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Abstract. The existence of SH surface wavesin a half-space of homogeneous material (i.e. anti-plane
shear wave motions which decay exponentially with the distance from the free surface) isshown to be
possible within the framework of the generaized linear continuum theory of gradient elasticity with
surface energy. As is well-known such waves cannot be predicted by the classical theory of linear
elasticity for a homogeneous half-space, although there is experimental evidence supporting their
existence. Indeed, thisisadrawback of the classical theory which isonly circumvented by modelling
the half-space asalayered structure (L ove waves) or as having non-homogeneous materia properties.
On the contrary, the present study reveals that SH surface waves may exist in a homogeneous half-
spaceif the problem is analyzed by a continuum theory with appropriate microstructure. Thistheory,
which was recently introduced by Vardoulakis and co-workers, assumes a strain-energy density
expression containing, besidesthe classical terms, volume strain-gradient and surface-energy gradient
terms.
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1. Introduction

In the theory of wave motion in solids, the criterion for surface waves is that
the displacement decays exponentially with distance from the free surface. Asis
well-known, the standard linear theory of elasticity predicts surface waves in a
homogeneous half-space for the plane-stress/strain case (Rayleigh waves) but not
for the anti-plane shear case (see e.g. Knowles [1], Achenbach [2], Eringen and
Suhubi [3]). However, anti-plane shear surface waves (i.e. horizontally polarized
or SH surface waves) have been detected in the context of both non-destructive
testing (see e.g. Kraut [4]) and seismology (seee.g. [3], and Bullenand Bolt [5]). In
order to explain the occurrence of these waves, non-homogeneous models for the
half-space were proposed in the form of either alayered structure (Love waves|[6],
[2, 3]) or a material with mechanical properties increasing with depth (see [7-9]
and References therein). To the best of our knowledge, no linear elastic theory
has successfully been proposed to predict SH surface waves in a homogeneous
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half-space. The nonlocal integral-type elasticity theory of Eringen [10, 11] isalso
incapable of explaining the occurrence of these waves[11].

In mathematical language, the situation concerning inexistence of SH surface
waves in a linearly elastic homogeneous (isotropic or anisotropic) half-space is
tantamount to the violation of the pertinent complementing (or consistency) con-
dition in a half-space (—oo < z < oo,y > 0) for the system consisting of a
Helmholtz partial differential equation (governing time-harmonic SH motions), a
zero Neumann boundary condition at y = O (corresponding to zero traction at
the surface) and a finiteness condition at (22 + yz)% — o0. In general, the com-
plementing or consistency condition on boundary data (boundary conditions) in
a boundary-value-prablem is a suitability condition of them to the governing dif-
ferential eguation (or to the system of governing differential equations) (see e.g.
Agmon et al. [12, 13]). Among others also, Stakgold briefly discusses this issue
([14], p. 64; 79-80; 85; 265) and gives a simple example concerning steady-state
heat conduction ([15], p. 171). In particular, within the classical elasticity theo-
ry, Thompson [16] pointed out that the complementing condition implies that all
surface waves propagate with non-zero velocity. Obviously, the complementing
condition is satisfied for the plane-stress/strain case (and, thus, surface waves of
the Rayleigh type are predicted by the classical theory) but not for the anti-plane
shear case. This can be considered a rather major defect of the classical elasticity
theory from the mathematics point of view, since asimple zero Neumann condition
does not conform to the governing Helmholtz equation in a half-plane domain.
Finally, we mention that a rigorous proof of the latter statement is provided by
Vekua ([17], p. 316).

In the present study, the linear theory of gradient-elastic materials with surface
energy is employed to investigate SH surface waves in a homogeneous half-space.
Indeed, it is shown that this generalized continuum theory, which was recently
introduced by Vardoulakis and co-workers [18-20], is capable of predicting SH
surfacemotions. Thetheory isbased on Mindlin’sgeneralized el asticity theory with
microstructure[21] and on Casal’s 1-D constitutive model with surface energy [22—
24] assuming a strain-energy density expression that contains, together with the
classical terms, volume-energy and surface-energy strain-gradient terms. Asfar as
the volume gradient term is concerned this theory is similar to the smple Aifantis
model of gradient elasticity [25, 26].

