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S U M M A R Y

Following the success of seismic analysis of a semi-circular hill, the problem of SH-wave scat-

tering by a semi-elliptical hill is revisited by using the null-field boundary integral equation

method (BIEM). To fully use the analytical property in the null-field boundary integral equation

approach in conjunction with degenerate kernels for solving the semi-elliptical hill scattering

problem, the problem is decomposed to two regions to produce elliptical boundaries by using

the technique of taking free body. One is the half-plane problem containing a semi-elliptical

boundary. This semi-infinite problem is imbedded in an infinite plane with an artificial ellipti-

cal boundary such that degenerate kernel can be fully applied. The other is an interior problem

bounded by an elliptical boundary. The degenerate kernel in the elliptic coordinates for two

subdomains is used to expand the closed-form fundamental solution. The semi-analytical for-

mulation in companion with matching boundary conditions yields six constraint equations.

Instead of finding admissible wave-expansion bases, our null-field BIEM in conjunction with

degenerate kernels has the five features over the conventional BIEM/BEM, (1) free of calcu-

lating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect,

(4) meshless and (5) well-posed system. All numerical results are compared well with those

of using the hybrid method which is also described in this paper. It is interesting to find that a

focusing phenomenon is also observed in this study.

Key words: Earthquake ground motions; Earthquake interaction, forecasting, and prediction;

Wave scattering and diffraction.

1 I N T RO D U C T I O N

Taiwan locates in the Pacific Ring of Fire, which is an area with a large number of earthquakes and volcanic eruptions. It results in significant

displacement amplitude on the canyon, hill and ground surface because of scattering and diffraction of seismic waves. Studying the vibrational

response of the soil because of earthquakes is an important issue in this area. Based on assumptions of linear elastic, isotropic and homogenous

medium for the soil, problems of SH-wave scattering can be formulated to the 2-D Helmholtz equation.

Regarding SH-wave scattering problems by the alluvial valley and canyon, Trifunac derived analytical solutions for semi-circular cases

with alluvial and without alluvial in 1971 (Trifunac 1971, 1973)), respectively. Later, Yuan & Liao (1994) employed the approach of

wavefunction expansion to deal with problems of SH-waves scattered by a cylindrical canyon of circular-arc cross-section. Wong and Trifunac

extended a circular case to a semi-elliptical canyon (Wong & Trifunac 1974a) and alluvial (Wong & Trifunac 1974b). Later, Wong (1982)

extended SH wave to the P, SV and Rayleigh waves. For the multilayers problems, Vogt et al. (1988) have employed the indirect boundary

element method (BEM) to solve the canyon problem of arbitrary shape in a layered half-space. The reflection waves caused by a hill are more

complex than a canyon from the point of wave physics. Mathematically speaking, hill scattering is not easier than the canyon case not only

because of its convex geometry but also its solution space. It means that the closed-form or analytical solution is not easy to derive. Therefore,

numerical methods are required.

Although Sánchez-Sesma & Campillo (1991) have solved the semi-elliptical hill problem, only P, SV and Rayleigh waves were

considered. The literature for the semi-elliptical hill subject to SH wave is very limited. To authors’ best knowledge, only one paper (Cao

et al. 2001) on this topic was found.

Numerical methods were used to solve this kind of problems including the wave-expansion method (Yuan & Men 1992; Yuan &

Liao 1996; Tsaur & Chang 2009), BIEM/BEM (Chen et al. 2008a, 2011b), hybrid method (Mei 1980) and spectral element method (SEM;
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Komatitsch et al. 2004). For the BEM, direct (Álvarez-Rubio et al. 2004; Kawakami & Mogi 2007) and indirect formulations (Sánchez-Sesma

et al. 2001) have been employed. Regarding the fundamental solution, Kawase (1988) used the discrete wavenumber Green’s function in

BEM. For the conventional BEM, the closed-form fundamental solution is used. On the other hand, Chen et al. (2008a, 2011b) employed

the degenerate kernel for the fundamental solution and proposed the null-field integral equation approach. To consider the complex shape of

canyon or hill, the hybrid method and SEM are flexible to solve this problem. The main care for the wave-expansion method is the selection

of completeness of the wavefunction base. As quoted by Tsaur & Chang (2009) ‘Unfortunately, their series solution for such a problem is

in error because of unsuitable connection between the domain decomposition and the expression of corresponding wavefield.’, this pointed

out that finding admissible bases is important. This is the reason why Lee et al. (2006) improved the analytical wave series solution of Yuan

and his coworkers’ papers (Yuan & Men 1992; Yuan & Liao 1996) to take care of the stress singularity on the rim of the hill. A convenient

criterion of completeness was mentioned by Sánchez-Sesma et al. (1982). The expansion can converge uniformly if the Rayleigh hypothesis

is satisfied.

In 2008, Chen et al. (2008a) employed the null-field BIEM to solve SH-wave scattering problems by multiple semi-circular alluvial

valleys. Because of the circular geometry, Chen and his coworkers naturally employed the null-field BIEM in conjunction with degenerate

kernels and Fourier series. Therefore, their proposed approach is a semi-analytical approach. The expansion of closed-form fundamental

solution is also one kind of addition theorem, which has been widely used in the approach of wavefunction expansion. The theoretical

point of degenerate kernel is that the two-point function for the fundamental solution is separated to source and field point. Although only

boundary elements along the free surface are needed in the conventional BEM, it is required to compute singular or hypersingular integrals

in the principal value sense by using the bump contour approach. Owing to introduce the degenerate kernels instead of closed-form kernel

functions, it is free for calculating principal values in the null-field BIEM. Besides, five merits over the conventional BIEM/BEM, (1) free of

calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system,

were demonstrated. A large amount of work to demonstrate the five advantages have been done by Chen and his coworkers for Laplace

