardiovascular event; CV, cardiovascular; MI, myocardial infarction;
DKD, diabetic kidney disease.
aAccompanied by eGFR#45 ml/min per 1.73 m2.
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Illustratively, dapagliflozin in RAS inhibitor–treated patients
with T2D reduced placebo-corrected seated systolic BP less
effectively in patients who were additionally using thiazide
diuretics (22.38 mmHg) compared with b-blockers (25.76
mmHg) or calcium channel blockers (25.13 mmHg) (31).
Assuming that drugs with a similar mode of action have less
combined efficacy, this suggest that inhibiting sodium reup-
take contributes to the BP-lowering effect of SGLT2 in-
hibitors (31). Natriuresis is dose dependently induced by
dapagliflozin during the first 24 hours in healthy volunteers
but returns to baseline after 13 days of intervention (32),
probably due to compensatory sodium uptake in the tubule,
which is similarly observed with thiazide treatment.
Interestingly, the antihypertensive effect of SGLT2 inhib-

itors has been shown to be independent of GFR, indicating
that other factors then volume depletion also contribute
(16,17). These may include upregulation of angiotensin
1–7 (33) and reductions in SUA (see below), arterial
stiffness, body weight, oxidative stress, inflammation,
salt storage in the glycocalyx, and sympathetic nervous
system tone (34–36).

Lipid Metabolism
Although lowering LDL cholesterol is widely used to

reduce the risk for CVD in T2D (2), data concerning the
renoprotective effect of LDL cholesterol lowering are conflict-
ing (1).Modest increases in plasmaLDL (1.5%–6.3%) andHDL
(5.5%–9.2%) cholesterol concentrations (with no change in
HDL-to-LDL ratio) and reductions in triglyceride levels (1.0%–

9.4%) have been consistently observed with different SGLT2
inhibitors in clinical T2D trials (36). The improvement in
triglyceride-HDL balance may be related to weight loss and
improved insulin sensitivity, whereas the rise in LDL could be
explained by the switch in energy metabolism from carbohy-
drate to lipid utilization (19). However, the precise etiology of
the LDL cholesterol increase remains unknown, although it
could be speculated that the clinical relevance is perhaps small
given that it was accompanied by cardiovascular benefit in the
EMPA-REG OUTCOME Trial.

SUA Reduction
The kidney is responsible for approximately 70% of uric

acid elimination. Because insulin resistance and hyper-
insulinemia reduce renal excretion of uric acid, hyperuri-
cemia is frequently observed in T2D (37). Accumulating
evidence indicates that increased SUA levels contribute to
the development of renal disease and CVD (37). Agents
that lower SUA through inhibition of the enzyme xanthine
oxidase (e.g., allopurinol) may improve hypertension and
reduce GFR decline, but these effects are still being in-
vestigated in humans, and it is unclear whether they are
mediated by SUA lowering per se (37).
By increasing glucose concentrations in the filtrate,

SGLT2 inhibition is proposed to cause glucose transporter
9 isoform 2, which is located more distally in the proximal
tubule, to excrete more uric acid in exchange for glucose
reuptake and also, lead to reduced uric acid reabsorption in
the collecting duct (38). Where thiazide and loop diuretics
reduce uric acid excretion, causing SUA levels to rise,
SGLT2 inhibitors have consistently been shown to reduce
SUA in T2D by 0.3–0.9 mg/dl (6,39,40). Indeed, the BP- and

SUA-lowering efficacies of dapagliflozin are less when
combined with thiazide diuretic treatment compared with
other antihypertensives (31). However, in the EMPA-REG
OUTCOME Trial, small SUA reductions alone unlikely
explain the observed renal and cardiovascular benefits.