Here, free time-harmonic motions are considered and their analysisis based on
the use of two-sided Laplace (or Fourier) transforms and on a parametric study of
the resulting dispersion equation. It is also shown that cut-off frequencies exist and
these are related to the characteristic material lengths introduced in the theory. In
this way, we provide a regularization of the corresponding ill-posed problem of
classical elasticity described above. Thisregularization, however, doesnot hold for
any frequency but holds for frequencies higher than the cut-off frequency.

The present analysis could be useful in wave-propagation studies for homoge-
neous materials with microstructure such as materials with crystal lattices, poly-
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crystals, granular materials and polymers. Also, recent studies[19, 20, 27, 28] sug-
gest that the theory of gradient elasticity with surface energy yieldsadequateresults
for other interesting problemstoo, and therefore, that this theory is quite promising
in examining situations where classical elasticity gives physically unsatisfactory
results. Of course, we should mention that a similar course of action, through the
use of different generalized continuum theories (couple-stress, micropolar, nonlo-
cal or gradient-type theories), was taken up in the past by, e.g., Muki and Sternberg
[29], Weitsman [30], Eringen and co-workers[10, 31, 32], Maugin [33], Nowinski
[34], and Aifantis [26]. However, in defence of the classical theory, it should be
noted that not in any case examined in the aforementioned studies were the new
results found to be fully acceptable and worth the extra mathematical complexity.

2. BasicPreliminaries

The linear theory of gradient elasticity newly introduced by Vardoulakis and co-
workers [18-20] will be utilized here to analyze SH surface waves. Generaly,
the central concept in gradient-type theories is the following relation between two
spatially dependent properties, say A and B, of amaterial, where A determines B
(seee.g. Maugin [33])

B(r) = B(A(r),VA(r),VVA(r),...), (1)

where r is the position vector and V the gradient operator. As Eringen [32] and
Maugin [33] note, the functional B in (1) may alternatively be approximated
by a series of multiple volume integrals. They also provide references to earlier
attempts for formulating nonlocal theories by the mechani cians of the 19th century
(e.g. Voigt, Boltzmann, Cosserats, Duhem and Rayleigh). In the words of Eringen,
‘However, a full construct of theories and applications did not materialize until
recently. Such formalisms possessintrinsic dangers, requiring utmost care to avoid
divergences, indeterminacies, inexistence and illusory or inconsistent results'.

For linear elastic materials, particularly, Mindlin’s [21] theory provides a gen-
eral framework in developing strain-gradient theories. In this section therefore,
first we will briefly present the basic equations of this theory and then give their
modified version due to Vardoulakis and co-workers [18-20].

Mindlin's theory introduced the idea of the unit cell (micro-medium), which
may be interpreted as the periodic structure of a crystal lattice, a molecule of a
polymer, acrystallite of a polycrystal or agrain of agranular material. Appropriate
kinematical quantities are then defined to describe geometrical changesin both the
macro- and micro-medium. Next, with respect to a Cartesian coordinate system
Oz1z223, the following Ansatz for the potential energy-density (potential energy
per unit macro-volume) is taken:

W= W(gqraf)’qra ’fqrs)a 2
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where ¢, = 3(0ruq + 9yu,) is the usua strain tensor defined in terms of
the displacement vector u,,d; = 0/0z, , the indices (q,r,s) span the range
(1,2,3), v4r = Oqur — 1), istherelative deformation with «,, denoting the micro-
deformation (i.e. the displacement-gradient in the micro-medium), and rg,s =
Jq%rs is the micro-deformation gradient. Then, appropriate definitions for the
stresses follow from the variation of W':

Tgr = agqr, Qqr = B’qu’ Mgrs = 8/1117“5’ a,n,

where (74, g, myrs) ae the Cauchy stress (symmetric), relative stress (asym-
metric), and double stress tensors.

Further, from the variational equation of motion (by taking independent varia-
tions du, and d1),) and by assuming that the micro-medium is a cube with edges
of length 2k, one may obtain the following twelve stress equations of motion [21]:

Ogogr + fr = p'(Ouur), (49)

