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Abstract.

In this work we derive the analytic solutions to the system of equations

modeling, within the framework of Pride’s theory, the seismic-to-electromagnetic

conversions taking place in a glacial environment. Considering a one dimen-

sional approach, we set a pure shear horizontal (SH) wave seismic source on

top of an elastic medium representing the glacier, which overlies a porous

medium fully-saturated with water, representing the glacier bed. The obtained

solutions allow to separately represent and analyze the induced electromag-

netic responses, the so called coseismic waves, for both the electric and mag-

netic fields along with the signals originated at the glacier bottom, the elec-

tric interface response and magnetic interface response. We also propose ap-

proximate solutions, useful to be used in a fast inversion algorithm. We an-

alyze the characteristics of the induced electromagnetic signals and their de-

pendence on the type of glacier bed, considering an unconsolidated one and

a consolidated one. The main results of the present paper are manifold, on

the one hand, the mentioned analytic solutions, on the other hand, that the

electric interface response originated at the glacier bottom is proportional

to the electric current density at this depth, and depends on textural and
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‡5 rue René Descartes, 67084 Strasbourg,

France.

c©2018 American Geophysical Union. All Rights Reserved.



electrical properties of the basement. We also showed that the amplitude of

the electric interface response is three orders of magnitude higher than the

amplitude of the electric coseismic field. This fact reinforces the idea pro-

posed in our previous works that it would be interesting to test SH seismo-

electrics as a possible geophysical prospecting and monitoring tool.

Keypoints:

• We derive both exact and approximate analytic solutions to model the

SH seismoelectric response of a glacier system

• The obtained results suggest that SH seismoelectrics could constitute

a possible geophysical prospecting tool
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1. Introduction

The fact that glaciers and their interaction with the subglacial environment could be

successfully studied using electromagnetic methods has been observed several years ago;

Blake and Clarke [1999] noticed that the chemical evolution of subglacial water could con-

tribute to changes in the electric conductivity of the glacier basement, and that streaming

potentials are generated by water flow through the sediments located below the ice mass.

Shean and Marchant [2010] were able, by means of GPR and seismic surveys in Antarc-

tica, to estimate local ice-thicknesses in both upper Mullins Valley and upper Beacon

Valley, while Palmer et al. [2013] detected the existence of subglacial lakes in Greenland

by means of airborne radio echo sounder measurements. Several other examples of GPR

used to investigate glaciers can be found in Nobes [2011].

Another motivation for the scientific study of glaciers and ice caps, among many others,

is their possible contribution to the sea-level rise [VanLooy et al., 2006; Larsen et al.,

2007], which is related to their total volume [Huss and Farinotti , 2012; Grinsted , 2013].

Large scale surveys are necessary in this case, for which airborne laser altimetry/Lidar

and digital elevation models (DEMs) can be counted between the used tools [VanLooy

et al., 2006; Rémy and Parouty , 2009; Jordan et al., 2016; Rius et al., 2017].

Another electromagnetic method that could be used at a local scale in glacial environ-

ments is the seismoelectric method. Seismoelectric conversions can arise at interfaces of

media with different physical properties, especially electrokinetic properties [Haartsen and

Pride, 1997; Garambois and Dietrich, 2002]. These properties are linked to the coupling

between the water flow and the electrical flow. In the seismoelectric method a seismic
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wave source is employed to induce a relative motion between the fluid and the matrix,

which in turn induces an electrokinetic coupling at the origin of the seismoelectric con-

versions. Therefore this method could constitute a prospecting tool for the detection of

the interface between the glacier and the underlying water-saturated sediments. Kulessa

et al. [2006] conducted the first -to the authors’ knowledge- seismoelectric field test on a

glacier, namely the Tsanfleuron glacier, located in the Swiss Alps. They recorded strong

seismoelectric signals, and interpreted them as conversions within the snow pack and near

the dry-wet ice and ice-bed interfaces. They also observed that seismoelectric signals

in glacial ice were stronger than those measured in other environments, such the ones

obtained by Beamish and Peart [1998]. Mahardika [2013] performed numerical tests sim-

ulating the glacial environment described in the previous work, and was able to produce

recordings compatible with the data collected by Kulessa et al. [2006]. Quite recently,

Siegert et al. [2018] interpreted, from seismoelectric soundings of the West Greenland Ice

Sheet, arrival times from the till layer beneath the ice-sheet base fully compatible with

previous data obtained with seismic AVO surveys. They suggested this study strongly

encourages future developments of the seismoelectric method for the hydrological and

mechanical characterization of ice-sheet substrates.

On the other hand, in the laboratory it was proven that an interface between a frozen

sand layer and an unfrozen sand layer can induce a seismoelectric signal called the inter-

facial response. Using a high frequency P-wave source, Liu et al. [2008] observed both

the seismoelectric conversion propagating with the seismic wave, with a decreasing am-

plitude when the temperature increased from −8 to −4 ◦C, and the interfacial response

with an electric field amplitude of the order of 10 mV m−1. The seismoelectric method
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has been also used to study different environments, theoretically, in the laboratory and in

the field. We mention just some examples among the numerous and valuable works that

many authors have produced: studies of shallow seismoelectrics [Haines et al., 2007a, b],

the analysis of seismoelectric signals created by fault ruptures [Hu and Gao, 2011], the

study of seismoelectric effects produced by mesoscopic heterogeneities [Jougnot et al.,

2013; Monachesi et al., 2015], the study of hydrological reservoirs [Dupuis et al., 2007;

Dupuis et al., 2009; Schakel et al., 2012], hydrocarbon reservoir characterization [Thomp-

son et al., 2005; Hu et al., 2007; Thompson et al., 2007; Revil and Jardani , 2010; Zyserman

et al., 2010; Guan et al., 2013], CO2 deposition sites monitoring [Zyserman et al., 2015],

partially saturated soils characterization [Strahser et al., 2011; Warden et al., 2013; Ma-

hardika, 2013; Smeulders et al., 2014; Allègre et al., 2015; Jardani and Revil , 2015; Bordes

et al., 2015; Fiorentino et al., 2017; Zyserman et al., 2017a], seismoelectric characteriza-

tion of layered-earth systems [Grobbe et al., 2016; Grobbe and Slob, 2016]. The interested

reader can recourse to recent reviews [Jouniaux and Ishido, 2012; Jouniaux and Zyser-

man, 2016] and a recent book on seismoelectrics [Revil et al., 2015] for a more extensive

list of applications.

With the objective of contributing to characterize and understand the seismoelectric

method when applied to glacial environments, we present in this work an analytic study

of the electromagnetic responses to pure SH seismic waves, generated by a shearing force

acting at the top of a glacier overlying a rocky substratum. Concerning the choice of the

source, on the one hand, we have proved in a previous work [Zyserman et al., 2017a] that

the signal-to-noise ratio can be higher in this case than when using compressional sources,

and on the other hand, although up to now this kind of sources has not been used in seis-
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moelectric field studies, they have been employed successfully in several works aiming to

characterize the shallow subsurface [Konstantaki et al., 2013, 2015; Beilecke et al., 2016;

Stucchi et al., 2017; Comina et al., 2017; Prior et al., 2017]. The ice forming the glacier

is treated as an elastic medium; this is a common assumption when performing seismic

studies [Presnov et al., 2014a, b; Collins et al., 2016; Podolskiy and Fabian, 2016].