(Chen & Wu 2007), Helmholtz (Chen et al. 2007), biharmonic (Chen et al. 2008b) and biHelmholtz (Lee & Chen 2010b) problems. The key

ingredient of null-field BIEM is the degenerate kernel, which is of theoretical use in the development of integral operator. Although degenerate

kernel is not popular to engineers as well as mathematicians, the degenerate kernel method is conceptually simple and efficient (Atkinson

1997). After using degenerate kernel instead of fundamental solution, boundary contour integration can be easily implemented. Therefore,

BIEM is nothing more than linear algebra (Cochran 1982). The efficiency is promoted in three aspects, analytical boundary integral without

numerical error, natural bases for boundary densities and exact description of boundary geometry. Based on the same idea, the null-field

BIEM was also applied to solve problems containing elliptical boundaries (Chen et al. 2010). Degenerate kernels using the Bessel function

in the circular case are changed to Mathieu function for the elliptical boundary. Mathematically speaking, degenerate kernel is a finite-rank

approximation of the closed-form fundamental solution. Successful applications to vibration (Chen et al. 2011a) and water wave problems

(Lee & Chen 2010a; Chen & Lee 2011) have also been done.

No matter what the approach is used, a benchmark example to demonstrate the validity of numerical approaches is required. For the

hill scattering case, four popular examples, semi-circular hill (Yuan & Men 1992; Chen et al. 2011b), semi-elliptical hill (Cao et al. 2001),

Gaussian hill (Fu 2005) and half-sine hill (Kamalian et al. 2008), have been widely used. For clarity, a semi-elliptical hill is our focus by testing

our formulation. To deal with this problem, the idea of domain decomposition was used in earthquake, ocean and electrical engineering. It is

interesting to find that earthquake engineers always cut the circular arc to have a circular region as the second domain (Yuan & Men 1992)

in Fig. 1(a). In harbour resonance (Lee 1971) and electromagnetics (Wood & Wood 1999), a straight line was introduced to separate into two

regions in Fig. 1(b).

Focusing effect in optics, acoustics and electromagnetics has been noted but only a little in elastic wave has been studied even though the

Northridge earthquake damage was examined to be caused by geologic focusing of seismic wave (USGS & SCEC 1994; Davis et al. 2000).

Tsaur & Chang (2009) employed the wavefunction expansion approach to find the focusing behaviour for the shallow circular arc hill in

both time and frequency domains. For the semi-circular hill, focusing phenomenon was also observed by Chen et al. (2011b). The maximum

response may occur beneath the hill boundary, which may cause failure for underground structures. In this paper, we may wonder whether it

also happens or not for the semi-elliptical hill.

)b()a(

Figure 1. Problem sketch of scattering problem with semi-circular topography: (a) seismic analysis for a hill scattering and (b) harbour resonance and

electromagnetics.
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SH-wave scattering by a semi-elliptical hill 179

Figure 2. Decomposition of the semi-elliptical hill scattering problem. (a) Original problem, (b) a half-plane subject to traction free B.C. along the horizontal

ground surface, (c) an elliptical region, (d) an infinite plane and (e) an infinite plane containing an elliptical hole.

Accordingly, we aim to extend the approach to deal with SH-wave scattering problems by a semi-elliptical hill. Instead of finding

admissible wave-expansion bases, we construct six constraint equations from the null-field BIEM formulations and matching boundary

conditions. Numerical results will be compared with those of using the hybrid method. Focusing phenomenon will be examined.

2 P RO B L E M S TAT E M E N T

A scattering problem subject to a SH-wave impinging on a semi-elliptical hill is shown in Fig. 2(a). The material property of the soil is

assumed to be linear elastic, isotropic and homogenous. Therefore, the governing equation of the antiplane motion is the 2-D Helmholtz

equation as follows:

(∇2 + k2)u(x) = 0, x ∈ D, (1)

where ∇2 is the Laplacian operator, k is the shear wavenumber, u(x) is the antiplane displacement of the semi-elliptical hill, x is the field

point and D is the domain of interest. The two components of the field point x in terms of the Cartesian and elliptical coordinates are (x, y)

and (ξx, ηx), respectively. The boundary condition is the traction-free boundary condition as shown below

τ (x) = μt(x) = μ
∂u(x)

∂nx

= 0, x ∈ B, (2)

where τ (x) is the traction along the horizontal ground surface and the hill border, t(x) is the normal derivative of u(x), μ is the shear modulus,

nx denotes the unit outward normal vector at the field point and B is the boundary.

The incident plane SH wave [u I (x)] is expressed as

u I (x) = A0eik[x cos(α)+y sin(α)], (3)

where A0 is the amplitude of the SH wave and α is the incident angle.
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3 D UA L B O U N DA RY I N T E G R A L F O R M U L AT I O N S A N D D E G E N E R AT E K E R N E L S

By introducing degenerate kernels, the collocation point can be located on the real boundary without need of calculating principal value in

the bump contour approach. By choosing the proper degenerate kernels, the representations of the conventional integral equations including

the boundary point can be written as

2πu(x) =

∫

B

T (s, x)u(s)dB(s) −

∫

B

U (s, x)t(s)dB(s), x ∈ D ∪ B, (4)

2π t(x) =

∫

B

M(s, x)u(s)dB(s) −

∫

B

L(s, x)t(s)dB(s), x ∈ D ∪ B (5)

and

0 =

∫

B

T (s, x)u(s)dB(s) −

∫

B

U (s, x)t(s)dB(s), x ∈ Dc ∪ B, (6)

