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Abstract. A mathematical model for analyzing horizontally polarized shear surface
(SH) waves propagating in laminated plates is presented. All the layers are assumed to
have monoclinic symmetry. Three types of boundary conditions imposed on the outer
surfaces of a plate are considered. A variant of the modified transfer matrix (MTM)
method is developed. Closed form dispersion relations are obtained for plates consisting
of one or two orthotropic layers. Asymptotic solutions for orthotropic two- and three-
layered plates are derived.

1. Introduction. In our previous paper [1] the Modified Transfer Matrix (MTM)
method was worked out for analysis of Love waves propagating in a stratified hetero-
geneous medium consisting of monoclinic layers lying on a monoclinic half-space (sub-
strate). As is natural for analyses of all kinds of surface waves propagating in semi-
bounded media, the following attenuation condition for a surface wave in a half-space
was imposed:

u(x, t) = O(|x′|−1), |x′| → ∞, (1)

where u is the displacement field in the substrate, x′ ≡ ν · x is the coordinate along
depth of the substrate, and ν is the unit normal to the plane boundary of the substrate.
Condition (1) resembles Sommerfeld’s emission condition, but is applied only to a specific
direction determined by vector ν . This condition eliminates the so-called leakage partial
waves, leading to the unbounded at |x′| → ∞ displacement and stress fields.

Herein, the MTM method is applied to analysis of horizontally polarized shear surface
waves propagating in laminated plates consisting of anisotropic layers, all of which have
the same plane of elastic symmetry. The outer surfaces of the plates are assumed to be
either clamped, traction-free, or having mixed boundary conditions (one outer surface
is clamped, and another is traction-free). Thus, the regarded waves differ from Love
waves [2] in absence of the contacting substrate and, hence, lack of necessity in satisfying
condition (1). From a terminological point of view, these waves can be referred to as
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154 SERGEY V. KUZNETSOV

the SH or shear Lamb waves, while the genuine Lamb waves [3] generally have elliptic
polarization and propagate in a plate with the traction-free outer surfaces. See also [4],
where Lamb waves in a homogeneous anisotropic plate with arbitrary elastic anisotropy
and different boundary conditions are analyzed by applying the Stroh six-dimensional
formalism. The MTM method appears to be rather fast, as is typical for all realizations
of the Transfer Matrix (TM) methods (see [1] for discussions), and at the same time it
possesses good numerical stability due to (i) choosing floating origins for the coordinate
systems in layers, and (ii) using a modified representation for the surface waves in layers
based on use of hyperbolic functions.

As will be demonstrated, the MTM method can be applied to obtaining analytical
solutions for plates containing two or three layers. It will also be shown that under
certain conditions depending on the phase speed and material properties of a necessary
anisotropic layer, the traditional representation for the considered surface waves becomes
invalid, and the correct representation will be constructed.

2. Basic notations. In the subsequent analysis all layers of the plate are assumed
to be homogeneous and linearly hyperelastic. Equations of motion for homogeneous
anisotropic elastic medium can be written in the form

A(∂x, ∂t)u ≡ divx C · ·∇xu − ρü = 0, (2)

where the elasticity tensor C is assumed to be positive definite:

∀A
A∈sym(R3⊗R3),A�=0

(A · ·C · ·A) ≡
∑

i,j,m,n

AijC
ijmnAmn > 0. (3)

Remark 2.1. a) The other assumption concerns symmetry of the elasticity tensor.
It will be assumed that all the regarded materials possess planes of elastic symmetry
coinciding with the sagittal plane m · x = 0, where vector m is the polarization vector.
This is achieved by the elasticity tensor belonging to the monoclinic system; the latter
is equivalent to vanishing all of the decomposable components of the tensor C having an
odd number of entries of the vector m in the orthogonal basis in R3 generated by the
vector m and any two orthogonal vectors belonging to the sagittal plane.

b) It will be shown later that assuming monoclinic symmetry provides a sufficient
condition for the surface tractions acting on any plane ν · x = const to be collinear with
vector m.

Following [1], we will seek a horizontally polarized shear wave in a layer in the form

u(x) = m f(irx′) eir(n·x−ct), (4)

where the coordinate x′ = ν ·x is as defined in (1); f is the unknown scalar function; the
exponential multiplier in (4) corresponds to propagation of the plane wave front along
direction n with the phase speed c; and r is the wave number. Substituting representation
(4) into Eq. (2) and taking into account Remark 2.1a yields the following differential
equation:(

(m⊗ ν · ·C · ·ν ⊗ m) f ´́+ (m · sym (ν · C · n) · m) f ´
+(m ⊗ n · ·C · ·n ⊗ m − ρc2)f

)
= 0. (5)
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SH-WAVES IN LAMINATED PLATES 155

A characteristic equation for the differential equation (5), known also as the Christoffel
equation, has the form(

(m⊗ ν · ·C · ·ν ⊗ m) γ2 + (m · sym (ν · C · n) · m) γ

+(m ⊗ n · ·C · ·n ⊗ m − ρc2)

)
= 0. (6)

The left-hand side of Eq. (6) represents a polynomial of degree 2 with respect to the
Christoffel parameter γ. Thus, for the regarded elastic symmetry only two partial waves
form the regarded SH-wave in a layer.