Many authors [Garambois and Dietrich, 2002; Hu et al., 2007; Haines et al., 2007a, b; Hu

and Gao, 2011; Zyserman et al., 2012; Guan et al., 2013; Warden et al., 2012, 2013; Kröger

et al., 2014; Bordes et al., 2015; Zyserman et al., 2015; Gao et al., 2017; Guan et al., 2017;

Zyserman et al., 2017a] have employed Pride’s theory [Pride, 1994] to model the electroki-

netic coupling taking place at the pore walls of an electrolyte saturated rock matrix; in

this work we proceed in the same manner to characterize the seismic-to-electromagnetic

energy conversions occurring at the glacier bed and at its top border, i.e., at the boundary

with the glacier bottom. Moreover, as the glacier beds can be constituted primarily by

hard rock [Payne et al., 2004] or by unconsolidated sediments [Peters et al., 2006], we

employ two different models for the mechanical properties of the glacier bed, and explore

their respective influence on the generated electromagnetic response.

Finally, concerning the interaction of the glacier with its underlying medium, it is modeled

by assuming that they move jointly when the shear waves arrive at their common bound-

ary. This assumption is valid for different kind of glaciers, namely the so called ”cold-

based” or ”dry-based” glaciers, i.e., those with their basal part entirely below the pressure

melting point, and therefore with no liquid water occurring at the interface between the

two media [Lorrain and Fitzsimons , 2011], and also for the more erosive ”temperate”

glaciers, for which thin water sheets or water-filled holes with different shapes can exist
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between the glacier bottom and the rocks beneath, allowing the ice to slip and move rela-

tively fast [Herman et al., 2015]. It must be however noticed that in this second case some

restrictions involving the frequency content of the signal and the water viscosity, among

other parameters, must be taken into account for the ”welded” boundary condition to be

valid [Rokhlin and Wang , 1991]. In summary, we are presenting the first analytic work in

which the seismoelectric equations, coupled through appropriate boundary conditions to

the elastic equations, are solved and furthermore, the solution is written in a closed form.

We follow this work by presenting the governing equations used in this study, and continue

by deriving the analytic solutions to the simplified elastic and Pride’s equations, consid-

ering contributions of infinitely many reflections of the SH seismic wave at the glacier

surface and bottom. Further, we consider an approximation to the induced electromag-

netic fields, which turns out to produce very simple expressions. Finally, we present the

model parameters employed in this study considering different scenarios to explore the

responses yielded by the proposed solutions.

2. Theoretical background

2.1. Governing equations

Let’s consider a one-dimensional medium constituted by a single layer on top of a half-

space in contact at a given depth zB as it is shown in Fig.1.

The top layer (medium 1) represents the ice body of a glacier, being modeled as an

elastic medium, while the half-space (medium 2) is occupied by a porous medium fully-

saturated with water, representing the glacier bed. We assume that the seismic source

of the system is a shearing force located at the glacier surface (z = 0), parallel to the x
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axis acting on a horizontal infinite plane. Under these assumptions the source can only

induce displacements in the x direction, with amplitudes depending only on depth; no

compressional waves can arise in this model; on the other hand, due to the proposed

model geometry, spherical spreading and Fresnel zone effects do not take place.

Given that medium 1 is an elastic one, the mechanical equation that governs the wave

propagation written in the space-frequency domain, assuming an eiωt time dependence,

is:

−ω2ρ1ux −G1
∂2ux
∂z2

= F sδ(z), (1)

where ρ1 and G1 stand for the density and the shear modulus of medium 1, and ux is

the displacement in the medium [Aki and Richards , 2002]. The right hand side of eq. 1

represents the shearing source acting on the surface (F s is the shearing force per unit area

and δ(z) is the Dirac delta function).

As mentioned above, eq. 1 yields the mechanical response of the considered medium under

the stated assumptions. Even though it is not coupled to the electromagnetic response

in this region, clearly we have to establish the governing equations for the electric and

magnetic fields in the glacier in order to appropriately model the complete response to

the seismic wave propagation induced by the source. Because the proposed model is one-

dimensional, both the electric and magnetic fields will depend only on depth. Assuming

that the net electric charge is zero and that the magnetic permeability is that of the

vacuum, the electric and magnetic fields in medium 1 will satisfy the following simplified

form of Maxwell’s equations:

−σ1Ex −
∂Hy

∂z
= 0, (2)

∂Ex
∂z

+ iωµ0Hy = 0, (3)
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where Ex and Hy are the electric and magnetic fields, respectively, σ1 is the electric

conductivity of the medium and µ0= 4π×10−7 N A−2 is the vacuum magnetic permeability.

Note that the displacement currents are not accounted for; this is the common assumption

for shallow seismoelectric surveys [Hu and Liu, 2002; Haines and Pride, 2006; Bordes

et al., 2015; Gao et al., 2017; Guan et al., 2017].

To model the seismoelectric response in medium 2 we use the equations derived by Pride

[1994]. Considering that the electroosmotic feedback can be neglected in Biot’s equations,

as it is usually assumed for frequencies in the range of interest for shallow seismoelectric

surveys (10 Hz to 1 kHz) [Hu and Liu, 2002; Haines and Pride, 2006; Warden et al., 2013;

Bordes et al., 2015; Guan et al., 2017; Gao et al., 2017], Pride’s equations can be written

as follows:

−ω2ρbus,x − ω2ρwuf,x −G2
∂2us,x
∂z2

= 0, (4)

−ω2ρwus,x − ω2g0uf,x + iω
ηw
κ
uf,x = 0, (5)

−σ2Ex −
∂Hy

∂z
= iω

ηw
κ
L0uf,x = jv, (6)

∂Ex
∂z

+ iωµ0Hy = 0, (7)

In these equations, us,x and uf,x are the average solid and relative fluid displacements,

respectively, ρb is the bulk density, which can be computed as ρb = ρs(1 − φ) + φρw,

being ρs the density of the solid matrix, ρw the density of water and φ the porosity of

the medium. G2 is the shear modulus of medium 2, g0 the Biot’s low frequency inertial

coupling coefficient, computed as g0 = Fρw [Santos et al., 2004, 2005; Zyserman et al.,

2012], where F is the formation factor given by F = φ−m̂, being m̂ the cementation

exponent, ηw is the water viscosity and κ the permeability of the porous matrix. The
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right hand side in eq. 6 is the electric current density, source of the electromagnetic

signals, and can be referred to as the viscous current density jv, whereas σ2Ex is the

conduction current, being σ2 the electric conductivity of medium 2. The coefficient L0 is

the electrokinetic coupling [Pride, 1994]; it creates, in this model, the coupling between

the seismic wave and the electric and magnetic fields. If this coupling is zero, there are no

seismo-electromagnetic conversions. Within the seismic frequency band it can be written

as [Haines , 2004]:

L0 = − εwζ

ηwF
, (8)

where ζ is the zeta potential and εw is the permittivity of water. In order to solve

the problem stated by eqs. 1-7 it is necessary to establish boundary conditions for the

displacements and the electromagnetic fields, both in the boundaries of the system (z = 0

and z →∞) and at the interface between both media (z = zB). In the following section

the boundary conditions are established and the problem is analytically solved taking

advantage of the decoupling of the mechanical and electromagnetic equations; we first

solve the mechanical problem, and then, the obtained solution is used to derive the final

solutions for the electric and magnetic fields.

3. Derivation of the analytic solution

3.1. Solving the mechanical equations

By solving eq. 1 for z ≥ 0 assuming a homogeneous half-space, the displacement ux as

a function of z will be given by (see Appendix A):

ux(z) = − F s

iλ1G1

eiλ1z, (9)
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where

λ1 = ω

√
ρ1

G1

. (10)

The S-wave phase velocity in medium 1 can be obtained from eq. 10 as v1 = ω/|λ1|.