0 =

∫

B

M(s, x)u(s)dB(s) −

∫

B

L(s, x)t(s)dB(s), x ∈ Dc ∪ B, (7)

where s is the source point, Dc is the complementary domain and the kernel function U (s, x) is the fundamental solution which satisfies

(∇2 + k2)U (s, x) = 2πδ(x − s), (8)

in which δ(x−s) denotes the Dirac-delta function. It is noted that the four kernels in eqs (4)–(7) should be chosen for corresponding degenerate

kernels. The other kernel functions, T (s, x), L(s, x) and M(s, x), are defined by

T (s, x) =
∂U (s, x)

∂ns

, (9)

L(s, x) =
∂U (s, x)

∂nx

, (10)

M(s, x) =
∂2U (s, x)

∂ns∂nx

, (11)

where ns denotes the unit outward normal vector at the source point. It is noted that eqs (4)–(7) can contain the boundary point (x → B)

because the kernel functions (U , T , L and M) are expressed in terms of proper degenerate kernels which will be elaborated on later in eq.

(17)–(20).

The closed-form fundamental solution as previously mentioned is:

U (s, x) = −
iπ H

(1)

0 (kr )

2
, (12)

where r ≡ |s − x| is the distance between the source point and the field point and H
(1)

0 is the zeroth-order Hankel function of the first kind.

Based on the property of separation variables in the elliptical coordinates, the closed-form fundamental solution U (s, x) of eq. (12), other

kernel functions T (s, x), L(s, x) and M(s, x) can be expressed as

U (s, x) =

⎧

⎪

⎨

⎪

⎩

U E (s, x) = lim
N→∞

U E
N (s, x), ξx ≥ ξs,

U I (s, x) = lim
N→∞

U I
N (s, x), ξx < ξs,

(13)

T (s, x) =

⎧

⎪

⎨

⎪

⎩

T E (s, x) = lim
N→∞

T E
N (s, x), ξx > ξs,

T I (s, x) = lim
N→∞

T I
N (s, x), ξx < ξs,

(14)

L(s, x) =

⎧

⎪

⎨

⎪

⎩

L E (s, x) = lim
N→∞

L E
N (s, x), ξx > ξs,

L I (s, x) = lim
N→∞

L I
N (s, x), ξx < ξs,

(15)

M(s, x) =

⎧

⎪

⎨

⎪

⎩

M E (s, x) = lim
N→∞

M E
N (s, x), ξx ≥ ξs,

M I (s, x) = lim
N→∞

M I
N (s, x), ξx < ξs,

(16)
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SH-wave scattering by a semi-elliptical hill 181

where U E
N (s, x), U I

N (s, x), T E
N (s, x), T I

N (s, x), L E
N (s, x), L I

N (s, x), M E
N (s, x) and M I

N (s, x) are degenerate kernels (finite-rank approximation;

Morse & Feshbach 1953) as shown below
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

U E
N (s, x) = −2π i

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Jem(q, ξs)Hem(q, ξx)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jom(q, ξs)Hom(q, ξx)

)

, ξx ≥ ξs,

U I
N (s, x) = −2π i

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Jem(q, ξx)Hem(q, ξs)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jom(q, ξx)Hom(q, ξs)

)

, ξx < ξs, (17)

⎧

⎪

⎪
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⎪
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⎪
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⎪
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⎪

⎪

⎪

⎩

T E
N (s, x) = −2π i

1

Js

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Je′
m(q, ξs)Hem(q, ξx)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jo′
m(q, ξs)Hom(q, ξx)

)

, ξx > ξs,

T I
N (s, x) = −2π i

1

Js

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Jem(q, ξx)He′
m(q, ξs)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jom(q, ξx)Ho′
m(q, ξs)

)

, ξx < ξs, (18)
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⎪

⎪

⎩

L E
N (s, x) = −2π i

1

Jx

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Jem(q, ξs)He′
m(q, ξx)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jom(q, ξs)Ho′
m(q, ξx)

)

, ξx > ξs,

L I
N (s, x) = −2π i

1

Jx

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Je′
m(q, ξx)Hem(q, ξs)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jo′
m(q, ξx)Hom(q, ξs)

)

, ξx < ξs, (19)
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

M E
N (s, x) = −2π i

1

Js Jx

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Je′
m(q, ξs)He′

m(q, ξx)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jo′
m(q, ξs)Ho′

m(q, ξx)

)

, ξx ≥ ξs,

M I
N (s, x) = −2π i

1

Js Jx

(

N
∑

m=0

[

Sem(q, ηs)

Me
m(q)

]

Sem(q, ηx)Je′
m(q, ξx)He′

m(q, ξs)

+

N
∑

m=1

[

Som(q, ηs)

Mo
m(q)

]

Som(q, ηx)Jo′
m(q, ξx)Ho′

m(q, ξs)

)

, ξx < ξs, (20)

in which (ξs, ηs) are the elliptical coordinates of the source point s, q is defined by

q =
(

ck
/

2
)2

, (21)

where c is the half distance between the two foci of the ellipse. Special functions, Sem and Som, are the mth-order even and odd Mathieu

functions (angular), respectively; Jem and Jom are the mth-order even and odd modified Mathieu functions (radial) of the first kind,

respectively; Hem and Hom are the even and odd mth-order modified Mathieu functions (Mathieu–Hankel functions) of the third kind,

C© 2011 The Authors, GJI, 188, 177–194

Geophysical Journal International C© 2011 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
8
8
/1

/1
7
7
/6

3
2
7
1
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



182 J.-T. Chen, J.-W. Lee and W.-S. Shyu

respectively and are defined as (Abramowitz & Stegun 1965; Zhang & Jin 1996)