Ogmgrs + Qps + g = %th(atti/)rs), (4b)
and the twelve traction boundary conditions

tr = ngogr,  Trs = ngMgrs, (5a,b)

where p' = par + p, pas is the mass of macro-material per unit macro-volume, p
is the mass of micro-material per unit macro-volume, o4, = 74 + oy, isthe total
stress tensor, n, are the components of the unit vector outnormal to the boundary,
fr isthe body force per unit volume and ¢,. is the surface force per unit area, @,.,
is the double force per unit volume (see e.g. Love [35] for an interpretation of
this force system) and 7', is the double force per unit area, and 0, denotes time
differentiation. Regarding the double forces, we notice from Mindlin's [21] paper
that the diagonal terms of ®,., and T, are double forces without moment and the
off-diagonal terms are double forces with moment, while the antisymmetric part of
®,., isthe body couple and that of T, isthe Cosserat couple-stressvector. Also, in
®,., and T, the first subscript denotes the orientation of the lever arm between the
forces and the second the orientation of the forces. The twenty-seven components
of my,s are interpreted as double forces per unit area, with their first subscript
designating the normal to the surface across which the component acts and the
second and third subscripts having the same meaning as the two subscripts of 7.

It can also be shown [21] that Equations (3)—5) contain the linear equations of
a Cosserat continuum (see e.g. Mindlin and Tiersten [36], and Muki and Sternberg
[29]) as a special case. However, we should mention that the above formulation
involves, initsgeneral form, avery large number of elastic constantsand, therefore,
applying it to practical situations may be extremely difficult. The particular theory
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proposed by Vardoulakis and co-workers [18-20] can be considered one of the
simplest versions of Mindlin's elasticity theory with microstructure.

M ore specifically, Vardoulakisand co-workers suggested thefollowing postul ate
for the strain-energy density function [18]:

W= %)\qusw + peqrerg + pe(Oseqr) (0serg) + pbsOs(Egrerg), (6)

where )\ and p are the standard Lame's constants, ¢ is the gradient coefficient
(having dimensions of [length]?), b, = br, with v,v, = 1 and b being a material
length related to surface energy. Indeed, the last termin ther.h.s. of (6) isassociated
with surface energy since, in view of the divergence theorem, it can be written in
theform [18]

/ B, (bsegrerg) AV = b / (grerg) (vsms) S, )
v) ()

where |, % denotesintegration over the volume V' of the body, |, (9) integration over
the surface S enclosing V', and n; are the components of the unit vector outnormal
to the surface. Furthermore, the particular case v, = —n, was considered which
corresponds physically to a weakening of the body along the direction normal to
the surface.

Compatible with the above IV -expression is taking: (i) v, = 0 and, therefore,
Ygr = Oguy, Kgrs = 0y0rtbs = Kpgs aNd my.s = OW/0Kgrs = myqs (this defines
the so-called restricted Mindlin continuum), (ii) pas = O and p’ = p, so asto let
the micro-medium to merge with the macro-medium, and (iii) the relative stress
o, to be workless. Accordingly, the respective variational equation of motion is
obtained by taking asthe only independent variation in the potential energy-density
the quantity du, since the «,, are no longer independent of «, ([21], [18]). The
stress equations of motion in the absence of body forces and the traction boundary
conditions along a smooth boundary are then written as

Oq(Tqr + agr) = p(Fuur), (8a)
Dygrs + rs = 5% (Onibrs), (8b)
g Trs — Mgt Osigrs — 2 (gt — 1) Dpimigrs

+(ngnime(de; — neng)0; — ng(Ore — nyme) Og)mgrs

+%Ph2nr(8tt1/)rs) = P, (9a)
NgNrMgrs = R, (9b)

where §,, is the Kronecker delta, P is the surface force per unit area, and R, is
the surface double force (without moment) per unit area.
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Finally, the constitutive equations follow by combining (3a) and (3c) with (6)
[18]:

Tqr = )\(5(17-655 + 2/-1«6(17" + Z,Ubs(asgtﬂ“)? (10)
Msqr = 2u[bseqr + c(Oseqr)]- (11)

Notice that the relative stress «, can explicitly be obtained only by (8b) and (11).
Obtaining ay, permits, in turn, the determination of the total stress o, through
(10) and the definition equality oy, = 74 + g

In closing this exposition of basic notions and relations, we notice that positive
definiteness of the potential-energy density suggests the following restrictions of
the material constants (Vardoulakis and Sulem [18]; see also Refs. [21], [36] and

[37]):
(BA\+2u)>0, u>0, ¢>0, —1< (b/c?)<1, (12a,b,c,d)

whereas attempts to determine the gradient coefficient ¢ have been made within a
simpler gradient elasticity theory (Altan and Aifantis [25]) providing the estimate

¢ = (0.25h)2. (13)

3. Governing Equationsfor a Time-Harmonic Anti-Plane Shear State
in a Half-Space

Interest now is focussed on anti-plane shear (i.e. horizontally polarized or SH)
motions in a gradient-elastic half-space with surface energy. With respect to an
Ozxyz Cartesian coordinate system, the half-space occupies the region (—oo <
x < 00,y > 0) and isthick enough in the z-direction to allow an anti-plane shear
state when the loadings act in the same direction (see Figure 1). In this case, any
problem is essentially two-dimensional dependingon (z, y).