Renal Hemodynamic Effects and Albuminuria
Glomerular hyperfiltration, which is closely related to

increased intraglomerular pressure, is a detrimental pro-
cess in the diabetic kidney that occurs on the whole-kidney
or single-nephron level, and it is caused by a complex
interplay of diabetes-induced structural and (hemo)dynamic
changes (41). Through inducing barotrauma and shear stress,
it promotes albuminuria and likely contributes to the devel-
opment and progression of DKD (42).
In addition to lowering systemic BP, RAS blockers also

favorably affect intraglomerular pressure by reducing effer-
ent arteriolar tone. This leads to an initial rise in serum
creatinine that, up to 30%, is strongly associated with long-
term renoprotection (43). Similarly, SGLT2 inhibitors
induce a rapid eGFR decline during the first weeks of
treatment, after which eGFR slightly increases toward base-
line and then, stabilizes. Because renal function decreases in
the natural course of DKD, this eGFR trajectory indicates that
SGLT2 inhibitors provide long-term renoprotection com-
pared with placebo (5) and glimepiride (Figure 3) (44).
Moreover, SGLT2 inhibition also reduces albuminuria, which
not only may be a marker of nephropathy but also, is
speculated to directly confer renal damage (1). In hyperten-
sive patients with T2D and normal renal function and
albuminuria (75% microalbuminuria), dapagliflozin reduced
albuminuria by 33% compared with placebo (45). Also,
empagliflozin reduced the progression to macroalbuminuria
by 38%, whereas 80% of the population was using RAS
blockers at baseline (5).
The presumed reduction in (single-nephron) hyperfiltration

and associated albuminuria with SGLT2 inhibitors (1) could
be explained by increased sodium delivery at the macula
densa and subsequent activation of tubuloglomerular feed-
back (30), which increases afferent arteriolar tone and may, in
turn, reduce intraglomerular pressure. In accordance, an
elegant trial in 40 patients with type 1 diabetes (T1D) showed
that 8 weeks of empagliflozin treatment in hyperfiltering
patients normalized inulin-measured GFR during clamped
euglycemia (GFR5172623–139625 ml/min per 1.73 m2).
This was accompanied by an increase in fractional sodium
excretion, and these changes did not occur in normofiltering
patients (46,47). A subsequent post hoc analysis confirmed that
the amelioration of hyperfiltration was likely caused by a
reduction in intraglomerular pressure as a consequence of
increased afferent arteriolar tone (47). However, because
intraglomerular pressure cannot be directly measured in
humans, it has to be estimated by using variables, such as
GFR, BP, and renal blood flow, using the Gomez equations
(48).

Safety
SGLT2 inhibitors are well tolerated and do not seem to

increase hypoglycemia risk (21). The adverse effects that
have been reported, like genital/urinary tract infections
(UTIs) and ketosis and volume depletion in the presence of
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predisposing factors, have also been seen in patients with
familial renal glycosuria and have generally been mild (12).
Currently, there are no data available on SGLT2 inhibitors
in patients with diabetes and an eGFR,30ml/min per
1.73 m2, in whom glucose-lowering efficacy is less, and
safety issues, like electrolyte disturbances and acute renal
failure, could be expected more frequently in this popula-
tion.
The most commonly observed adverse effects of SGLT2

inhibitors are genital infections and UTIs. The RRs for gen-
ital infections (candida) were 4.75 in regulatory submis-
sions (95% CI, 4.00 to 5.63) and 2.88 in scientific reports
(95% CI, 4.48 to 3.34), which were both assessed in a 2016
meta-analyses, and they are more pronounced in women
(19). The reported RRs of UTIs were 1.15 in regulatory
submissions (95% CI, 1.06 to 1.26) and 1.02 in scientific
reports (95% CI, 0.95 to 1.10) (14,21). Empagliflozin did not
increase the RRs for UTIs in the EMPA-REG OUTCOME
Trial and importantly, complicated UTIs (6).
An increased risk of hypovolemia has been observed with

the use of SGLT2 inhibitors in T2D, especially in older patients
or those treated with diuretics, with RRs of 1.53 in regulatory
submissions (95% CI, 1.27 to 1.83) and 1.16 in other eligible
papers (95%CI, 0.98 to 1.38) (21). However, a meta-analysis of
dapagliflozin trials did not find an increased risk for acute
renal toxicity or deterioration of renal function (49), and
empagliflozin has even been found to reduce this risk (6),
which confirms the findings in familial renal glycosuria (12).
No relevant electrolyte disorders have been reported in the
EMPA-REG OUTCOME Trial (6), and a dedicated analysis
only found mild hypokalemia to be more common with
dapagliflozin, whereas the risk for hyperkalemia and severe
hypokalemia was not increased (50).