Hem(q, ξ ) = Jem(q, ξ ) + iY em(q, ξ ), (22)

Hom(q, ξ ) = Jom(q, ξ ) + iY om(q, ξ ), (23)

in which Y em and Y om are the mth-order even and odd the modified Mathieu functions of the second kind, respectively. Jx and Js are the

Jacobian term for the field point x and source point s, respectively as shown below

Jx = c

√

[sinh(ξx) cos(ηx)]2 + [cosh(ξx) sin(ηx)]2, (24)

Js = c

√

[sinh(ξs) cos(ηs)]
2 + [cosh(ξs) sin(ηs)]

2. (25)

The normalized constants Me
m and Mo

m can be obtained by

Me
m(q) =

∫ 2π

0

[Sem(q, η)]2dη = π, (26)

Mo
m(q) =

∫ 2π

0

[Som(q, η)]2dη = π. (27)

4 D E C O M P O S I T I O N O F T H E P RO B L E M A N D S I X C O N S T R A I N T S

4.1 Decomposition of the problem

To fully use the semi-analytical property of the null-field BIEM for solving boundary value problems containing elliptical boundaries, the

original problem of a semi-elliptical hill is divided into two regions as shown in Fig. 2, where G and H denote the horizontal ground surface

and semi-elliptical hill border, respectively. A half-plane region (Region I) is shown in Fig. 2(b) and the other is an enclosed region bounded

by the elliptical boundary (Region II) as shown in Fig. 2(c). In Fig. 2(b), a half-plane problem with an artificial boundary (G or H ) can

be imbedded to an infinite domain. Then, it can be decomposed to an infinite plane with incident and reflective waves and an infinite plane

containing an elliptical hole which satisfies the specified boundary condition as shown in Figs 2(d) and (e), respectively.

4.2 Expansion of boundary density

To fully use the geometry of elliptical boundary, the boundary displacement u(s) and traction τ (s) along the elliptical boundary can be

approximated by employing the eigenfunction expansion. Therefore, we obtain

uS(s) =

∞
∑

n=0

aS
n Sen(q, ηs) +

∞
∑

n=1

bS
n Son(q, ηs), (28)

τS(s) = μtS(s) = μ
1

Js

(

∞
∑

n=0

pS
n Sen(q, ηs) +

∞
∑

n=1

q S
n Son(q, ηs)

)

, (29)

uH (s) =

∞
∑

n=0

aH
n Sen(q, ηs) +

∞
∑

n=1

bH
n Son(q, ηs), (30)

τH (s) = μtH (s) = μ
1

Js

(

∞
∑

n=0

pH
n Sen(q, ηs) +

∞
∑

n=1

q H
n Son(q, ηs)

)

, (31)

where aS
n , bS

n , pS
n , q S

n , aH
n , bH

n pH
n and q H

n are the unknown coefficients of the eigenfunctions, the superscripts ‘S’ and ‘H’ denote the region

I in Fig. 2(c) and the region II in Fig. 2(e), respectively. The Jacobian term Js may appear either in the kernel functions of eqs (18)–(20),

the boundary densities of eqs (29) and (31) or the elliptical boundary contour integration (dB(s) = Jsdηs). We may worry about the possible

use of orthogonal relations for the Mathieu bases because of the presence of Js. Fortunately, the Jacobian terms can be cancelled each other

out by artificially introducing a Jacobian term in the expansion of boundary flux. Therefore, the orthogonal relations can be fully used in the

contour integration of an elliptical boundary and they can be analytically determined. In the real computation, only finite (2M + 1) terms are

truncated in the summation of eqs (28)–(31).

4.3 Formulations for each subdomain and matching of boundary conditions

To formulate the original problem after decomposition, six equations are obtained from BIEs and match of BCs as shown later.

C© 2011 The Authors, GJI, 188, 177–194

Geophysical Journal International C© 2011 RAS

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
8
8
/1

/1
7
7
/6

3
2
7
1
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



SH-wave scattering by a semi-elliptical hill 183

4.3.1 Exterior problem by using the null-field BIEM

For the exterior problem containing an elliptical hole subject to the specified boundary condition as shown in Fig. 2(e), the null-field BIEM

for the boundary point in eq. (6) yields
∫

[

T I (s, x)uS(s) − U I (s, x)tS(s)
]

dB(s) = 0, x ∈ G ∪ G
′
, (32)

where G and G
′
are the upper- and lower-half parts of the artificial elliptical boundary in Fig. 2(e), respectively.

4.3.2 Interior problem by using the null-field BIEM

For the null-field BIEM of the elliptical domain in Fig. 2(c), we have the null-field BIEM for the boundary point of the region II
∫

[

T E (s, x)uH (s) − U E (s, x)tH (s)
]

dB(s) = 0, x ∈ H ∪ H , (33)

where H and H are the upper- and lower-half parts of the elliptical boundary in Fig. 2(c), respectively.