This wave will travel downwards until it reaches the interface between the glacier and

the porous medium, at z = zB. At this point, part of the energy will be reflected from

the interface, traveling upwards to the surface, and the rest of the energy will be trans-

mitted to the porous medium beneath the glacier. Let’s call U
R,zB ,(1)
x the displacement

produced by the reflected wave at z = zB (hereafter, the superscript between brackets

indicates a reflection/transmission count). Then, the displacement ux(z) will be given by

the superposition of the incident wave (given by eq. 9) and the mentioned reflection as

follows:

ux(z) = − F s

iλ1G1

eiλ1z + UR,zB ,(1)
x e−iλ1(z−zB). (11)

Note that eq. 11 is also a solution of eq. 1, because the second term verifies the homoge-

neous equation.

Solving eqs. 4 and 5 (see Appendix B), and denoting by U
(1)
s,x and U

(1)
f,x the solid and

relative fluid displacements at z = zB produced by the incident wave (eq. 9), respectively,

the solid and relative fluid displacements us,x(z) and uf,x(z) will be given by:

us,x(z) = U (1)
s,xe

iλ2(z−zB) and uf,x(z) = U
(1)
f,xe

iλ2(z−zB), with U
(1)
f,x = − ρw(

g0 − iηw
ωκ

)U (1)
s,x ,(12)

being λ2 the wave number of medium 2:

λ2 = ω

√
1

G2

(
ρb −

ρ2
w

g0 − iηw/(κω)

)
, (13)

and v2 = ω/|Re(λ2)| its S-wave phase velocity.

In order to find the values for the displacements at z = zB, we assume that the glacier
c©2018 American Geophysical Union. All Rights Reserved.



is welded to the solid matrix of the porous medium. Then, both the displacements ux

and us,x and the shear stresses G1
dux
dz

and G2
dus,x
dz

should be continuous at z = zB. From

eq. 11 and the solid displacement us,x given by eq. 12 the continuity conditions for the

displacement and the shear stresses for the first incident wave at z = zB can be respectively

stated as follows:

− F s

iλ1G1

eiλ1zB + UR,zB ,(1)
x = U (1)

s,x , (14)

−F seiλ1zB − iλ1G1U
R,zB ,(1)
x = iλ2G2U

(1)
s,x , (15)

from which:

U (1)
s,x =

2iF seiλ1zB

(λ1G1 + λ2G2)
, (16)

UR,zB ,(1)
x =

iF s(λ1G1 − λ2G2)eiλ1zB

λ1G1(λ1G1 + λ2G2)
. (17)

The reflected wave U
R,zB ,(1)
x e−iλ1(z−zB) will travel upwards to the surface, reflecting at this

point with the same amplitude (we assume here that the shear stress at the surface is zero,

i.e. the shear source is no longer acting). Let’s call U
R,0,(1)
x the displacement produced by

the first reflection at the surface. Then we can write:

UR,0,(1)
x = UR,zB ,(1)

x eiλ1zB =
iF s(λ1G1 − λ2G2)ei2λ1zB

λ1G1(λ1G1 + λ2G2)
. (18)

The wave reflected at the surface U
R,0,(1)
x eiλ1z will travel downwards to the interface, and

another reflection/transmission will occur. It is possible to prove by induction that the

corresponding displacements originated in the n-th reflection/transmission at z = zB and

in the n-th reflection at the surface are given by:

U (n)
s,x =

2iF s(λ1G1 − λ2G2)(n−1)ei(2n−1)λ1zB

(λ1G1 + λ2G2)n
, (19)
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UR,zB ,(n)
x =

iF s(λ1G1 − λ2G2)nei(2n−1)λ1zB

λ1G1(λ1G1 + λ2G2)n
, (20)

UR,0,(n)
x =

iF s(λ1G1 − λ2G2)nei2nλ1zB

λ1G1(λ1G1 + λ2G2)n
. (21)

The relative fluid displacement at z = zB originated by the n-th transmission can be

obtained from eqs. 12 and 19:

U
(n)
f,x = − ρw(

g0 − iηw
ωκ

) 2iF s(λ1G1 − λ2G2)(n−1)ei(2n−1)λ1zB

(λ1G1 + λ2G2)n
, (22)

which allows to write for the relative fluid displacement:

u
(n)
f,x(z) = − ρw(

g0 − iηw
ωκ

) 2iF s(λ1G1 − λ2G2)(n−1)ei(2n−1)λ1zB

(λ1G1 + λ2G2)n
eiλ2(z−zB). (23)

Replacing this last expression in the right hand side of eq. 6, the electric current density

produced by this displacement can be obtained:

j(n)
v (z) = iω

ηw
κ
L0u

(n)
f,x =

ω ηw
κ
L0ρw(

g0 − iηw
ωκ

) 2F s(λ1G1 − λ2G2)(n−1)ei(2n−1)λ1zB

(λ1G1 + λ2G2)n
eiλ2(z−zB)

= J (n)
v eiλ2(z−zB), (24)

where J
(n)
v is the electric current density at z = zB produced by the n-th transmission. Fi-

nally, the displacements and the electric current density will be given by the superposition

of all the events as follows:

ux(z) = − F s

iλ1G1

eiλ1z +
∞∑
n=1

UR,zB ,(n)
x e−iλ1(z−zB) +

∞∑
n=1

UR,0,(n)
x eiλ1z, 0 ≤ z ≤ zB, (25)

us,x(z) =
∞∑
n=1

U (n)
s,x e

iλ2(z−zB) and uf,x(z) =
∞∑
n=1

U
(n)
f,x e

iλ2(z−zB), z ≥ zB, (26)

jv(z) =
∞∑
n=1

J (n)
v eiλ2(z−zB), z ≥ zB, (27)

where U
R,zB ,(n)
x , U

R,0,(n)
x , U

(n)
s,x , U

(n)
f,x and J

(n)
v are given by eqs. 20, 21, 19, 22 and 24,

respectively.
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3.2. Solving the electromagnetic equations

The system of eqs. 2, 3, 6 and 7 can be written in the following equivalent simplified

form:

d2Ex
dz2

+ k2
1Ex = 0, 0 ≤ z ≤ zB, (28)

d2Ex
dz2

+ k2
2Ex = iωµ0jv = iωµ0

∞∑
n=1

J (n)
v eiλ2(z−zB), z ≥ zB, (29)

where k1 =
√
−iωµ0σ1 and k2 =

√
−iωµ0σ2. Note that the source of the electromagnetic

fields is given by the electric current density jv (see eq. 27), and is different from zero

only for z ≥ zB.

The general solution for eq. 28 is given by:

Ex(z) = A1e
−ik1z +B1e

ik1z, 0 ≤ z ≤ zB, (30)

where A1 and B1 are complex coefficients. The general solution for eq. 29 can be written

as:

Ex(z) = A2e
−ik2z +B2e

ik2z − k2
2e
iλ2(z−zB)

(k2
2 − λ2

2)σ2

∞∑
n=1

J (n)
v , z ≥ zB. (31)

where A2 and B2 are complex coefficients and the third term is a particular solution for

eq. 29. The magnetic field Hy can be derived from the electric field Ex using eqs. 3 and

7, leading to

Hy(z) =
k1

ωµ0

A1e
−ik1z − k1

ωµ0

B1e
ik1z, 0 ≤ z ≤ zB, (32)

Hy(z) =
k2

ωµ0

A2e
−ik2z − k2

ωµ0

B2e
ik2z − iλ2e

iλ2(z−zB)

k2
2 − λ2

2

∞∑
n=1

J (n)
v , z ≥ zB. (33)

It is important to remark at this point that both fields are constituted by the superposition

of two distinct responses. The first two terms in eqs. 30-33 are perturbations traveling at
c©2018 American Geophysical Union. All Rights Reserved.



velocities given by ω/|Re(k1,2)|, that is, the velocity at which the electromagnetic signal

travels in the medium. As it is well known, these perturbations are attributed to responses

originated at interfaces between two distinct media. The third term in eqs. 31 and 33 can

be clearly identified with the coseismic response, traveling at the same velocity ω/|Re(λ2)|

as the solid and fluid displacements.

