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Abstract

Sodium–glucose cotransporter (SGLT)2 inhibitors have been demonstrated to reduce cardiovascular events, particularly

heart failure, in cardiovascular outcome trials. Here, we review the proposed mechanistic underpinnings of this benefit.

Specifically, we focus on the role of SGLT2 inhibitors in optimising ventricular loading conditions through their effect

on diuresis and natriuresis, in addition to reducing afterload and improving vascular structure and function. Further

insights into the role of SGLT2 inhibition in myocardial metabolism and substrate utilisation are outlined. Finally, we

discuss two emerging themes: how SGLT2 inhibitors may regulate Na+/H+ exchange at the level of the heart and kidney

and how they may modulate adipokine production. The mechanistic discussion is placed in the context of completed and

ongoing trials of SGLT2 inhibitors in the prevention and treatment of heart failure in individuals with and without

diabetes.
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Study
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Trial in Type 2 Diabetes Mellitus Patients–

Removing Excess Glucose

HFpEF Heart failure with a preserved ejection fraction

HFrEF Heart failure with a reduced ejection fraction

HHF Hospitalisation for heart failure

NHE Na+/H+ exchanger

βOHB β-Hydroxybutyrate

SGLT Sodium–glucose cotransporter

SGLT2 inhibitors and cardiovascular
protection: setting the stage

Sodium–glucose cotransporter (SGLT)2 inhibitors have dem-

onstrated unprecedented cardiorenal benefits in large-scale

clinical trials of people who have type 2 diabetes and either

established cardiovascular disease or multiple cardiovascular

risk factors [1–3]. In the Empagliflozin Cardiovascular

Outcome Event Trial in Type 2 Diabetes Mellitus Patients–

Removing Excess Glucose (EMPA-REG OUTCOME) study,

7020 individuals with type 2 diabetes who had coronary, pe-

ripheral or cerebrovascular disease were randomised to re-

ceive the SGLT2 inhibitor empagliflozin or placebo [2].

While the primary three-point major adverse cardiac events

outcome (cardiovascular death, non-fatal myocardial infarc-

tion and non-fatal stroke) was significantly attenuated by

empagliflozin, what was particularly noteworthy were

the profound and early effects of empagliflozin on

cardiovascular death and hospitalisation for heart failure

(HHF), which were reduced by 38% and 35%, respectively
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[2–4]. In addition, all-cause mortality was reduced by 32%.

Importantly, the reductions in cardiovascular death were not

clearly accounted for by the reductions in atherothrombotic

outcomes; rates of myocardial infarction and stroke remained

unchanged with therapy. The thesis that heart failure was the

outcomemost sensitive to SGLT2 inhibition was confirmed in

the Canagliflozin Cardiovascular Assessment Study

(CANVAS) Program wherein 10,142 individuals with type 2

diabetes and either established cardiovascular disease or

multiple cardiovascular risk factors received canagliflozin or

placebo [1]. Despite broader entry criteria, which resulted in

the inclusion of both patients for whom canagliflozin was used

for primary and secondary prevention of cardiovascular dis-

ease, SGLT2 inhibition produced an almost identical reduc-

tion in the rates of HHF (HR 0.67 in the CANVAS Program

and HR 0.65 in the EMPA-REG OUTCOME study) [5, 6].

The concept that SGLT2 inhibitors reduced cardiovascular

events primarily through prevention of heart failure (vs

atherothrombotic events) has gained broad acceptance, but

several questions remained unanswered, the most important

being: ‘how’?

In addition to the interest around mechanistic inves-

tigations and analyses [7], the results served as a wake-

up call to remind the diabetes community of the

burgeoning burden of heart failure in diabetes; this car-

diovascular outcome had seemed to have been forgotten

[8–10]. Although the atherothrombotic/macrovascular

complications of diabetes are well appreciated, these da-

ta helped remind clinicians and scientists that HHF is

one of the most common and serious complications of

diabetes and is, in fact, as common (if not more evi-

dent) than rates of ischaemic events in diabetes [11]. To

date, much has been written about how diabetes directly

(in an atherosclerosis-independent manner) affects the

myocardium, although the concept of a distinct diabetic

cardiomyopathy predisposing individuals to the develop-

ment of heart failure remains debated [12, 13]. The

concept of primary vs secondary prevention is often

used to distinguish atherosclerotic risk (and associated

atherosclerosis-reducing therapies, such as statins, anti-

platelet agents etc.); however, this approach may not be

appropriate for distinguishing risk of heart failure in

those with diabetes [14]. Individuals who have long-

standing diabetes and healthy coronary arteries do not

necessarily have normal ventricular mechanics and,

hence, are predisposed to developing heart failure [15].