Then, in view of (6)«11) and by also taking b, = b, = 0,b, = b # 0 for the
present case of SH motionsin the half-spacey > 0, we have

g =y = 0,u; = w(z,y,t) # 0, (14a,b)
Tz = ug—ij + 1 ;;g)y7 (159)
Tys = “Z_Z + ub%ﬁ, (15b)
s = i (164)

= MG
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Figure 1. A gradient-elastic half-space with surface energy in an anti-plane shear state.
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where (ug, uy, u,) are the displacements, (7., 7,.), (Maaz, - - -, Myyz), (Ozz, 0y2)

and (., ) are, respectively, the Cauchy stresses, double stresses, total stresses
and relative (workless) stresses, 1, = dw/dz and ¢, = Ow/Jy are the micro-
deformations, and I = §ph2 is the micro-inertia coefficient.
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Furthermore, if a steady-state response of the half-space is assumed, i.e.
w(z,y,t) = w(z,y) - e ™", (20)

withi = (—1)% and w being the frequency, thetotal stressesare explicitly obtained
through (15), (17) and (19) as

ow ow
Tz = WG pev? <B_y> ) (21b)

and (18) and (21) provide the field equation of the response
VvV — gVPw — k*w = 0, (22)

where V2 = (92/02?) + (0%/9y?), V* = V2V? and

2
y=1-<2, 23
_e (1)
k=2, v <p>. (24a,b)

We noticein the aboverelationsthat V' isthe shear-wave velocity in the absence
of gradient effects (viz. within the classical theory of dasticity), and the dimen-
sionless quantity g may take negative, zero, or positive values depending upon
the particular values of w and 1. The latter observation means, of course, that
the character of the partial differential equation (22) may change with g. By the
way, in a material with a shear modulus ;. = O(10° Nm~?) and mass density
p = O(10° kgm3), the case g < 0 occurs for arather high excitation frequency
w > 173GHz if the internal length is of the order . = O(10~8m) — which is
typical for several crystal |attices— but the same case occurs also for amuch lower
frequency w > 17.3 MHz if h = O(10~%m) —whichistypical for several granu-
lar materials. Also, we should observe that (22) exhibits a dispersive character, a
fact which is rather typical in gradient continuum theories (see e.g. [21], [33] and
[36]). Finally, for low frequenciesw agood approximation could beg = 1, but here
we rather chose to employ in the sequel the exact expression for ¢ (i.e. Equation

(23)).

4, General Form of SH Surface Waves

The criterion for surface wavesis that the displacement decays exponentially with
distance from the free surface. Then, if we consider plane wave solutions of the
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form expli(qz — wt)] with a dispersion relation w = w(q), a distinct harmonic
component of propagation of an SH wave satisfying the governing equations (14)—
(19) in the half-space y > 0 will be expressed as

w(z,y,t) = [Blg)-e DY 1 C(q) - e D). gler—wlo)]
= w'(q,y) - explig(x — Cpy - 1)], (25)

where ¢ is the wavenumber, w is the frequency, C,,, is the phase velocity defined
by Cp, = w/q, B(q) and C(q) are arbitrary amplitude functions, and

Blg) = B = (¢* — 0?)2, (263)
¥(g) =7 = (@ + 722, (26b)
with
_ [+ 4ck2)1% —g)? ’ (273)
(20)?
_ 6"+ 407 4 g]f (27h)
(20)?

being real and positive quantities.
We should notice that (25) results by applying the two-sided L aplace transform

Fow=[ fwy- e, wih p=ig, (28a)
to the field equation (22) and thus getting
w*(p,y) = B(p) - € "P)V + C(p)-e 1)V for y>0, (29)

with B(p) = 8 = i(p? + 02)2 and y(p) = v = (12 — p?)Z, asthe general solution

(bounded asy — oo) of the resulting ordinary differential equation

4, x 2, %
w > dw

c + (ep* — gp? — KP)w* = 0. (30)

We also notice that the transform (28a) is equivalent to the Fourier transform
Fam= [ fay- e, @y

whereasthe requirement of solution finitenessat infinity leadsto achoice of branch
cutsfor 5 and -y so that the radicals have nonnegative real parts (see Figure 2).
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Figure 2. The cut complex p-plane for the functions 3(p) and v(p).