The unknown coefficients A1, B1, A2 and B2 should be obtained by imposing conditions

at the interface of both media (z = zB), and at the boundaries of the system (z = 0 and

z →∞) as it is shown below. First, if we choose k2 such that Im(k2) < 0, then B2 must

vanish in order to avoid the divergence of the electromagnetic fields when z →∞. If the

Earth’s surface is in contact with air, and assuming that the air is an insulator, then the

amplitude of the electric field must be constant for z ≤ 0 in order to avoid its divergence

when z → −∞, and in virtue of eq. 2 Hy = 0 for z < 0 (see Appendix C). Given that the

magnetic field should be continuous at z = 0 (see Appendix D), we can write from eq. 32:

0 = A1 −B1. (34)

Both the electric and magnetic fields should be continuous at the interface between the

glacier and its basement (see Appendix D). The continuity condition for both fields at

z = zB can be respectively stated, using eqs. 30-33, as follows

A1e
−ik1zB +B1e

ik1zB = A2e
−ik2zB − k2

2

(k2
2 − λ2

2)σ2

∞∑
n=1

J (n)
v , (35)

k1

ωµ0

(A1e
−ik1zB −B1e

ik1zB) =
k2

ωµ0

A2e
−ik2zB − iλ2

(k2
2 − λ2

2)

∞∑
n=1

J (n)
v . (36)

c©2018 American Geophysical Union. All Rights Reserved.



The system of eqs. 34-36 completely determine the values for the three complex coefficients

A1, B1 and A2:

A1 = B1 =
k2

2(λ2 − k2)−1

2 [k1 sinh(ik1zB) + k2 cosh(ik1zB)]σ2

∞∑
n=1

J (n)
v , (37)

A2 =
k2

2 [k1 sinh(ik1zB)− λ2 cosh(ik1zB)] eik2zB

(k2
2 − λ2

2) [k1 sinh(ik1zB) + k2 cosh(ik1zB)]σ2

∞∑
n=1

J (n)
v , (38)

with which we have the complete solutions for the electric and magnetic fields. Once the

fields Ex(z, ω) and Hy(z, ω) are known for a given depth z below the surface, the time

variation of these fields at that depth is obtained by the inverse Fourier transform. In

the following section hypothetical examples are proposed to analyze the electromagnetic

responses predicted by the derived analytical solutions.

3.3. Approximate electromagnetic fields

Although the analytic expressions for the fields eqs. 30-33 seem to be quite simple, the

involved coefficients A1, B1 and A2 are not. However, under reasonable assumptions it is

possible to find a simple approximation to the solution suitable to perform an analysis of

the SH seismoelectric response of the proposed model.

Let us consider the ratio (k2/λ2)2, given by(
k2

λ2

)2

=
iµ0σ2G2

ρb − ρ2w
g0−iηw/(κω)

. (39)

We have computed this quotient for a wide range of seismic frequencies in the cases of

unconsolidated and consolidated bedrocks considered in this study, yielding values in the

order of 1× 10−5; so we can safely consider |k2/λ2|2 << 1. By doing this, it is possible to

make some approximations to simplify the expressions of the fields. Neglecting the ratio

(k2/λ2)2 against k2/λ2 and assuming that e±ik1z ' 1 and e±ik2z ' 1, which are very good
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approximations for depths not higher than ∼ 100 m, then the electric and magnetic fields

can be approximated by the following simplified expressions:

Ex(z) ' k2

λ2σ2

∞∑
n=1

J (n)
v , 0 ≤ z <∞, (40)

Hy(z) ' 0, 0 ≤ z ≤ zB, (41)

Hy(z) ' 1

iλ2

∞∑
n=1

J (n)
v −

eiλ2(z−zB)

iλ2

∞∑
n=1

J (n)
v , z ≥ zB. (42)

Note that these last expressions are simpler than those of the exact solutions, particularly

the terms corresponding to the interface response, in which the complex coefficients A1,

B1 and A2 are no longer present. The only term in eq. 40 and the first term of eq.

42 constitute the interfacial response for the electric and magnetic fields, respectively,

meanwhile the last term in eq. 42 represents the coseismic response.

In the following we analyze the electromagnetic responses predicted by both the exact

and the approximate solutions. It is shown that the latter result is a very good approx-

imation to the exact solution, and due to the simplicity of the mathematical expressions

of the fields, they are convenient to analyze the SH seismoelectric response of a glacier

system.

4. Results and discussion

We describe here the coseismic and interfacial responses of a glacier system induced by

the propagation of an SH wave produced by the source acting on the surface. We start

by defining the parameters used to model the physical properties of the media, and then

we show the displacement and electric current density predicted by the proposed model.

Then we compute the coseismic and interfacial signals of both the electric and magnetic
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fields. We analyze the amplitude of these electromagnetic conversions, and the effect

produced by changes in the properties of the glacier bed. Finally, a comparative analysis

of the approximate and exact solutions is performed in order to evaluate the ability of the

approximate fields to model the SH seismoelectric response of the glacier system.

4.1. Model parameters

We mentioned in the Introduction that the glacier is assumed to be an elastic medium,

therefore, its mechanical description is complete by giving its mass density ρ1 and shear

phase velocity v1 (from which the shear modulus G1 = ρ1v
2
1 can be computed), and is elec-

tromagnetically defined by giving its electric conductivity σ1. This last property depends

on temperature, frequency and the presence of mineral impurities, among other variables

[Petrenko and Whitworth, 1999]. In the present study, following the latter reference, we

choose a representative constant real value given in Table 1, where also the values for the

previously mentioned employed parameters are listed.

Glacial substrates present diverse morphologies [Jiskoot , 2011]. Therefore, as we men-

tioned in the Introduction, in this work we consider that the glacier bed is either a water

saturated poorly consolidated sandstone, or a water saturated consolidated sandstone.

This implies, in the context of the modeling scheme described above, the necessity of set-

ting the values of the following parameters (see Table 1): porosity φ, solid grains density

ρs, permeability κ [Taherian et al., 1990; Yale, 1984; Jouniaux and Bordes , 2012], water

density ρw and water viscosity ηw. From them other parameters are derived, the already

defined bulk density ρb and the Biot’s low frequency inertial coupling coefficient g0. For

the estimation of the solid matrix shear modulus G2 in the unconsolidated scenario we

use Walton’s model [Mavko et al., 2009], appropriate to model this kind of media [Pride,
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2005; Bordes et al., 2015; Dupuy et al., 2016]:

G2 =
1

10

[
3(1− φ)2Ĉ2P

πB2

]
, with B =

1

4π

(
1

Gs

+
1

Gs + λc

)
. (43)

In this equation, the parameter Ĉ is the coordination number, related to the packing of

the spheres building the solid aggregate, P is the hydrostatic pressure and λc is Lamé’s

coefficient of the effective grain material, and is computed as λc = Ks − 2
3
Gs, where Ks

is the bulk modulus of the solid grains. In this work we consider Ĉ = 9. The hydrostatic

pressure can be computed as P = 101325 Pa + ρ1gzB. Assuming that the depth of the

bottom of the ice body zB = 100 m, the last equation yields P = 983325 Pa. Taking for

Gs and Ks the values given in Table 1, representative for the shear and bulk moduli of

quartz grains, respectively [Mavko et al., 2009], we obtain G2 = 0.48 GPa.