These individuals appear to be equally responsive to

SGLT2 inhibitors for the prevention of heart failure

[16–18]. Indeed, this proposition is supported by a sub-

group analysis of the CANVAS Program, which demonstrated

a similar relative risk reduction for HHF in the so-called

primary and secondary prevention cohorts (HR 0.64 and HR

0.68, respectively) [17].

Another important and unanswered question arising from

previous trials relates to whether the observed cardiovascular

benefit of SGLT2 inhibitors occurred primarily in individuals

with a history of heart failure and whether a specific phenotype

(heart failure with a preserved ejection fraction [HFpEF] or

heart failure with a reduced ejection fraction [HFrEF]) was

more sensitive to the observed benefits. Only a minority of

participants enrolled in the EMPA-REG OUTCOME study

and CANVAS Program (~10%) had a history of investigator-

reported heart failure and, as illustrated in Fig. 1, consistent

relative risk reductions were observed in people with and with-

out a history of heart failure [5, 6]. Since echocardiographic or

biomarker substudies were not performed to evaluate specific

cardiac phenotypes that were most responsive to therapy, this

question remains unanswered. However, the absolute risk re-

duction appeared to be greater in those with a history of heart

failure [4, 6], suggesting that SGLT2 inhibition may be valu-

able in both the prevention and treatment of heart failure. It is

entirely plausible that a large proportion of the individuals

enrolled in these studies had occult HFpEF or HFrEF, a notion

that has been substantiated in a previous study focused on

individuals with type 2 diabetes [19].

Mechanisms of cardiovascular protection
by SGLT2 inhibitors

Several theories have been put forward to explain the pro-

found salutary effects of SGLT2 inhibitors on cardiovascu-

lar (Text box and Fig. 2) and renal outcomes [7, 20].

CANVAS Program

EMPA-REG OUTCOME HR (95% CI)

0.4 0.6 0.8 1.0 1.4

HR (95% CI)

No history of heart failure 0.63 (0.51, 0.78)

History of heart failure 0.72 (0.50, 1.04)

No history of heart failure 0.87 (0.72, 1.06)

History of heart failure 0.61 (0.46, 0.80)

Fig. 1 The cardiovascular benefits (relative risk reduction of cardiovas-

cular death and HHF) observed with empagliflozin in the EMPA-REG

OUTCOME trial and canagliflozin in the CANVAS Program were ap-

parent in participants with andwithout a history of heart failure [5, 6]. The

forest plot is drawn on a logarithmic (log10) scale. This figure is available

as part of a downloadable slideset
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Before delving into these in detail, it is worth noting that

these salient effects appear to have little impact on conven-

tional risk factors. First, baseline and time-dependent

changes in HbA1c, blood pressure and cholesterol do not

seem to determine the overall benefit of SGLT2 inhibitors

on cardiovascular outcomes [22]. Second, their benefits on

HHF/cardiovascular death have been observed across the

spectrum of renal disease, with a similar magnitude of risk

reduction being seen in those with eGFRs of 30–

60 ml min−1 [1.73 m]−2, 60–90 ml min−1 [1.73 m]−2and

>90 ml min−1 [1.73 m]−2 [23]. Although the glucose-

lowering efficacy of SGLT2 inhibitors declines at the low-

er eGFR range, the cardiovascular benefits are remarkably

preserved, suggesting that the mechanism(s) involved in

glycaemic control and cardiovascular risk reduction may

be dissociated and/or follow a different dose–response

curve. Third, it is worth noting that the metabolic finger-

print of these agents appears to be consistent among

those with and without diabetes. Studies suggest that

SGLT2 inhibition exerts glucosuria and natriuresis, while

increasing glucagon and ketones even in individuals who

do not have diabetes [24–26]. These data, therefore, argue

that the benefits noted may be observed even in those

without diabetes, a concept that has been borne out in

preclinical experiments [27, 28] and which is being

explored in ongoing heart failure treatment studies [29]

with dapagliflozin (ClinicalTrial.gov registration no.