Finally, if a number of distinct harmonic components of propagation were
possible, there would be a dispersion relation w = w(q) for each component.
Therefore, a general solution (synthesis) can be expressed by a Fourier integral
(inversion integral)

w(e,y,t) = /w q,y) - €T gg, (32)
or, equivalently, by atwo-sided L aplace transform inversion

w(z,y,t) = w*(p,y) - @) dp, (33)

2ni



SH SURFACE WAVES IN A HOMOGENEOUS GRADIENT-ELASTIC 157

whereI'; and I'; are straight pathsin the pertinent complex planesand are parallel,
respectively, to the axes Re(q) and I'm(p). Then, the amplitude functions B(q)
and C(q) in (25) (or B(p) and C(p) in (29)) denote the relative dominance of a
particular harmonic component.

Here, we assume free motions and therefore the frequency should be taken
real-valued. Asis also evident from Equation (25), displacements associated with
positive [negative] imaginary wavenumbers decay [grow] exponentially with z,
thus representing no progressive waves but rather localized standing wave motions
(these modes are known as leaky or evanescent modes — see e.g. Bullen and
Bolt [5]). As is well-known, for a particular mode the frequency at which the
wavenumber changes from real to imaginary (or complex) values is caled the
cut-off frequency. After these preliminaries, we will see indeed which conditions
should be satisfied for the existence of SH surface wavesin a gradient-elastic half-
space with surface energy, and how cut-off frequencies for these waves can be
determined.

In view now of the criterion for the existence of surface waves stated at the
beginning of this section, we explore the possibility of solutions of the form
(25) with real and positive functions (q) and ~y(q) (or 5(p) and ~y(p)). The
latter restriction is satisfied if and only if ¢ is rea (p is imaginary) such that
—o00 < ¢ =Im(p) < —ooro < q=Im(p) < co. Then, surface SH-waves are
represented by

Wy(x,y,t) = [Blq) - e 1P1Y 4+ C(q) - e 1] . elaz—wla)]

= wi(q,y) - glaz—w(a)t] = w(p,y) - epw—iw(p>-t7 (34)

where
8] = (¢ - 0?2, (359)
Iyl = (¢ +72)2 (35b)

arereal and positive functions since ¢ itself isreal and o < |q].

Next, the appropriate dispersion (or frequency) equation can be obtained by
enforcing the pertinent boundary conditions at the half-space surface. These are
zero traction conditions (since no force acts on the surface — free motions) which
from (9) read as

oy.(2,y=0=0 for —oo <z < o0, (36a)
Myy(2,y =0) =0 for —oo<z <oo. (36b)
The above conditions are L aplace transformed according to (28a) into

o,.(p=1iq,y = 0) =0, (378)
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In addition, general forms of the transformed stresses o, (p = ig,y > 0) and
my,.(p = iq,y > 0) can be obtained from (21b), (16d), (284) and (29) as

oy (p=1iq,y > 0) = —pcr’BB - & M + pco®Cy-e Y, (38)

My (p =g,y > 0) = p[(cB—b)BB - + (cy —b)Cy-e ], (39)

Of course, when only the surface wave solution (34) is considered and not the gen-
eral onein (25), 5 and« in Equations (38) and (39) are understood as, respectively,
|6| and |y| which were defined in (35).

Combining now (37) with (38) and (39) providesthelinear homogeneous system
for the unknown functions B and C' in the case of SH surface waves:

—per?|B] - B+ peo?ly| - C =0, (40a)

(c- Bl =b)-16]- B+ (c-|y|=0)-]7]- C =0, (40b)
which has anontrivial solution if and only if

—c[o?(q® — 02)% + 72(¢% + 72)%] + ba? = 0, (42)
with

(92 + 4ck2)%
c

?=o0’+71%=

> 0, 42
and ¢ being areal number such that o < |¢q| < oo.