On the other hand, in the consolidated glacier bed scenario, we consider [Pride, 2005;

Warden et al., 2013; Solazzi et al., 2017]:

G2 = Gs
1− φ

1 + 3
2
csφ

, (44)

where 2 < cs < 20 is a dimensionless consolidation parameter. As its lower boundary is

valid for extremely consolidated rocks, we set in our work cs = 8. With the value for the

porosity employed in this case (see Table 1), this model yields G2 = 16 GPa.

To estimate the electric conductivity σ2 of the glacier bed we use Archie’s law:

σ2 =
σw
F
, (45)

where σw is the electric conductivity of water. For water containing sodium chloride, σw

can be computed as σw =
∑

l=Na+,Cl−(ezl)
2blNl, where e = 1.6 × 10−19 C is the electron

electric charge, and zl is the ions’ valence, taken to be one for both species. The ions’

mobility bl and concentration Nl (depending on the salinity C0) are calculated following
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Carcione et al. [2003]. For the chosen water salinity, we obtain σ2 = 1.82 × 10−3 S m−1.

Eq. 45 implies that we are considering that the sandstone is a clean one, i.e., it does not

contain a significative amount of clay. Had we considered a clayey sandstone, we would

have used a corrected version, including the surface conductivity [Schön, 1996]. There are

several models for the latter, a couple of them are discussed in Zyserman et al. [2017b].

4.2. Seismic waves and viscous current density analysis

To illustrate the field responses predicted by the derived analytical solution, we assume

as we already mentioned, that the bottom of the glacier is located at zB = 100 m below

the surface. For the time signature of the seismic source f s(t) we use a Ricker wavelet

with peak frequency fpeak = 120 Hz, the peak amplitude for the Ricker wavelet (located

at t = 8 × 10−3 s) is set so that the amplitude of the force per unit area at the surface

is equal to 8000 N m−2. This value for the force per unit area can be estimated from the

technical data provided for the shear wave generator ELVIS 5.0 [Krawczyk et al., 2013]

and assuming that the area of the vibrating plate is 0.0625 m2 = 0.25 m × 0.25 m. A

similar value for the force per unit area can be computed upon the value of the acceleration

produced by a S-wave source generator near the surface, which is around 0.4g, where g is

the gravity acceleration [Bordes , 2005]. From eq. 9, recalling that the time dependence

is assumed to be eiωt, for a given angular frequency ω the displacement ux at the surface

(z = 0) as a function of time can be written as

ux(0, t) = − F s

iλ1G1

eiωt, (46)

from which, the acceleration of the surface can be obtained

d2ux
dt2

(0, t) =
ω2F s

iλ1G1

eiωt =
ωF s

i
√
ρ1G1

eiωt, (47)
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then, the amplitude of the acceleration will be given by

a =
ωF s

√
ρ1G1

, (48)

from which the force per unit area of the source, F s, can be obtained

F s = a

√
ρ1G1

ω
. (49)

Replacing the values for ρ1, G1, ω = 2πfpeak and a = 0.4g we obtain F s = 8422 N m−2,

which is very close to the corresponding value for the ELVIS 5.0 shear wave generator

employed in this work.

We point out here that the following analysis is performed considering the unconsolidated

scenario; the results for the consolidated case are qualitatively equivalent. The compara-

tive analysis between both scenarios is performed afterwards.

We begin our study by showing the time variation of the solid displacement and the elec-

tric current density, plotted in Fig.2 for eleven different depths measured from the surface

down to 200 m depth.

The seismic wave travels with a velocity of 1800 m s−1 from the surface down to 100 m

depth, and with a velocity of 473.4 m s−1 below this point, where the interface between

the two media is located. There, at the glacier bottom, we can see an upwards traveling

reflected wave with a smaller amplitude which arrives at the surface at time 0.12 s. This

wave is completely reflected, and travels from the surface downwards to the bottom of the

glacier and into the basement. The current density is zero within the glacier because we

are modeling the ice as an elastic medium without any fluid content. A current density

is induced at the bottom of the glacier at the time 0.06 s corresponding to the arrival

of the direct seismic wave at this point, as can be seen in the right panel of this figure.
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A second current density, with lower amplitude, is induced by the arrival of the second

seismic wave, at about 0.17 s. The third induced current density is barely observable, due

to its tiny amplitude, at about 0.28 s in the trace recorded at 100 m depth.

4.3. Coseismic field analysis

The electric and magnetic coseismic fields are shown in the left panels of Figs.3 and 4

respectively. For simplicity, from now on we denote the electric Ex and magnetic Hy fields

as E and H, respectively.

The coseismic magnetic field H-Cos is induced by the electric current density. There is

no H-Cos neither coseismic electric field E-Cos within the glacier because of the absence

of any electric current density. The coseismic magnetic and electric fields propagate at

depth supported by the seismic wave: therefore, within the considered temporal window

there is a first transmitted coseismic field, a second one related to the first reflected wave

at the surface, and a third one related to the second reflected wave at the surface. A plot

of the coseismic electric field E-Cos registered at z = zB is shown in the top-left panel of

Fig.5.

The amplitude of the first coseismic event (the one originated when the first incident

wave arrives at the interface) is 8 ×10−3 µV m−1. The second and third events have

amplitudes of 2 ×10−3 and 0.5 ×10−3 µV m−1, respectively. A plot of the H-Cos field reg-

istered at the same depth is shown in the bottom-left panel of Fig.5, being the amplitudes

for the first, second and third events of the order of 12.6, 3 and 0.7 µA m−1, respectively.
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4.4. Interfacial responses analysis

The electric and magnetic interfacial responses E-IR and H-IR are shown in the right

panels of Figs. 3 and 4 respectively. Three events arriving simultaneously at all the

receivers can be seen: the first one arriving just before 0.06 s, the second one at 0.17

s and the third at 0.28 s. The former is the first interfacial response originated at the

bottom of the glacier, and is produced at the very moment the seismic SH wave hits the

bottom of the glacier. The time lapse between the second and the first interface responses

corresponds to the lapse employed by the reflected wave to reach the surface and then

travel downwards to the bottom of the glacier. Correspondingly, the time lapse between

the second and third events coincides with the one between the first and second events.

These interfacial responses are related to the jump of the electric current density at the

bottom of the glacier (the current density is zero for z < zB and change abruptly to the

value given by eq. 27 for z ≥ zB). The E-IR preserves its amplitude above and below

the bottom of the glacier, whereas the H-IR shows a large amplitude below this interface

and is tiny within the glacier, what makes it to seem absent in the figure. The top-right

panel of Fig.5 shows a plot of the E-IR registered at z = zB. The amplitudes for the first,

second and third events are 4, 0.92 and 0.2 µV m−1 which are three orders of magnitude

higher than the corresponding coseismic events. This is a very important feature that

could lead to better signal-to-noise ratios when using SH waves seismic sources instead of

P wave sources in a seismoelectric survey [Zyserman et al., 2017a, b]. The H-IR is plotted

in the bottom right panel of Fig.5. The amplitudes for the three events have amplitudes

of 12.5, 2.8 and 0.66 µA m−1. Note that in this case, the amplitudes of the coseismic and

interfacial responses are comparable.
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Regarding the time signature of both fields, it can be noticed from the figures that the

electric coseismic response is markedly different from the corresponding interfacial re-

sponse, and that both coseismic fields have the same time signature. These features can

be explained if we compare the analytical expressions for both the electric and magnetic

fields. Note that from the first two terms in eqs. 30-33 the following relation is verified

between the magnetic and the electric interface responses

HIR(z) =
k1

ωµ0

EIR(z), 0 ≤ z ≤ zB, (50)

HIR(z) =
k2

ωµ0

EIR(z), z ≥ zB, (51)

while from the third terms of eqs. 31 and 33, it can be seen that the coseismic fields verify

HCos(z) =
λ2

ωµ0

ECos(z), z ≥ zB. (52)

Because the factors k1,2
ωµ0

=

√
−iσ1,2
√
µ0

ω−
1
2 in eqs. 50 and 51 are frequency-dependent, the

frequency spectra of both fields are different, yielding different signatures in the time

domain for the electric and magnetic interface responses. On the other hand, the factor

λ2
ωµ0

in eq. 52, which is also frequency dependent, shows almost no variation with the

frequency (at least within the frequency range of the source). Then, the spectra of the

electric and magnetic coseismic fields differ only in amplitude so that the time signature

of both fields is the same, as it can be seen in the figures.