NCT03036124) and empagliflozin (ClinicalTrial.gov

registration no. NCT03057951 and NCT03057977). In

the section below, we highlight some of the key

mechanistic themes that have emerged to explain the

cardiorenal benefits of SGLT2 inhibitors.

Fig. 2 Diabetes-associated ventricular remodelling (a) is characterised by

left ventricular hypertrophy, inflammation, increased extracellular matrix

(ECM) production, impaired cardiac metabolism and cardiomyocyte

(CMC) apoptosis. SGLT2 inhibitors may offer salutary effects on several

of the fundamental molecular and cellular pathways involved in the de-

velopment and natural history of cardiac failure in diabetes (as illustrated

by a healthy heart in b). © G. Oomen 2018. This figure is available as part

of a downloadable slideset

Putative mechanisms underlying SGLT2 

inhibitor-associated cardiovascular benefits

Improvement in ventricular loading conditions 

through a reduction in preload (secondary to 

natriuresis, osmotic diuresis) and afterload 

(reduction in blood pressure and improvement in 

vascular function) [7, 20, 21, 30–38]

Improvement in cardiac metabolism and bioener-

getics [39, 40, 44, 45]

Myocardial Na+/H+ exchange inhibition [46–48]

Reduction of necrosis and cardiac fibrosis [51, 

52, 60]

Alteration in adipokines, cytokine production and 

epicardial adipose tissue mass [55–57]

1. 

2. 

3. 

4. 

5. 
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SGLT2 inhibitors improve ventricular loading conditions It

has been proposed that one of the main mechanisms by

which SGLT2 inhibitors exert their beneficial actions is

via improvement of ventricular loading conditions,

secondary to a reduction in preload primarily due to the

diuretic and natriuretic effects [7, 20]. SGLT2 inhibition

in the proximal tubule results in natriuresis and

glucosuria, and the ensuing osmotic diuresis may be

favourable, particularly in the heart of an individual with

diabetes, which functions on a steep Frank–Starling curve.

SGLT2 inhibitors are unique among the diuretics available

clinically in that they modulate the function of the

proximal tubule. The natriuretic response is also a

stimulus for tubuloglomerular feedback, which in turn

results in afferent arteriolar vasoconstriction with

resultant reductions in intraglomerular hypertension (Fig.

3). This process may explain the significant long-term re-

nal preservation noted with SGLT2 inhibitors. Of note,

angiotensin converting enzyme inhibitors and angiotensin

receptor blockers cause efferent arteriolar vasodilatation

and, when used in combination with SGLT2 inhibitors,

will likely co-impact on intraglomerular pressure and

may account for the initial drop in eGFR observed in pa-

tients, which is followed by a plateau over time.

Individuals with diabetes are known to have an increase

in whole-body sodium content and, in recently completed

translational studies in humans, the SGLT2 inhibitor

dapagliflozin has been demonstrated to reduce tissue

sodium content in people with type 2 diabetes [30].

Mediation analyses from the EMPA-REG OUTCOME trial

also point towards volume contraction as being a key de-

terminant of benefit noted within the trial. In fact, approx-

imately 50% of the cardiovascular benefit observed within

the tr ia l was ascr ibed to empagl i f lozin- induced

haemoconcentration [31]. An early haemodynamic benefit

would go hand in hand with the observed early separation

of the Kaplan–Meier curves noted within the clinical trials

when comparing empagliflozin or canagliflozin treatment

with placebo. Could diuresis really explain these benefits

when other diuretics have not changed prognosis in heart

failure? Recent studies point to important differences be-

tween SGLT2 inhibitors and classical diuretics. For exam-

ple, in a comparative study of dapagliflozin and hydrochlo-

rothiazide (a classical diuretic), a reduction in plasma vol-

ume and increase in erythrocyte mass was noted with

dapagliflozin but not with hydrochlorothiazide over a

12 week period of treatment [32]. In another study compar-

ing dapagliflozin with the loop diuretic bumetanide, though

both agents were associated with a reduction in sodium and

interstitial fluid, dapagliflozin afforded these effects with little

or no change in blood volume whereas bumetanide was asso-

ciated with greater reductions in intravascular volume [33]. A

differential effect in regulating interstitial fluid (vs intravascular

volume) may be particularly important in patients with heart

failure in whom, in many instances, intravascular contraction

is present and often aggravated by diuresis. The ability to se-

lectively reduce interstitial fluid may be a unique feature of

SGLT2 inhibitors vs other diuretics (Fig. 4) and this may limit

the reflex neurohumoral stimulation that occurs in response to

intravascular volume contraction with traditional diuretics.