Other potential adverse effects of SGLT2 inhibition are
bone fractures. No increased fracture risk was found in a
major meta-analysis from 2016 (21), but in a trial with
patients with T2D and moderate renal impairment, 9.4% of
patients experienced a bone fracture after 104 weeks of 10 mg
dapagliflozin treatment, whereas no fractures occurred in the
placebo group (16). It has been hypothesized that increased
sodium concentrations in the tubule drive cotransport of
sodium and phosphate, leading to increased serum phos-
phate levels, as has been observed (51), which in turn,
increase PTH secretion and FGF23 secretion by osteocytes.
Together with the fact that SGLT2 inhibition may decrease
1,25-dihydroxyvitamin D, this may negatively affect bone
health (52). The evidence for this hypothesis is, however,
brittle, and data are conflicting. A dedicated randomized,
placebo-controlled trial in patients with T2D inadequately
controlled with metformin monotherapy found no changes
in serum calcium, 25-hydroxy vitamin D, parathyroid
hormone, markers of bone formation/resorption, bone
mineral density, or fractures during 50 weeks of dapagliflozin
treatment (53).
Recent reports linked SGLT2 inhibitors to the develop-

ment of (euglycemic) diabetic ketoacidosis (DKA). The DKA
risk is evident in T1D, where 4.3% and 6.0% of patients who
received canagliflozin treatments of 100 and 300 mg, re-
spectively, developed serious DKA that required hospital-
ization, whereas no ketone-related events occurred in the
placebo group during an 18-week randomized, controlled
trial including 351 patients with T1D (54). However, it is
unlikely that SGLT2 inhibition–related DKA is amajor safety
concern in T2D. As such, (preliminary) analyses from major
cardiovascular safety trials did not show an increased risk
for DKA (6,55). Plausible mechanisms through which SGLT2

Figure 3. | SGLT2 inhibitors induce stabilization of eGFR trajectory when compared to SU or placebo. This figure is on the basis of data from
long-term follow-upof (A) theefficacyandsafetyof canagliflozinversusglimepiride inpatientswith type2diabetes Inadequatelycontrolledwith
metformin (CANTATA-SU) Trial (44) and (B) the Randomized, placebo-controlled cardiovascular outcome trial of empaglifozin (EMPA-REG
OUTCOME) Trial (5). A shows that the initial eGFR drop after 4 weeks of treatment, seen with both doses of canagliflozin, prevents long-term
eGFR decline comparedwith glimepiride. The same effect is seen in B, where empagliflozin is comparedwith placebo. SGLT2 inhibition, thus,
prevents deterioration of renal function, which often occurs in type 2 diabetes over time.
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inhibition could increase this risk include a reduction in
(exogenous) insulin levels, increased glucagon levels, and
volume depletion, which lead to decreased glucose oxida-
tion, increased fat oxidation, and thus, stimulation of ketone
body formation (19) on top of increased renal ketone body
reabsorption (56).
Uncontrolled preregistration trials suggested that dapa-

gliflozin might increase the incidence of bladder and breast
cancers, although the former could be a result of detection
bias due to routine urine sampling. Although long-term
data are still needed to draw definitive conclusions, pooled
data from a large number of clinical trials recently sug-
gested that SGLT2 inhibition may lower the overall cancer
risk in T2D (21).
Lastly, the EMA and the FDA recently issued a review on an

increase in lower-limb amputations (three versus six events per
1000 patients), mostly affecting toes, in the ongoing placebo-
controlled canagliflozin cardiovascular outcome trial
CanagliflozinCardiovascularAssessmentStudy,whereasanon-
significant increase in the number of amputations occurred in
the renal Canagliflozin Cardiovascular Assessment Study–
Renal (CANVAS-R), in which patients with T2D have now
been followed for an average of 9 months. Although no
increase in such amputations was seen in 12 other completed
clinical trials with canagliflozin, this potential safety issue will
be closely evaluated in the near future.