Note that the time signatures of the coseismic and interface responses are the same but

with opposite sign for the magnetic field. This fact can become clear when analyzing the

approximate expression of the magnetic field eq. 42, where the amplitudes of both the

interfacial (first term) and coseismic (second term) responses at z = zB are the same and

have opposite sign. The behavior for the IRs of both fields confirms the numerical results
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we obtained in our previous work [Zyserman et al., 2017a], which were novel because we

studied seismoelectric conversions induced by an SH source rather than a compressional

wave. In case of a compressional wave source Warden et al. [2013]; Bordes et al. [2015] and

Peng et al. [2017] predicted, through numerical modeling and experimental observations,

that the IRs have an amplitude that is very small compared to the coseismic one.

4.5. Comparison of unconsolidated and consolidated scenarios

As we have already pointed out, all previous results were obtained considering an un-

consolidated glacier bed; we do not show the corresponding ones for the consolidated case

because they are qualitatively equivalent. There are, however, differences between both

cases that deserve to be displayed and analyzed, task we deal within this section.

One of the most important features of the analytic expressions derived for both the electric

and magnetic fields is that they are proportional to the current densities J
(n)
v originated

at the glacier-basement contact. Therefore, analyzing the behavior of the electric current

density variations at z = zB is relevant in order to understand the behavior of the elec-

tromagnetic fields. In Fig. 6 the time variations of the electric current density at the

contact between the glacier and its basement are shown for both the unconsolidated and

the consolidated scenarios.

Note the markedly different amplitudes between both traces, particularly for the first

event, due mainly to the different textural properties of the basements. However, this

relation in amplitudes is not translated straightforwardly to the field responses; let us see

why. At this depth the amplitude of the solid displacement for the first event is slightly

higher in the unconsolidated case, but because of the markedly different porosities and

permeabilities of both media, the amplitude of the relative fluid displacement is four orders
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of magnitude higher in the unconsolidated case. Moreover, these differences in textural

properties lead to an electrokinetic coupling L0 one order of magnitude higher in the

unconsolidated scenario, because of the different porosities and cementation exponents

(see eq. 8 and Table 1). However, the hydraulic permeabilities play the most important

role in the value of the current density (see eq. 24). These values differ by four orders

of magnitude between both glacier beds (see Table 1). As a consequence, although the

fluid displacement is four orders of magnitude higher in the unconsolidated case, the

different textural properties lead to a different value for the quotient L0

κ
that multiplies

the fluid displacement in eq. 24. This quotient is three orders of magnitude higher in the

consolidated case, giving as a result a difference of approximately a factor 20 between the

amplitudes for the current densities, as can be seen in Fig. 6.

Regarding the induced electromagnetic fields, in the top-left panel of Fig.7 we show the

time variation for the E-Cos field registered at z = 120 m (20 m below the contact) for

both cases.

Note that there is a time delay between the events, owed to the markedly different

seismic velocities between both basements (473.4 m s−1 for the unconsolidated case, and

2594 m s−1 for the consolidated case). Moreover, given that, in the consolidated case,

the seismic velocity and the shear modulus are higher than the corresponding values for

the glacier, there is an inversion of the wavelet when the first reflection occurs (see eq.

17), which in turn implies that the second transmission to the basement will be inverted

(see the second event for the E-Cos field in Fig.7). Note that the amplitude decay for

consecutive events is higher in the unconsolidated case. This is due to the different

incident amplitudes in both cases: In the consolidated case, because of the markedly
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different velocities and shear moduli, the amplitude of the first reflected wave is higher

than for the unconsolidated case. Then, the amplitude of the second incident wave will be

higher for the consolidated case, leading to higher amplitudes for the second transmission.

Regarding the amplitude of the E-Cos field for both cases, note that it is higher for the

unconsolidated case (at least for the first two events) but still both amplitudes are of

the same order of magnitude. This can be explained upon the relative amplitudes of the

current density shown in Fig.6. Although the current density is one order of magnitude

higher for the unconsolidated case, the factor multiplying the current densities in the third

term of eq. 31 is higher in the consolidated case. This is mainly due to the difference in

the electric conductivity σ2, which is one order of magnitude higher in the unconsolidated

case. As a consequence, the mentioned factor is lower for the unconsolidated case, and

even given that the current density is higher in this case, the E-Cos field turns out to be

higher but in the same order of magnitude than in the consolidated scenario.

The time variation of the E-IR response registered at z = 120 m is shown in the top-right

panel of Fig.7. As was expected, the three events occur at the same time for both cases,

given that the glacier properties are the same in both scenarios. Note that for both cases

the amplitude of the E-IR field is three orders of magnitude higher than the corresponding

amplitude of the E-Cos field.

The corresponding time variation of the magnetic fields are plotted in the bottom panels

of Fig.7. As was expected, the H-Cos field (left panel) for both cases show the same time

delay than the E-Cos field, and the polarity inversion of the second event is also present

in this field. Note, however, that the difference between both amplitudes is higher than

in the case of the electric field. This difference comes from the fact that the coefficient
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multiplying the current density in the third term of eq. 33 is of the same order in both

unconsolidated and consolidated cases (slightly higher in the consolidated case). Then, the

amplitude relation between the H-Cos fields for both cases shows almost the same behavior

than the amplitude relation for the current densities (see Fig. 6). Correspondingly, the

H-IR fields (right panel of Fig.7) show the same amplitude relation than the coseismic

fields. Note, finally, that for the magnetic field the amplitudes of both the coseismic field

and the interface response field are in the same order of magnitude. This is evident from

simple inspection of eq. 42. Note that for depths close to zB, the factors multiplying the

current densities in both terms are in the same order. Remember that the first term in

this equation represents the H-IR field, meanwhile the second represents the H-Cos field.

4.6. Comparison between the exact and the approximate fields

With the purpose of evaluating the ability of the approximate fields to model the SH

seismoelectric response of the glacier system, we present in this section a comparative

analysis between the exact solutions given by eqs. 30-33 and the approximate solutions

given by eqs. 40-42. For visualization purposes we limit our analysis to the first events,

i.e, the ones originating when the first incident wave impinges the interface between the

glacier and its basement. The relative differences between the exact and the approximate

fields are independent of the considered event, and as a consequence the same results are

obtained if the comparative analysis is performed over the fields originating at the second

or third incidences.

From simple inspection of eq. 40 it is clear that no coseismic field is present in the

approximated electric field. This is a consequence of the simplifications made in order to

derive this expression. The amplitude of the coseismic field given by the exact solutions
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(see the third term of eqs. 30 and 31) is in the order of 10−3µV m−1, which is three

orders of magnitude lower than the corresponding amplitudes for the E-IR field. For the

same reason the H-IR, whose amplitude is in the order of 10−3µA m−1 over the glacier-

basement contact, is then neglected in the approximate fields, and given that there are no

H-Cos field at these depths, then the total magnetic field is approximated by zero, as it

is expressed by eq. 41. However, below the contact between the glacier and its basement,

H-IR and H-Cos have comparable amplitudes and then, both fields are present in the

approximate solutions, as can be observed in eq. 42.