Therefore, Equation (41) constitutes the dispersion equation for surface waves.
An immediate observation on this is that SH surface waves do exist only when
c# 0andb > 0; thecases (c = 0) or (¢ # 0Oand b = 0) or (¢ # 0 and
b < 0) imply the non-existence of such motions. This finding means that the
inclusion of the surface- energy strain gradient term (i.e. gradient anisotropy) is
necessary for predicting surface SH-waves. It is also noted that, unlike the case of
aninhomogeneous el astic half-space where transcendental equations appear giving
rise to an infinity of modes [8, 9], the governing dispersion equation here for the
considered gradient elastic medium with surface energy is an irrational algebraic
equation. Accordingly, asingle mode of SH surface wavesmay exist that isdirectly
related to the parameter (b/c%). This, in fact, is shown from our numerical results
presented below.

5. Dispersion Curvesand Numerical Results

It is seen from the results of the last section that the phase velocity C,,;, and the
wavenumber g are interrelated through the dispersion equation (41). The objective
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of this section is to produce dispersion curves from Equation (41), i.e. curves of
(Cpn/V vs. qh), (Cpp/V vs. A/h) and (¢gq VS. wg), Where the following relations
define, respectively, the wavelength, a dimensionless wavenumber and a dimen-
sionless frequency:

A= “3)
q
1
qq = c2q, (44)
w 3%V
Wwg=—, wp= (45a,b)
Wm h

In particular, the definitions in (45) along with Equation (24b) alow us to write
(23) intheform

g=1-uwj, (46)

and present subsequent results in a convenient manner.

Results were obtained here for specific values of the gradient coefficient ¢ and
the surface-energy length b w.r.t. the internal length 4. In other words, we express
b and c in terms of h. Particularly, in what follows we accept the validity of the
estimate (13), i.e. that ¢ = (0.25h)?, and aso we consider three distinct cases

where the dimensionless parameter by = b/ ¢2 takes the values 0.1, 0.5, and 0.75.
Thelatter choice of the valuesof b, is, of course, in accordance with the restriction
(12d). Moreover, (45) leadsto therelation k = w/V = B%wd /h and further, along
with (13), yields 4ck? = (3)w? and

1
Cph B 3_2wd

Zd o gh = 4q,. 47ab
v 1q ¢ qd (47ab)

For convenience also, Equation (41) is normalized to yield the form

—[03(¢3 — 03)% + 72(¢3 + 72)2] + baad = 0, (48)
through the substitutions
1 1 1
04 = C20, Tq=C2T, agq= C2d. (49a,b,c)

Of course, the following restriction should also accompany (48):

oq4 < |qa] < o0. (50)
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Figure 3. Dispersion curves for the propagation of SH surface waves showing the variation of
the normalized phase velocity (Cpr /V') with the normalized wavenumber gh.

The solution of theirrational dispersion equation (48) was obtained here by acom-
bination of exact analysis, use of the symbolic-manipulations program MATHE-
MATICA and FORTRAN programming. It should also be mentioned that: (i) due
to the process of rationalization of Equation (48) extraneous roots will appear, so
a check must always be performed to find out which roots do satisfy the original
equation, and (ii) the occurrence of extraneous roots or complex roots marks the
cut-off frequency.
Thefinal form of (48) is

A (bg,wq) - g + Az(bg,wa) - 45 + Az(bg, wg) = 0, (51)

that is a quartic equation for g, which is parametric in b; and w,. Of course, by
assigning the specificvaluesb,; = 0.1, 0.5, or 0.75 mentioned earlier, (51) becomes
parametric only in wy. The coefficients, A;, A, and A3z are complicated functions,
the determination of which was accomplished by using MATHEMATICA.