4.3.3 Continuity condition on the artificial interface

The continuity condition of the displacement on the artificial interface, we have

u I (x) + u R(x) + uS(x) = uH (x), π ≤ ηx ≤ 2π, (34)

where x = (ξx, ηx) and u R(x) is the reflection wavefield as shown below

u R(x) = A0eik[x cos(−α)+y sin(−α)]. (35)

4.3.4 Equilibrium condition on the artificial interface

The equilibrium condition of force on the artificial interface, we have

− [τI (x) + τR(x) + τS(x)] = τH (x), π ≤ ηx ≤ 2π. (36)

4.3.5 Boundary condition on the hill border

The hill border boundary (H ) is subject to the traction-free boundary condition (Neumann type) as shown below:

τH (x) = 0, 0 ≤ ηx ≤ π. (37)

4.3.6 Boundary condition on the horizontal ground surface

The half-plane with a horizontal ground surface boundary is also subject to the traction-free boundary condition as shown below

μ
∂uS(x)

∂y
= μ

∫ [

∂T E (s, x)

∂y
uS(s) −

∂U E (s, x)

∂y
tS(s)

]

dB(s) = 0, x ∈ G, (38)

where ∂U E (s,x)

∂y
and ∂T E (s,x)

∂y
are shown below

∂U E (s, x)

∂y
=

1

Jx

c cosh(ξx) sin(ηx)
∂U E (s, x)

∂ξx

+
1

Jx

c sinh(ξx) cos(ηx)
∂U E (s, x)

∂ηx

, (39)

∂T E (s, x)

∂y
=

1

Jx

c cosh(ξx) sin(ηx)
∂T E (s, x)

∂ξx

+
1

Jx

c sinh(ξx) cos(ηx)
∂T E (s, x)

∂ηx

. (40)

5 D I S C R E T I Z AT I O N T O A L I N E A R A L G E B R A I C E Q UAT I O N

To calculate coefficients of eigenfunction expansion in eqs (28)–(31), 8M + 4 boundary nodes for the real boundaries and artificial elliptical

boundaries are needed.

5.1 Exterior problem by using the null-field BIEM

For the exterior problem containing an elliptical hole subject to the specified boundary condition as shown in Fig. 2(e), 2M + 1 boundary

nodes are needed and eq. (32) is discretized to

[TI ](2M+1)×(2M+1){u
S}(2M+1)×1 − [UI ](2M+1)×(2M+1){t

S}(2M+1)×1 = {0}(2M+1)×1 , (41)
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184 J.-T. Chen, J.-W. Lee and W.-S. Shyu

where [UI ] and [TI ] are the influence matrices with a dimension of 2M + 1 by 2M + 1, {uS} and {tS} denote the column vectors of uS(s) and

tS(s), for the generalized coordinates of eigenfunction expansion with a dimension of 2M + 1 by 1 as shown below

{uS} =
〈

aS
0 aS

1 aS
2 · · · aS

M bS
1 bS

2 · · · bS
M

〉T

, (42)

{tS} =
〈

pS
0 pS

1 pS
2 · · · pS

M q S
1 q S

2 · · · q S
M

〉T

. (43)

After uniformly collocating points in the direction of angular coordinate (ηx) along the elliptical boundary, the influence matrices in

eq. (32) can be written as

[UI ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U I
1 (η1

x) · · · U I
M+1(η1

x)

U I
1 (η2

x) · · · U I
M+1(η2

x)

...
. . .

...

U I
1 (η2M

x ) · · · U I
M+1(η2M

x )

U I
1 (η2M+1

x ) · · · U I
M+1(η2M+1

x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U I
M+2(η1

x) · · · U I
2M+1(η1

x)

U I
M+2(η2

x) · · · U I
2M+1(η2

x)

...
. . .

...

U I
M+2(η2M

x ) · · · U I
2M+1(η2M

x )

U I
M+2(η2M+1

x ) · · · U I
2M+1(η2M+1

x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (44)

[TI ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T I
1 (η1

x) · · · T I
M+1(η1

x)

T I
1 (η2

x) · · · T I
M+1(η2

x)

...
. . .

...

T I
1 (η2M

x ) · · · T I
M+1(η2M

x )

T I
1 (η2M+1

x ) · · · T I
M+1(η2M+1

x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T I
M+2(η1

x) · · · T I
2M+1(η1

x)

T I
M+2(η2

x) · · · T I
2M+1(η2

x)

...
. . .

...

T I
M+2(η2M

x ) · · · T I
2M+1(η2M

x )

T I
M+2(η2M+1

x ) · · · T I
2M+1(η2M+1

x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (45)

where the elements of [UI ] and [TI ] are defined respectively as

U I
n (ηL

x ) =

∫ 2π

0

U I (s, xL )Sen−1(q, ηs) dηs, (46)

U I
M+1+n̄(ηL

x ) =

∫ 2π

0

U I (s, xL )Son̄(q, ηs) dηs, (47)

T I
n (ηL

x ) =

∫ 2π

0

T I (s, xL )Sen−1(q, ηs)Js dηs, (48)

T I
M+1+n̄(ηL

x ) =

∫ 2π

0

T I (s, xL )Son̄(q, ηs)Js dηs, (49)

where n = 1, 2, . . . , M + 1, n̄ = 1, 2, . . . , M, L = 1, 2, . . . , 2M + 1 and ηL
x is the angular coordinate of the collocation point xL in the

elliptical coordinates.

5.2 Interior problem by using the null-field BIEM

By uniformly collocating 2M + 1 boundary nodes for the region II in Fig. 2(c), eq. (33) is discretized to

[TE ](2M+1)×(2M+1){u
H }(2M+1)×1 − [UE ](2M+1)×(2M+1){t

H }(2M+1)×1 = {0}(2M+1)×1 , (50)

where {uH } and {tH } denote the column vectors of uH(s) and tH (s), for the generalized coordinates of eigenfunction expansion as shown

below

{uH } =
〈

aH
0 aH

1 aH
2 · · · aH

M bH
1 bH

2 · · · bH
M

〉T

, (51)

{tH } =
〈

pH
0 pH

1 pH
2 · · · pH

M q H
1 q H

2 · · · q H
M

〉T

, (52)
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SH-wave scattering by a semi-elliptical hill 185

[UE ] and [TE ] are

[UE ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U E
1 (η1

x) · · · U E
M+1(η1

x)

U E
1 (η2

x) · · · U E
M+1(η2

x)

...
. . .