Fig. 3 Diabetes is associated with afferent arteriolar dilatation, which

leads to high intraglomerular pressure and hyperfiltration. Ongoing baro-

trauma to the glomerulus may lead to proteinuria (a). SGLT2 inhibitors,

through tubuloglomerular feedback, promote afferent arteriolar

vasoconstriction. This in turn serves as a mechanism to reduce

intraglomerular hypertension and provide nephroprotection (b). © G.

Oomen 2018. This figure is available as part of a downloadable slideset
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However, this thesis requires further data. Another difference

between conventional diuretics and SGLT2 inhibitors relates to

their effects on serum uric acid levels. Whereas SGLT2 inhib-

itors are uricosuric, loop diuretics are associated with an in-

crease in uric acid levels, possibly mediating differences in

cardiovascular outcomes [34].

In addition to volume changes, SGLT2 inhibitors may

optimise loading conditions through reducing blood pres-

sure and altering vascular function. In a recent study,

empagliflozin was shown to reduce central and 24 h sys-

tolic and diastolic blood pressure, central pulse pressure

and forward wave amplitude in individuals with type 2

diabetes [35]. Other studies have demonstrated that

SGLT2 inhibitors improve endothelial function and aortic

stiffness indices, and may potentially induce vasodilatation

through activation of voltage-gated potassium (Kv) chan-

nels and protein kinase G [36–38].

SGLT2 inhibitors improve cardiac metabolism and bioener-

getics It has been postulated that SGLT2 inhibitors may

improve and/or optimise cardiac energy metabolism and

that by improving myocardial energetics and substrate ef-

ficiency these agents may improve cardiac efficiency and

cardiac output [39, 40]. It is well established that under

conditions of diabetes and/or heart failure, the metabolic

flexibility of the heart, as it relates to substrate utilisation,

is impaired. Accordingly, an over-reliance on NEFAs as a

substrate for ATP generation may result in a build-up of

free fatty intermediates that may in turn promote

lipotoxicity, impair sarcoplasmic reticulum calcium uptake

and promote the development of diastolic dysfunction [41].

SGLT2 inhibitors are known to slightly increase the pro-

duction of the ketone body β-hydroxybutyrate (βOHB),

and it is hypothesised that this may offer an alternative

and less expensive myocardial fuel source in those with

diabetes [39, 42]. The elevation in ketone levels has been

suggested to arise from an effort to raise glucagon levels

and possibly through a reduction in ketone body excretion

via the kidneys. The underlying concept is that βOHB is a

‘superfuel’ that is oxidised by the heart in preference to

NEFAs and glucose, and that ketones not only improve

cardiac function in the failing heart, but also increase me-

chanical efficiency [43]. This is an interesting postulate but

cogent data to support this thesis are scarce. Some support,

however, has been provided by preliminary studies carried

out in pigs following myocardial infarction, which demon-

strate that empagliflozin increases myocardial ketone con-

sumption, and reduces cardiac glucose consumption and

lactate production [44]. Others have postulated that

SGLT2 inhibitor-induced increases in βOHB levels may

inhibit histone deacetylase and prevent prohypertrophic

transcription pathways [40]. It is also possible that a de-

crease in βOHB oxidation results in decreased acetyl-

CoA derived from ketone oxidation, thereby increasing

the oxidation of glucose-derived pyruvate (i.e. improving

myocardial glucose metabolism). A decrease in acetyl-CoA

supply may also decrease harmful hyperacetylation of mi-

tochondrial enzymes, thereby improving mitochondrial en-

ergy production [40]. Using an elegant untargeted metabo-

lomics strategy, SGLT2 inhibition was suggested to

Fig. 4 SGLT2 inhibitors may differentially regulate the interstitial vs

intravascular compartment when compared with loop diuretics. In indi-

viduals with congestive heart failure, interstitial oedema is evident (a).