Our numerical results reveal that propagation of SH surface waves takes place

when the normalized frequency wy = wh/3% V liesin the ranges
wq > 2.35703 for by =0.1, (529)

wy > 0.990505 for by = 0.5, (52b)
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Figure 4. Dispersion curvesfor the propagation of SH surface waves showing the variation of
the normalized phase velocity (Cpr, /V') with the normalized wavelength A/ h.
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wq > 0.70736 for by = 0.75. (52¢)

In these cases, g, is real and satisfies both (48) and (50).
Also, when wy lies in the following ranges, real but extraneous roots for g,
occur (these, of course, are to be rejected):

0.99550 < wy < 2.35703 for by = 0.1, (533)
0.86650 < wy < 0.990505 for by = 0.5, (53b)
0.66400 < wy < 0.70736 for by = 0.75. (53c)

Finally, in the following cases the equalities mark the frequenciesw = wy - wy,, for
which complex roots for g, first occur:

wa < 0.9955 for by = 0.1, (543)
wgq < 0.8665 for by =0.5 (54b)
wa < 0.6640 for by = 0.75. (540)

Someresultsin theform of graphsare given now. Figure 3 presentsthe variation
of the normalized phase velocity C,,;,/V with the normalized wavenumber gh. This
was obtained by solving the dispersion equation (48) in the range (50) and taking
into account the relations (44), (45), and (47). Propagation of SH surface waves
is implied here when gh is greater than the value at which each graph starts in
the left-hand side of the figure. Thisrange of ¢gh-values extends of course beyond
qh = 20.0. One could observethat for gk > 16.00 (i.e. for high-frequency waves)
thevaluesof by = b/ c2 play no significant role. Figure 4 presentsthegraph C,;, /V
vs. the normalized wavelength A\ /A. In this case, cut-off wavelengths are the ones
at which each graph stops in the right-hand side of the Figure. Finally, Figure 5
depictsthe variation of the normalized wavenumber ¢; = cs g with the normalized
frequency wy = wh/B%V for, again, three different values of b,. Here, cut-off
frequencies are those at which each graph startsin the left-hand side of the figure.

In closing, we present Table 1 where some numerical results are summarized
for two different materials. These materials have the following constants. Materi-
al I: shear modulus ;1 = 2.1 x 10° Nm 2, mass density p = 1190kgr/m3,V =
(u/p)2 = 1321msec, internal characteristic length h = 10~8m,w,, =

32V/h = 2.28881 x 10 Hz. Material II: u = 305 x 1°Nm=2,p =
2717 kgr/m3,V = 3350m sec™t,h = 4 x 107%m,w,, = 1.45059 x 10" H z.
In particular, the latter constants (i.e. 4, p and k) are for Dionysos Marble as mea-
sured in the study of Vardoulakis et al. [38]. One can immediately observe that the
value of theinternal length / plays a significant role in the occurrence of a cut-off
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Tablel. The range of values of the normalized frequency wq and frequencies
w (for Material | and 1) for which SH surface waves exist or do not exist.

Material | Material |1

ba wq Roots w (inHZz) w (inHz)
of Equation (48)

rea
2.35703 5.394 x 10" 3.419 x 107
0.10 real but extraneous
0.99550 2.278 x 10" 1.444 x 107
complex
real
0.990505 2.267 x 10" 1.437 x 10’
0.50 real but extraneous
0.866500 1.983 x 10" 1.257 x 10’
complex
real
0.70736 - 1619x 10" 1.026 x 10’
0.75 real but extraneous
0.66400 1519 x 10" 0.963 x 10’
complex

frequency. Thegreater theinternal lengthis, the cut-off frequency occursat alower
value.

6. Concluding Remarks

The present study explored the possibility of predicting SH surface waves in a
homogeneous elastic half-space by a generalized continuum theory. Indeed, the
linear theory of gradient elasticity with surface energy [18—21] proved successful
in predicting the occurenceof thesewaves. It isnoticed that no other linear el asticity
theory (either isotropic or anisotropic), of those attempting to resolve the issue of
SH surface waves in a homogeneous half-space, has given satisfactory results.
Among the latter theories, e.g., classical linear elasticity [2, 3, 5, 6], non-local
integral-type elasticity [10, 11] and simple gradient-type (without surface-energy
effects) elagticity [25, 26] are included.

It was also shown here, by employing asimple integral-transform analysis, that
adispersion equation isobtained for the propagation of asingle mode of SH surface
waves and that this equation interrel ates basically the phase velocity with the wave
number. Numerical resultswere presented in a normalized fashion. An application
employing material constantsof agranular macromorphic rock (Dionysos Marble)



164 I. VARDOULAKIS AND H.G. GEORGIADIS

wasalsoincluded. Theresultsgenerally show the dependence of cut-off frequencies
upon the size of the unit cell (micro-medium), which may be interpreted as the
periodic structure of a crystal lattice, a molecule of a polymer, a crystallite of a
polycrystal or agrain of agranular material.
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