...

U E
1 (η2M

x ) · · · U E
M+1(η2M

x )

U E
1 (η2M+1

x ) · · · U E
M+1(η2M+1

x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U E
M+2(η1

x) · · · U E
2M+1(η1

x)

U E
M+2(η2

x) · · · U E
2M+1(η2

x)

...
. . .

...

U E
M+2(η2M

x ) · · · U E
2M+1(η2M

x )

U E
M+2(η2M+1

x ) · · · U E
2M+1(η2M+1

x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (53)

[TE ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T E
1 (η1

x) · · · T E
M+1(η1

x)

T E
1 (η2

x) · · · T E
M+1(η2

x)

...
. . .

...

T E
1 (η2M

x ) · · · T E
M+1(η2M

x )

T E
1 (η2M+1

x ) · · · T E
M+1(η2M+1

x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T E
M+2(η1

x) · · · T E
2M+1(η1

x)

T E
M+2(η2

x) · · · T E
2M+1(η2

x)

...
. . .

...

T E
M+2(η2M

x ) · · · T E
2M+1(η2M

x )

T E
M+2(η2M+1

x ) · · · T E
2M+1(η2M+1

x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (54)

in which the elements of [UE ] and [TE ] are defined, respectively, as

U E
n (ηL

x ) =

∫ 2π

0

U E (s, xL )Sen−1(q, ηs) dηs, (55)

U E
M+1+n̄(ηL

x ) =

∫ 2π

0

U E (s, xL )Son̄(q, ηs) dηs, (56)

T E
n (ηL

x ) =

∫ 2π

0

T E (s, xL )Sen−1(q, ηs)Js dηs, (57)

T E
M+1+n̄(ηL

x ) =

∫ 2π

0

T E (s, xL )Son̄(q, ηs)Js dηs, (58)

where n = 1, 2, . . . , M + 1, n̄ = 1, 2, . . . , M, L = 1, 2, . . . , 2M + 1 and ηL
x is the angular coordinate of the collocation point xL in the

elliptic coordinates.

5.3 Continuity condition on the artificial interface

By matching the continuity condition on the artificial interface (G or H ), eq. (34) can be rewritten as

uS(ηx) − uH (ηx) = − [u I (ηx) + u R(ηx)] , π ≤ ηx ≤ 2π, (59)

by collocating Nai nodes on the artificial interface, and we have

[Qai ]Nai ×(2M+1) {u
S}(2M+1)×1 − [Qai ]Nai ×(2M+1) {u

H }(2M+1)×1 = − {uI + uR}Nai ×1 , (60)

where Nai is the number of boundary nodes on the artificial interface as shown in Fig. 3 and [Qai ] is defined by

[Qai ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Se0(q, η1
x) Se1(q, η1

x) · · · SeM (q, η1
x) So1(q, η1

x) · · · SoM (q, η1
x)

Se0(q, η2
x) Se1(q, η2

x) · · · SeM (q, η2
x) So1(q, η2

x) · · · SoM (q, η2
x)

...
...

. . .
...

...
. . .

...

Se0(q, ηNai −1
x ) Se1(q, ηNai −1

x ) · · · SeM (q, ηNai −1
x ) So1(q, ηNai −1

x ) · · · SoM (q, ηNai −1
x )

Se0(q, ηNai
x ) Se1(q, ηNai

x ) · · · SeM (q, ηNai
x ) So1(q, ηNai

x ) · · · SoM (q, ηNai
x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (61)

5.4 Equilibrium condition on the artificial interface

By matching the equilibrium condition on the artificial interface (G or H ), eq. (36) can be rewritten as

τS(ηx) + τH (ηx) = − [τI (ηx) + τR(ηx)] , π ≤ ηx ≤ 2π. (62)

Similarly, collocation Nai nodes yields

1

Jx

[Qai ]Nai ×(2M+1) {t
S}(2M+1)×1 +

1

Jx

[Qai ]Nai ×(2M+1) {t
H }(2M+1)×1 = − {tI + tR}Nai ×1 , (63)

where [Qai ] is the same with eq. (61).
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collocation points on the hill border
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Figure 3. Distribution of collocation points for the semi-elliptical hill scattering problem.

5.5 Boundary condition on the hill border

By distributing Nhb collocation points at the hill border of Region II in eq. (37), we have

[Qhb]Nhb×(2M+1) {t
H }(2M+1)×1 = {0}Nhb×1 , (64)

where Nhb is the number of collocation points on the hill border (H ) as shown in Fig. 3 and [Qhb] is

[Qhb] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Se0(q, η1
x) Se1(q, η1

x) · · · SeM (q, η1
x) So1(q, η1

x) · · · SoM (q, η1
x)

Se0(q, η2
x) Se1(q, η2

x) · · · SeM (q, η2
x) So1(q, η2

x) · · · SoM (q, η2
x)

...
...

. . .
...

...
. . .

...

Se0(q, ηNhb−1
x ) Se1(q, ηNhb−1

x ) · · · SeM (q, ηNhb−1
x ) So1(q, ηNhb−1

x ) · · · SoM (q, ηNhb−1
x )

Se0(q, ηNhb
x ) Se1(q, ηNhb

x ) · · · SeM (q, ηNhb
x ) So1(q, ηNhb

x ) · · · SoM (q, ηNhb
x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (65)

5.6 Boundary condition on the horizontal ground surface

By collocating Nhgs nodes to match the traction-free boundary conditions along the horizontal ground surface in eq. (38), we have

[TE
y ]Nhgs×(2M+1){u

S}(2M+1)×1 − [UE
y ]Nhgs×(2M+1){t

S}(2M+1)×1 = {0}Nhgs×1 , (66)

where

[UE
y ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

U E
y1(η1

x) · · · U E
y(M+1)(η

1
x)

U E
y1(η2

x) · · · U E
y(M+1)(η

2
x)

...
. . .