SGLT2 inhibitors may selectively reduce interstitial volume with minimal

change in blood volume (b) whereas loop diuretics may cause a reduction

in both interstitial and intravascular volume (c). It has been postulated that

this differential volume regulation by SGLT2 inhibitors (interstitial >

intravascular) may limit the aberrant reflex neurohumoral stimulation that

occurs in the setting of intravascular depletion. © G. Oomen 2018. This

figure is available as part of a downloadable slideset
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promote branched-chain amino acid (BCAA) degradation,

thereby providing an alternative fuel source for the failing

myocardium. BCAA degradation is known to be impaired

in heart failure and may contribute to aberrant myocardial

bioenergetics [45]. Although the findings described above

are intriguing, it is important to emphasise that we still lack

definitive evidence linking myocardial energetics to the

beneficial effects of SGLT2 inhibition.

SGLT2 inhibition and direct effects on Na+/H+ exchange in the

myocardium An emerging and tantalising hypothesis is

that SGLT2 inhibitors may directly inhibit the Na+/H+

exchanger (NHE) 1 isoform in the myocardium [46, 47].

Activation of NHE1 results in increased cytosolic sodium

and calcium and has been demonstrated to occur in exper-

imental models of heart failure (Fig. 5). Recently,

Baartscheer et al showed that the SGLT2 inhibitor

empagliflozin inhibited cardiomyocyte NHE and, through

this mechanism, reduced cytoplasmic sodium and calcium

levels, while increasing mitochondrial calcium levels [48].

Since SGLT2 receptors are not expressed in the heart, the

mechanism by which these effects on cardiomyocyte NHE

occur remains elusive. Of note, it has been postulated that

SGLT2 inhibitors promote natriuresis by downregulating

the activity of NHE3 in the proximal tubule [49]. The

expression of NHE3, known to mediate tubular sodium

reuptake, is increased in heart failure, and an inhibitory

effect on NHE3 may serve as an additional mechanism to

restore whole-body sodium homeostasis and reduce car-

diac failure. Hence, inhibition of NHE1 and NHE3 may

be a common cardio–renal mechanism through which

these agents prevent and/or treat heart failure [46].

SGLT2 inhibition and cardiac fibrosisCardiac fibrosis is widely

regarded as a common final pathway through which heart fail-

ure develops. This universally involves cardiac structural re-

modelling due to deposition of extracellular matrix proteins

laid down by cardiac fibroblasts, resulting in impeded ventric-

ular compliance and accelerated development of heart failure

[50]. Recent experimental data in rat models of post-

myocardial infarction demonstrate that dapagliflozin exhibits

marked cardiac antifibrotic effects by suppressing collagen

synthesis via increasing the activation of M2 macrophages

and inhibiting myofibroblast differentiation [51]. Other prelim-

inary studies, using human cardiac fibroblasts, have demon-

strated that empagliflozin significantly attenuates TGF-β1-

induced fibroblast activation and reduces cell-mediated extra-

cellular matrix remodelling as measured by the collagen fibre

alignment index [52]. In the same series of studies, the authors

demonstrated that empagliflozin suppressed expression of key

pro-fibrotic markers, including type I collagen,α-smooth mus-

cle actin, connective tissue growth factor and matrix metallo-

proteinase 2. Therefore, an emerging postulate is that SGLT2

inhibition, independent of hyperglycaemia, may have direct

and favourable effects on cardiac fibroblast phenotype and

function, one of the most important factors of heart failure.

SGLT2 inhibition and adipokines Altered adipokine produc-

tion and/or action has been proposed as a commonmechanism

through which cardiovascular disease and insulin resistance

develops, particularly in states of obesity [53]. Ectopic fat

deposition in the form of perivascular and epicardial fat has

been implicated in the genesis of heart failure, in part through

altered paracrine regulation of adipokines on the myocardium

[54]. It has been suggested that SGLT2 inhibitors maymediate

Fig. 5 (a) Diabetes-associated heart failure is characterised by an increase

in myocardial expression of NHEs. This can lead to elevations in cyto-

plasmic sodium and calcium levels, which may contribute to the path-

ology of heart failure. (b) Recent data suggest that SGLT2 inhibitors

block NHEs, consequently reducing cytoplasmic sodium and calcium,

thus offering cardioprotection. Ca2+M, mitochondrial calcium; MCU, mi-

tochondrial Ca2+ uniporter. © G. Oomen 2018. This figure is available as

part of a downloadable slideset
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their benefit, in part, by restoring the balance between pro- and