The time variations of both the exact and the approximate E-IR fields corresponding

to the first event are plotted in Fig.8 for three different depths: z = 20 m (left panel),

z = 120 m (central panel) and z = 180 m (right panel).

Note that for z = 20 m the approximate field fits perfectly to the exact solution. This

was expected because the approximations made are more precise for smaller depths. The

maximum difference between both solutions in this case is in the order of 8 ×10−3µV

m−1, and given that the maximum amplitude of the E-IR field is 4 µV m−1, then the

difference between both solutions turns out to be not bigger than 0.2% of the amplitude

of the field. For z = 120 m (see central panel in Fig. 8) an appreciable difference can be

observed. This was again expected because the approximations loose accuracy for depths

from about 100 m and downwards. However, as can be seen from the figure, the time

signature of the exact field is preserved by the approximated field, and the only difference

lie in the amplitude, being not higher than 6.25% of the amplitude of the field. Finally, as

was expected for much larger depths, the approximate solution is not precise for z = 180

m (see the right panel of Fig. 8), and the maximum difference between both fields is
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about 20% of the total field.

Fig. 9 shows the time variations of the exact and approximate H-IR fields for two depths

below the glacier-basement contact: z = 120 m (left panel) and z = 180 m (right panel).

It is evident that the approximations work better for the lower depth and the maximum

amplitude differences are of the same order than the ones depicted for the E-IR at these

depths (6.25 % for z = 120 m and 20 % for z = 180 m).

Although the differences between the exact and the approximate IRs for both fields behave

similarly as the depth is increased, this is not the case of the H-Cos field. The approxi-

mated H-Cos field (third term in eq. 42) displays a better behavior than the approximated

E-IR and H-IR fields, providing a good representation of the exact H-Cos field. Fig. 10

shows the time variation of the exact and approximate H-Cos fields registered at z = 120

m (left panel) and z = 180 m (right panel).

As can be seen, both solutions fit almost perfectly in both cases, and the maximum

amplitude difference is negligible.

The examples given in this section have shown that the approximate solutions work fairly

well whenever the depths considered are not higher than 100 m approximately, and with

the only restrictions imposed by the assumptions of the model, the approximated expres-

sions for the fields can be safely used to model the SH seismoelectric response of a glacier

system. This makes the approximate solutions very useful for one dimensional inversion

of the IRs, because they could be used to approximate surface measurements, using very

simple expressions to compute the forward model.
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5. Conclusions

We have presented an analytic study of the seismoelectric conversions induced by a

seismic source generating pure SH waves in a glacier/glacier-bed system, considering a

one dimensional problem. More specifically, we set an SH source on the surface of the

glacier and modeled the latter as an elastic medium, whilst the glacier bed is represented

by a water saturated porous medium. Linking the elastic wave equation with Pride’s

seismoelectric equations through appropriate boundary conditions at the glacier bottom-

glacier bed interface, we were able to analytically compute the induced electromagnetic

fields, namely the coseismic magnetic and electric fields, and the interface responses, also

for both the electric and magnetic fields. The mentioned fields arise, within the used

theoretical frame, due to two different electric currents: one which exists only traveling

with the seismic signals and generates the H-Cos field, and another one arising at the

boundary between the glacier and its bed when the seismic wave impinges on it. The

latter induces the H-IR, which diffuses away from the source at a speed much higher

than the one of the seismic wave. The electric fields E-Cos and E-IR are due to the

time variation of the respective magnetic fields. We also computed approximations to

the obtained solutions, which provide very simple expressions for the electromagnetic

fields, and remain valid for depths large enough to enclose all interesting model features.

The simplicity of the approximations, in particular the one of the E-IR, makes them

appropriate to be employed by a fast one dimensional inversion algorithm, to obtain

the glacier bottom depth and other parameters of interest, such as the permeability and

electric conductivity, from measurements of the electric field at the surface. We also

analyzed the difference in the electromagnetic responses due to different glacier beds,
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namely consolidated and unconsolidated ones. We observed that, although the electric

current generated at the glacier bottom differs appreciably in both scenarios, the E-IR

measured at the surface does not change in the same way, confirming the fact that the

interface response is affected by the porosity, permeability, and electric conductivity of the

glacier bed. In the considered scenarios, the amplitude relation between the E-IR and E-

Cos is similar to what we observed in our previous works, i.e., the former is much stronger

than the latter, reinforcing the idea that it would be interesting to test SH seismoelectrics

as a possible geophysical tool. Moreover, this setting could take advantage of recent results

stating that a multi-electrode array configuration can help to better detect the IR signal

[Devi et al., 2015].

Finally, as a closing remark we mention that for the implementation of the seismoelectric

method in glacial environments, some issues should be considered. For example, pure

shear-wave without any P-wave may be difficult to achieve in the field, although as we

mentioned before, shear-wave sources have been successfully employed in several works.

Moreover, ice anisotropy and the presence of englacial water pockets and water-filled

cracks may complicate the electromagnetic response [Podolskiy and Fabian, 2016].

Appendix A: Derivation of the solution to equation 1

Eq. 1 can be written in the following equivalent way:

d2ux
dz2

+ λ2
1ux = −F

s

G1

δ(z), (A1)

where λ1 is given by eq. 10. Using Laplace Transform, it is easy to show that the solution

for ux(z) is given by:

ux(z) =

[
− F s

λ1G1

sin(λ1z) + ux(0) cos(λ1z) +
u′x(0)

λ1

sin(λ1z)

]
H(z), (A2)
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where H(z) is the Heaviside function. Writing the sine and cosine functions in their

exponential form and regrouping terms in eq. A2, we obtain:

ux(z) =

[
− F s

2iλ1G1

+
ux(0)

2
+
u′x(0)

2iλ1

]
eiλ1zH(z) +

[
F s

2iλ1G1

+
ux(0)

2
− u′x(0)

2iλ1

]
e−iλ1zH(z).(A3)

Given that λ1 is a pure real number, and choosing the negative square root of λ2
1, then, the

first term of the last equation represents a wave that travels downwards (remember that

the time dependence is chosen to be eiωt), meanwhile the second one is a wave traveling

upwards. If we consider only waves traveling downwards, then, the second term of eq. A3

should vanish:[
F s

2iλ1G1

+
ux(0)

2
− u′x(0)

2iλ1

]
= 0 (A4)

Using the last expression in eq. A3 we obtain:

ux(z) = ux(0)eiλ1zH(z). (A5)

Now, it remains to determine the value of the constant ux(0). If we assume that the solid

matrix is in perfect contact with the source generator at the surface, then the shear stress

applied by the source over the surface F s should be equal to τxz = −2G1εxz = −G1
∂ux
∂z

(the minus sign indicates that the shear stress is computed taking the normal in the −z

direction). Then, taking the first derivative of ux(z) with respect to z in eq. A5 and

evaluating it in z = 0 we can write:

u′x(0) = iλ1ux(0) = −Fs
G1

, (A6)

which leads to the final solution for ux(z):

ux(z) = − F s

iλ1G1

eiλ1zH(z). (A7)
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Eq. A7 shows that the displacement is produced by a shear wave originated at the source

position traveling downwards with phase velocity given by ω/|λ1|.