...

U E
y1(η2M

x ) · · · U E
y(M+1)(η

2M
x )

U E
y1(η2M+1

x ) · · · U E
y(M+1)(η

2M+1
x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

U E
y(M+2)(η

1
x) · · · U E

y(2M+1)(η
1
x)

U E
y(M+2)(η

2
x) · · · U E

y(2M+1)(η
2
x)

...
. . .

...

U E
y(M+2)(η

2M
x ) · · · U E

y(2M+1)(η
2M
x )

U E
y(M+2)(η

2M+1
x ) · · · U E

y(2M+1)(η
2M+1
x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (67)

[TE
y ] =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T E
y1(η1

x) · · · T E
y(M+1)(η

1
x)

T E
y1(η2

x) · · · T E
y(M+1)(η

2
x)

...
. . .

...

T E
y1(η2M

x ) · · · T E
y(M+1)(η

2M
x )

T E
y1(η2M+1

x ) · · · T E
y(M+1)(η

2M+1
x )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

T E
y(M+2)(η

1
x) · · · T E

y(2M+1)(η
1
x)

T E
y(M+2)(η

2
x) · · · T E

y(2M+1)(η
2
x)

...
. . .

...

T E
y(M+2)(η

2M
x ) · · · T E

y(2M+1)(η
2M
x )

T E
y(M+2)(η

2M+1
x ) · · · T E

y(2M+1)(η
2M+1
x )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (68)
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SH-wave scattering by a semi-elliptical hill 187

Figure 4. An arbitrary-shape hill embedded into an elastic half-space.

in which the subscript of y is the partial differential operator in the y direction, Nhgs is the number of collocation points on the horizontal

ground surface (G) as shown in Fig. 3 and the elements of [UE
y ] and [TE

y ] are defined respectively as

U E
yn(η L̄

x ) =

∫ 2π

0

U E
y (s, xL̄ )Sen−1(q, ηs) dηs, (69)

U E
y(M+1+n̄)(η

L̄
x ) =

∫ 2π

0

U E
y (s, xL̄ )Son̄(q, ηs) dηs, (70)

T E
yn(η L̄

x ) =

∫ 2π

0

T E
y (s, xL̄ )Sen−1(q, ηs)Js dηs, (71)

T E
y(M+1+n̄)(η

L̄
x ) =

∫ 2π

0

T E
y (s, xL̄ )Son̄(q, ηs)Js dηs, (72)

where n = 1, 2, . . . , M + 1, n̄ = 1, 2, . . . , M, L̄ = 1, 2, . . . , Nhgs.

Figure 5. A regular hill and its mapping function.

Figure 6. Mesh distribution of the hybrid method for a semi-elliptical hill.
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188 J.-T. Chen, J.-W. Lee and W.-S. Shyu

Table 1. Parameters of the hill scattering model.

Case 1 Case 2

Type Shallow hill Deep hill

Half width and height (a, b) a = 1, b = 2/3 a = 1, b = 4/3

Shear modulus (μ) μ = 1

Dimensionless frequency (η) η = 0.5 or 2

Incident angle (α) α = 0◦, 30◦, 60◦ or 90◦

Figure 7. Surface displacement amplitudes versus x/a for the case 1 of dimensionless frequency η = 0.5. (a) α = 90◦ and 0◦ and (b) α = 30◦ and 60◦.
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SH-wave scattering by a semi-elliptical hill 189

By assembling eqs (41), (50), (60), (63), (64) and (66) together, we have

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

TI −UI 0 0

0 0 TE −UE

Qai 0 −Qai 0

0 Qai 0 Qai

0 0 0 Qhb

TE
y −UE

y 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8M+4)×(8M+4)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

uS

tS

uH

tH

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(8M+4)×1

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0

0

−uI − uR

−tI − tR

0

0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(8M+4)×1

, (73)

where 2Nai + Nhb + Nhgs = 4M + 2. According to the linear algebraic equation in eq. (73), all coefficients in the eigenfunction expansion

can be easily obtained.

Figure 8. Surface displacement amplitudes versus x/a for the case 1 of dimensionless frequency η = 2. (a) α = 90◦ and 0◦ and (b) α = 30◦ and 60◦ .
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190 J.-T. Chen, J.-W. Lee and W.-S. Shyu

6 H Y B R I D M E T H O D

To verify the validity of the null-field BIEM, an alternative approach using the hybrid method is described here. The response of surface

motion inside and near an arbitrary hill in an elastic half-plane is investigated for the case of incident SH wave as shown in Fig. 4. Based on a

variational formalism proposed by Mei (1980), a hybrid method combining the finite element and series-expansion method was implemented

to solve the scattering problems. Yeh et al. (2000a,b, 2002, 2007) have extended the hybrid method to solve the problems of scattering wave

by canyons, alluvial valleys or cavities (shells) buried in an elastic half-plane, where the hybrid method was discussed in detail.