anti-inflammatory adipokines. Recently, SGLT2 inhibitors

were postulated to reduce the levels of the adipokine leptin,

which may have a pathophysiological role in sodium regula-

tion as well as cardiac inflammation and fibrosis [55]. Indeed,

in a 52 week clinical study, canagliflozin reduced serum leptin

levels by 25% and increased the levels of the anti-

inflammatory adipokine adiponectin by 17%, when compared

with the sulfonylurea glimepiride [56]. A marked reduction in

the inflammatory cytokine IL-6, but not TNF-α, was also

observed in this study. Other studies have demonstrated that

dapagliflozin reduces epicardial adipose tissue volume, which

has been implicated in the development and natural history of

heart failure [57]. The independent changes that SGLT2 in-

hibitors appear to exert on adipokines need to be interpreted

with caution and it is imperative that we work towards

distinguishing between the secondary effects that arise from

fat mass loss and the direct effects that regulate adipose tissue

function. As such, the causal relationship between SGLT2

inhibition and adipose tissue inflammatory cytokines should,

for now, be considered hypothesis-generating.

Unanswered mechanistic and translational
themes

Despite the growing interest in the cardiovascular and renal

protective biology of SGLT2 inhibitors, unanswered questions

remain. For example, do SGLT2 inhibitors reverse pathological

cardiac remodelling in humanswith diabetes? Although prelim-

inary and uncontrolled case series suggest that empagliflozin

may be associated with a reduction in left ventricular mass and

an improvement in diastolic function (as assessed by echocar-

diography) [58], persuasive data to support this important ques-

tion are pending. The ongoing randomised Effects of

Empagliflozin on Cardiac Structure in Patients with Type 2

Table 1 Completed and ongoing SGLT2 inhibitor-focused trials

Trial [reference/ClinicalTrial.gov

registration no.]

Inclusion criteria Primary outcomes

Type 2 diabetes + CV disease and/or CV risk factors

EMPA-REG OUTCOME [2] Type 2 diabetes and high cardiovascular risk CV death, non-fatal MI and non-fatal stroke

CANVAS Program [2] Inadequately controlled type 2 diabetes with a history,

or high risk, of CVevents

CV death, non-fatal MI and non-fatal stroke

Progression of albuminuria

DECLARE-TIMI 58a [65] Type 2 diabetes with a history, or high risk, of CVevents CV death, non-fatal MI and non-fatal stroke

CV death or HHF

SCOREDa [NCT03315143] Type 2 diabetes, CV risk factors and moderately

impaired renal function

CV death, non-fatal MI and non-fatal stroke

CV death or HHF

VERTIS CVa [NCT01986881] Type 2 diabetes and established vascular disease CV death, non-fatal MI and non-fatal stroke

CKD ± type 2 diabetes

CREDENCE [66] Type 2 diabetes and moderately impaired renal function ESRD, doubling of serum creatinine, renal

or CV death

Dapa-CKDa [NCT03036150] CKD ≥50% sustained decline in eGFR, ESRD,

CV death or renal death

EMPA-Kidneya [NCT03594110] CKD ESRD, renal death, ≥40% sustained decline

in eGFR or CV death

Heart failure ± type 2 diabetes

Dapa-HFa [NCT03036124] Chronic heart failure, left ventricular ejection fraction

≤0.40% and elevated NT-proBNP

CV death or HHF or an urgent heart failure

clinic visit

EMPEROR-Reduceda [NCT03057977] Chronic heart failure, left ventricular ejection fraction

≤0.40% and elevated NT-proBNP

CV death or HHF

EMPEROR-Preserveda [NCT03057951] Chronic HFpEF CV death or HHF

SOLOIST-WHFa [NCT03521934] Type 2 diabetes and prior heart failure and visit or

hospitalisation for worsening heart failure

CV death or HHF

aOngoing trials

CKD, chronic kidney disease; CREDENCE, Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation; CV,

cardiovascular; DECLARE-TIMI, Dapagliflozin Effect on CardiovascuLAR Events-Thrombolysis in Myocardial Infarction; eGFR, estimated glomer-

ular filtration rate; EMPEROR-Preserved, EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Preserved Ejection Fraction;