Future Perspective
Dedicated outcome trials with predefined renal end points

will need to confirm the renal benefit found in the EMPA-
REG OUTCOME Trial in patients with T2D. Currently, the
CANVAS-R and the Canagliflozin and Renal Events in
Diabetes with Established Nephropathy Clinical Evalua-
tion Study are assessing the effect of long-term canagli-
flozin treatment in high–CVD risk patients with T2D on
renal outcome and expected to report in 2017 and 2019,
respectively. If renoprotection by SGLT2 inhibitors is
confirmed in a population with eGFR.30 ml/min per
1.73 m2, a next step could be to assess safety and the
potential to improve renal outcome in patients with more
advanced DKD, because some beneficial effects do not
seem to be related to GFR. The results of ongoing large-
sized safety trials with different SGLT2 inhibitors (Table 4)
are also eagerly awaited to confirm cardiovascular benefit,
assess potentially increased stroke risk, and clarify
whether the benefits in the EMPA-REG OUTCOME Trial
are drug specific or may be regarded as a class effect.
Furthermore, it is important to know whether these
finding can be translated to patients without established
CVD, which will be assessed in the Dapagliflozin Effect on
Cardiovascular Events Study, or whether SGLT2 inhibi-
tion could provide renal benefit in patients with CKD not
related to diabetes.
Given the insulin-independent mechanism of action of

SGLT2 inhibitors, these agents are currently under investi-
gation as an adjunct to insulin therapy to improve glycemic
control in T1D. Also, plasma glucose, BP, and body weight
could be synergistically lowered by combining SGLT2 in-
hibition with glucagon-like peptide-1 receptor agonists (57),
which suppress glucagon secretion and reduce appetite, and
this combination is currently being investigated.

Furthermore, compounds that partially inhibit SGLT1 in
addition to complete SGLT2 inhibition are being devel-
oped to increase the effect size of specific SGLT2 inhibitors
without causing the (intolerable) gastrointestinal side
effects of specific SGLT1 inhibitors. Lastly, the beneficial
pleiotropic effects of SGLT2 inhibitors could also be
exploited to prevent or delay the onset of T2D and treat
heart failure, hypertension, obesity, and CKD in patients
without diabetes.

Conclusion
Despite the intensified multifactorial treatment in T2D,

traditional risk factors are usually inadequately controlled
in daily practice, and DKD as well as CVD remain common
complications that have a major effect on global health care.
SGLT2 inhibitors are novel antihyperglycemic drugs that
effectively reduce glucose by stimulating urinary glucose
excretion, while simultaneously improving multiple other
risk factors in a glucose-independent manner. Collectively,
these effects resulted in a remarkable improvement of renal
and cardiovascular outcomes. Ongoing outcome trials and
future mechanistic studies will have to confirm these
findings, elucidate the mechanisms through which
SGLT2 inhibitors improve outcome, and determine their
place in the glucose-lowering armamentarium to optimally
minimize the burden of the expanding diabetes epidemic.

Search Strategy
We searchedMedline, PubMed, Google Scholar, and the

Cochrane library for English language abstracts and full-text
articles published before June of 2016. The search for this review
has mainly focused on clinical studies (cohort studies; random-
ized, controlled trials; and meta-analyses of randomized,
controlled trials). The keywords used included “SGLT2 in-
hibitor,” “sodium-glucose cotransporter-2 inhibitor,” “canagli-
flozin,” “empagliflozin,” “dapagliflozin,” “sotagliflozin,”
“ertugliflozin,” “ipragliflozin,” “tofogliflozin,” “luseogliflozin,”
“Remogliflozin etabonate,” “Henagliflozin,” “diabetic kidney
disease,” “diabetic nephropathy,” “renoprotection,” “cardio-
vascular disease,” “diabetes” “clinical management.” These
keywords were used as single search terms and in combina-
tions. We also searched the reference lists of original articles,
narrative reviews, clinical guidelines, and previous systematic
reviews and meta-analyses for further relevant material.
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53. Ljunggren Ö, Bolinder J, Johansson L, Wilding J, Langkilde AM,
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