We define a substructure 	0 enclosing the arbitrary hill. It can be easily formulated by using the finite element method. The unknown

boundary data are obtained by subtracting the known free fields from the total fields which include the boundary nodal displacements and

Figure 9. Surface displacement amplitudes versus x/a for the case 2 of dimensionless frequency η = 0.5. (a) α = 90◦ and 0◦ and (b) α = 30◦ and 60◦ .
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SH-wave scattering by a semi-elliptical hill 191

tractions at the interface between the finite domain and the surrounding elastic half-space. It is shown in a matrix form as given below:

⎡

⎣

Kaa − ω2Maa −Kac

−Kca Kcc

⎤

⎦

⎧

⎨

⎩

a

c

⎫

⎬

⎭

=

⎧

⎨

⎩

Pa

−Pc

⎫

⎬

⎭

. (74)

The arbitrary finite domain 	0 is mapped into a rectangular domain as shown in Fig. 5 and its finite element meshes are discretized

in the rectangular domain. Therefore, the displacement field in each element can be represented by the vector of nodal displacement {a}.

The scattered waves can be formulated through a series representation with unknown coefficients {c}. The expansion function of the series

representation is constituted of basis function. Each basis function is constructed by using Lamb’s solution and satisfies both traction-free

condition on the ground surface and radiation condition at infinity.

Figure 10. Surface displacement amplitudes versus x/a for the case 2 of dimensionless frequency η = 2. (a) α = 90◦ and 0◦ and (b) α = 30o and 60o .
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192 J.-T. Chen, J.-W. Lee and W.-S. Shyu

Figure 11. Focusing effect in the contour plot of displacement amplitude for η = 3.5 and the incident angle of α = 90◦. (a) case 1 (shallow hill) and (b) case

2 (deep hill).
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SH-wave scattering by a semi-elliptical hill 193

The merit of the hybrid method is that the flexibility of finite elements offers the greatest advantage to model the arbitrary-shape hills,

for example, a semi-elliptical hill in this paper. We use a simple mapping function to calculate the coordinates of the elliptical hill. The node

numbers of the finite elements and the arrangement of the elements are the same for different shape hills. The mapping function (Tompson

1985) is

x = (1 − Z ) x
j

b + Zx
j
t + (1 − Z ) x

j

ℓ + Xx j
r − X Zx

j
t + X (1 − Z ) x

j

b + Z (1 − X ) x
j
t (1) + (1 − X ) (1 − Z ) x

j

b (1) , (75)

where j = 1, X = (X, Z ) and 0 ≤ X, Z ≤ 1; j = 2, X = (X, Z ) and 0 ≤ X ≤ 1, 1 ≤ Z ≤ 2, x
j

b, x
j
t , x

j

ℓ , and x j
r are shown in Fig. 5. Fig. 6

shows a semi-elliptical hill for b/a = 2
/

3, where a = 1 and b = 2/3 are the half width and height of the semi-elliptical hill, respectively. We

use 800 Q8 elements and 2521 nodes to mesh the irregular region as shown in Fig. 6. Some results will be compared with those obtained by

using the null-field BIEM in the following section of numerical examples.

7 A N U M E R I C A L E X A M P L E

A benchmark example of semi-elliptical hill is considered. The dimensionless frequency η is defined by

η =
ωa

πcs

=
ka

π
=

2a

λ
, (76)

where ω is the angular frequency, cs is the velocity of shear wave, λ is the length of shear wave. The displacement amplitude is an important

index for the earthquake engineering. If the amplitude of incident plane SH wave is assumed to be one, A0 = 1, the responses at different

locations represent amplifications of the incident plane SH wave. The displacement amplitude is defined by

|u| =

⎧

⎨

⎩

|u I + u R + uS| , for the region I,

|uH | , for the region II.
(77)

Here, we consider two cases of semi-elliptical hill subject to a SH wave. The corresponding parameters are shown in Table 1. Figs 7

and 8 show the surface displacement amplitude versus x/a of the case 1 for the dimensionless frequency η = 0.5 and 2, respectively. The

corresponding position of the hill border is within the range of x/a = −1.0 to 1.0 (bold line). After comparing with the results of the hybrid

method, a good agreement is made. Similarly, the surface displacement amplitude versus x/a of the case 2 are shown in Figs 9 and 10 for

η = 0.5 and 2, respectively. Parameter study of dimensionless frequency and incident angle is considered. All numerical results are obtained

by using the null-field BIEM and are compared well with those of the hybrid method.

Besides, it is interesting to find that large displacement amplitude is observed in a localized area for the case of incident angle α = 90◦

and η = 3.5 in Fig. 11. This phenomenon is the so-called focusing as well as in optics and acoustics. The similar phenomenon for a shallow

circular hill has been found by Tsaur & Chang (2009) in both time and frequency domains. Besides, this focusing effect was also observed

in the semi-circular hill by Chen et al. (2011b).

8 C O N C LU S I O N S

In this paper, the SH-wave problem scattered by a semi-elliptical hill was solved. By taking free body, the original problem can be decomposed

to two subdomains. For the half-plane with a half-elliptical arc, it is designed to be imbedded in an infinite domain with an elliptical boundary.

Thanks to an elliptical boundary, we naturally employed the null-field BIEM in conjunction with the degenerate kernel and eigenfunction

expansion. After constructing six constraint equations through two subdomains and four boundary conditions instead of selecting admissible

wavefunction bases, a linear algebraic equation was obtained. Then, unknown coefficients of boundary densities were determined by solving

the linear algebraic equation. To test the validity of the null-field BIEM, the hybrid method was also used to provide numerical results for

comparisons. Only few collocation points on the real boundary and interface are required in the null-field BIEM, so that good results can

be obtained. Thanks to the semi-analytical formulation, the null-field BEIM can fully capture the property of geometry and the error only

occur from the truncation of the number of the eigenfunction expansion terms in the real implementation. Besides, focusing effect was also

observed in the case of a semi-elliptical hill. For the scattering problems of SH wave by successive semi-elliptical (circular) hills or canyons,

our null-filed BIEM can be straightforward applied to solve those problems.
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