EMPEROR-Reduced, EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure With Reduced Ejection Fraction; ESRD, end-stage renal

disease; HHF, hospitalisation due to heart failure; MI, myocardial infarction; NT-proBNP, N-terminal of the prohormone brain natriuretic peptide;

SCORED, Effect of Sotagliflozin on Cardiovascular and Renal Events in Patients With Type 2 Diabetes and Moderate Renal Impairment Who Are at

Cardiovascular Risk; SOLOIST-WHF, Effect of Sotagliflozin on Cardiovascular Events in Patients With Type 2 Diabetes Post Worsening Heart Failure
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Diabetes (EMPA-HEART) trial (ClinicalTrial.gov registration

no. NCT02998970), evaluating the effects of empagliflozin on

left ventricular mass by cardiac magnetic resonance imaging,

represents an important step in understanding the effects of

SGLT2 inhibitors on ventricular remodelling. Other studies of

a similar nature are ongoing with empagliflozin (ClinicalTrial.

gov registration no. NCT03198585) and dapagliflozin [59].

There is a paucity of data with respect to the effects of

SGLT2 inhibitors on serum and renal biomarkers. Although

initial studies have demonstrated that canagliflozin reduces

levels of B-type natriuretic peptide and troponin [60], confir-

mation of this in larger studies with pathway-specific bio-

markers (e.g. renin–angiotensin–aldosterone, extracellular

matrix markers and proximal tubule injury markers, such as

kidney injury molecule-1 [KIM-1]) are needed. In addition,

we would encourage further evaluation of uric acid reduction

as a biomarker and/or mediator of SGLT2 inhibition, since

there is a large body of evidence suggesting that uric acid

levels are an important predictor of prognosis in heart failure.

It is also important to determine whether the effects of SGLT2

inhibitors are more pronounced in individuals with evidence

of structural remodelling (such as left ventricular hypertrophy)

or in those with higher levels of natriuretic peptides.

This area of research would also benefit from translational

studies evaluating the effects of SGLT2 inhibitors on mecha-

nisms of arrhythmias. Electrophysiological studies evaluating

inducible ventricular arrhythmias, atrial tachyarrhythmias and

corrected QT intervals would be insightful. Likewise, studies

evaluating functional capacity in heart failure are needed; in

line with this, two studies investigating empagliflozin in

HFpEF and HFrEF, with the 6 min walk test being the primary

endpoint, are currently underway (ClinicalTrial.gov

registration no. NCT03448406 and NCT03448419).

Physiological studies that evaluate the effects of SGLT2

inhibitors on the sympathetic nervous system and neuro-

humoral activation are needed. It is also intriguing that, de-

spite volume loss and a decrease in blood pressure, no change

in heart rate has been observed with SGLT2 inhibitor therapy

and this should be further investigated.

Mechanistic and functional studies that evaluate the effects

of SGLT2 inhibitors on peripheral arterial disease and ampu-

tation risk are also urgently required. Although an increase in

amputation risk was observed exclusively in CANVAS [1, 61,

62], preliminary mechanistic studies in animals subjected to

femoral ligation actually demonstrated an improvement in re-

covery of blood flow in response to canagliflozin [63].

Conclusions

SGLT2 inhibitors have emerged as powerful pharmacological

tools in the prevention of heart failure, with the suggestion that,

unlike with other glucose-lowering agents [64], this benefit

may be observed across the spectrum of people with type 2

diabetes with and without established cardiovascular disease.

The largest outcome study on the effects of SGLT2 inhibitors

on cardiovascular disease, theMulticenter Trial to Evaluate the

Effect of Dapagliflozin on the Incidence of Cardiovascular

Events (DECLARE-TIMI 58), which has enrolled about

10,000 participants within a so-called primary prevention co-

hort, will provide further insights in this regard [65]. A sum-

mary of the reported and ongoing SGLT2 inhibitor trials is

provided in Table 1. In this review, we have outlined some of

the key mechanisms that may explain the notable

cardioprotective benefits of SGLT2 inhibitors, including ef-

fects on volume and diuresis, myocardial metabolism and the

potentially direct myocardial effects, with some preliminary

observations suggesting an effect on myocardial metabolism

and adipokine kinetics. Whether these agents will emerge as

treatment approaches in chronic HFpEF, HFrEF or acute heart

failure is an important question; the answer may be provided

by trials that are currently underway.
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