Appendix B: Derivation of the solution to equations 4 and 5

Combining eqs. 4 and 5 the following equation can be written in terms of us,x:

d2us,x
dz2

+ λ2
2us,x = 0, (B1)

where λ2 is given by eq. 13. The general solution for eq. B1 is given by:

us,x(z) = ae−iλ2z + beiλ2z, (B2)

being a and b complex constants. Taking λ2 such that Re(λ2) < 0, then the first term in

the last equation represents a wave traveling upwards, meanwhile the second one corre-

sponds to a wave traveling downwards. If we consider only waves traveling downwards,

then a = 0. If we call Us,x the value of the solid displacement at z = zB, then, from eq.

B2, b = Us,xe
−λ2zB and we can write for the solid displacement:

us,x(z) = Us,xe
iλ2(z−zB). (B3)

From eq. 5 we have:

uf,x(z) = − ρw(
g0 − iηw

ωκ

)us,x(z). (B4)

Combining eqs. B3 and B4 we obtain:

uf,x(z) = Uf,xe
λ2(z−zB), with Uf,x = − ρw(

g0 − iηw
ωκ

)Us,x. (B5)

Appendix C: Electric and magnetic fields over the surface

For z < 0 (over the surface) we assume that the medium is constituted by air, which

is treated as a perfect insulator. Then, both the electric conductivity and the electric
c©2018 American Geophysical Union. All Rights Reserved.



current density will be zero and Maxwell’s equations reduce to:

∂Hy

∂z
= 0, (C1)

∂Ex
∂z

+ iωµ0Hy = 0. (C2)

From eq.C1 we know that Hy is constant. Then, from eq.(C2). Ex(z) = az + b, where

a and b are complex constants. However, a must vanish in order to avoid the divergence

of the electric field when z → −∞. Then, Ex is also a constant field, and replacing it in

eq.C2 we obtain that Hy = 0 for z < 0.

Appendix D: Continuity of the electromagnetic fields at z = 0 and z = zB

In this appendix we show that both the electric and the magnetic fields should be

continuous at the surface and at the glacier bottom. Let’s assume a closed rectangular

loop crossing the horizontal plane at z = zB, as is depicted in Fig.11.

According to Ampere’s Law ∮
∂A

H · dl =

∫∫
A

jv · dA. (D1)

For our model H = Hy(z) ĵ, jv = jv(z) î and dA = dA î, so we can write:∫ L/2

−L/2
Hy(zB −∆z/2) dy+

∫ −L/2
L/2

Hy(zB + ∆z/2) dy =

∫ L/2

−L/2

∫ zB+∆z/2

zB−∆z/2

jv(z) dzdy. (D2)

Integration over y yields

Hy(zB −∆z/2)−Hy(zB + ∆z/2) =

∫ zB+∆z/2

zB−∆z/2

jv(z) dz. (D3)

Using the expression for jv(z) given by eq.27 we have (remember that jv(z) = 0 for z < zB)

Hy(zB −∆z/2)−Hy(zB + ∆z/2) =

∫ zB+∆z/2

zB

∞∑
n=1

J (n)
v eiλ2(z−zB)dz, (D4)
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which gives, after integrating over z

Hy(zB −∆z/2)−Hy(zB + ∆z/2) =

∑∞
n=1 J

(n)
v

iλ2

[
eiλ2∆z/2 − 1

]
. (D5)

Taking the limit when ∆z → 0, the right hand side of eq. D5 tends to 0, leading to the

following relation:

lim
z→z−B

Hy(z) = lim
z→z+B

Hy(z), (D6)

which means that the magnetic field Hy is continuous across the interface between the

glacier and its basement. The same reasoning can lead to the following relation valid for

the continuity of the magnetic field at the surface

lim
z→0−

Hy(z) = lim
z→0+

Hy(z). (D7)

On the other hand, given that the electric field Ex(z) is purely tangential to both the

surface and the interface between the glacier and its basement, and the tangential com-

ponents of the electric field should be continuous across any interface, the same will be

valid for the electric field.
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Table 1. Values of model parameters used in the present study. Those not shown in this table

can be obtained from the present ones using the formulas given in the paper. Values marked with a

? symbol are taken from Collins et al. [2016], those marked with a ‡ symbol are given in Petrenko

and Whitworth [1999] and those signaled by a † symbol correspond to sandstone sample S21 in

Taherian et al. [1990]. The abbreviations (Unc.) and (Con.) are used for ”Unconsolidated” and

”Consolidated”, respectively. The vacuum permittivity is taken to be ε0 = 8.85× 10−12 F m−1.

Model parameters
Ice

Density, ρ1 [kg m−3] 900? S-wave phase velocity, v1 [m s−1] 1800?

Electric conductivity, σ1 [S m−1] 10−5‡

Glacier bed
Porosity, φ (Unc.) 0.3 Cementation exponent, m̂ (Unc.) 1.35
Porosity, φ (Con.) 0.12† Cementation exponent, m̂ (Con.) 2.04†

Density of the solid matrix, ρs [kg m−3] 2600 Shear modulus, Gs [GPa] 45
Permeability, κ [m2](Unc.) 10−13 Solid grains bulk modulus, Ks [GPa] 36
Permeability, κ [m2] (Con.) 10−17† Water viscosity, ηw [Pa s] 1.7×10−3

Water density, ρw [kg m−3] 1000 Salinity, C0 [mol L−1] 5 ×10−3

Permitivity of water, εw [F m−1] 80 ε0
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medium 1: Glacier
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medium 2: Glacier bed

Figure 1. Schematic representation of the seismic shear wave traveling downwards in a two-

layer one-dimensional system. Medium 1 represents the ice body (assumed as an elastic medium)

and medium 2 is the porous basement (assumed as a poroelastic medium)
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Figure 2. Time variation of the solid displacement (left) and electric current density (right)

registered at 11 receivers. The distance between receivers is 20 m. The contact between the

glacier and its basement is located 100 m below the surface. In this example the unconsolidated

basement case is considered.
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Figure 3. Time variation of the coseismic (left) and interfacial (right) responses for the electric

field registered at 11 receivers. The distance between receivers is 20 m. The contact between the

glacier and its basement is located 100 m below the surface. In this example the unconsolidated

basement case is considered.
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Figure 4. Time variation of the coseismic (left) and interfacial (right) responses for the

magnetic field registered at 11 receivers. The distance between receivers is 20 m. The contact

between the glacier and its basement is located 100 m below the surface. In this example the

unconsolidated basement case is considered.
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Figure 5. Time variation of the E-Cos (top-left), E-IR (top-right), H-Cos (bottom-left), H-IR

(bottom-right) fields registered at z = 100 m. In this example the unconsolidated basement case

is considered.
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Figure 8. Time variations of the exact and approximate E-IRs for the first event computed

at three different depths: z = 20 m (left panel), z = 120 m (center panel) and z = 180 m (right

panel). The maximum difference between both the exact and the approximate solutions is 8

×10−3µV m−1 at z = 20 m, 0.25 µV m−1 at z = 120 m and 0.8 µV m−1 at z = 180 m. In this

example the unconsolidated basement case is considered.
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Figure 9. Time variations of the exact and approximate H-IRs for the first event computed

at two different depths: z = 120 m (left panel) and z = 180 m (right panel). The maximum

difference between both the exact and the approximate solutions is 0.7 µA m−1 at z = 120 m

and 2.75 µA m−1 at z = 180 m. In this example the unconsolidated basement case is considered.
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Figure 10. Time variations of the exact and approximate H-Cos fields for the first event

computed at two different depths: z = 120 m (left panel) and z = 180 m (right panel). The

maximum difference between both the exact and the approximate solutions is in the order of 1

×10−17µA m−1 for both depths. In this example the unconsolidated basement case is considered.

c©2018 American Geophysical Union. All Rights Reserved.



x

z

y

î
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