3. Displacements and surface tractions in layers. In this section the lower index
k (1 ≤ k ≤ n ) is referred to as the corresponding layer in the n -layered plate. It flows
out from analysis of Eq. (5) that the structure of the solution depends upon multiplicity
of the roots of Eq. (6). The following two cases are possible.

3.1. Aliquant roots. For aliquant roots of the Cristoffel equation, the solution for the
displacement field can be represented in the form

uk(x) = m (C2k−1 sinh(irαkx′) + C2k cosh (irαkx′)) eir(βkx′+n·x−ct), (7)

where for convenience of the subsequent analysis the corresponding root γk is represented
in the form γk = αk + βk; herein αk is the discriminant of Eq. (6), and

αk = ±
√(

m·sym(n·Ck·ν)·m
m⊗ν··Ck··ν⊗m

)2

− m⊗n··Ck··n⊗m−ρkc2

m⊗ν··Ck··ν⊗m ,

βk = −m·sym(n·Ck·ν)·m
m⊗ν··Ck··ν⊗m ,

(8)

where sym(A) ≡ 1
2 (A + At) for any second-order tensor A. Thus, the parameter αk is

either real or imaginary depending on the value of the phase speed, and, at the same
time, βk is real and independent of c .

Remark 3.1. For definiteness, in the subsequent analysis we will choose the sign +
before the radicand in expression (81). As is clear, this will not affect a generality of the
results.

Taking into account (7), the corresponding surface tractions acting on the plane ν ·x =
x′ become

tk(x′)=ir

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ (ν·Ck··ν⊗m)(αk cosh (irαkx′)+βk sinh (irαkx′))

+(ν·Ck··n⊗m) sinh(irαkx′)

⎞
⎠C2k−1

+

(
(ν·Ck··ν⊗m)(αk sinh(irαkx′)+βk cosh(irαkx′))

+(ν·Ck··n⊗m) cosh(irαkx′)

)
C2k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

eir(βkx′+n·x−ct). (9)

Proposition 3.1. Surface tractions (9) are collinear with vector m.

Proof. The proof flows out from the assumed monoclinic symmetry with respect to
sagittal plane, that ensures an even number of entering vector m in the decomposable
components of the tensor Ck (in the orthogonal basis generated by vectors m, ν, n).
Thus, both vectors (ν·Ck· · ν ⊗ m) and (ν·Ck· · n ⊗ m) in the right-hand side of (9) are
collinear with vector m. �
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156 SERGEY V. KUZNETSOV

Taking into account (9) and the facts that ν ·Ck · ·n⊗m = 0 , βk = 0 , and γk = αk for
the orthotropic material with axes of elastic symmetry coinciding with vectors m, n, and
ν, we arrive at the following expression for the surface tractions acting in the orthotropic
layer:

tk(x′) = irγk (ν·Ck· · ν ⊗ m) (C2k−1 cosh(irγkx′) + C2k sinh(irγkx′)) eir(n·x−ct). (10)

3.2. Multiple Roots. Representation (7) for the surface waves in a layer becomes in-
correct when multiple roots of the Christoffel equation arise; see [1]. These roots arise
when the discriminant of Eq. (6), determined by the parameter αk, vanishes. This allows
us to formulate the following proposition:

Proposition 3.2. a) The phase speed at which multiple roots arise is

c =

√√√√ρ−1

(
m ⊗ n · ·Ck · ·n ⊗ m − (m · sym(n · Ck · ν) · m)2

m ⊗ ν · ·Ck · ·ν ⊗ m

)
. (11)

b) The corresponding Christoffel parameter γk (necessarily real) is

γk = −m · sym(n · Ck · ν) · m
m ⊗ ν · ·Ck · ·ν ⊗ m

. (12)

c) Representation for the displacement field corresponding to multiple roots is

uk(x) = m (C2k−1+irx′C2k) eir(γkx′+n·x−ct). (13)

d) The corresponding surface tractions on the plane ν · x = x′ are

tk(x′) = ir

(
(ν·Ck · ·ν ⊗ m) (γkC2k−1+(1+irγkx′)C2k)

+ (ν·Ck · ·n ⊗ m) (C2k−1 + irx′C2k)

)
eir(γkx′+n·x−ct). (14)

Proof. Conditions a) and b) flow out from considering the vanishing discriminant in
(6). Condition c) corresponds to the general solution of Eq. (5) at multiple roots; see
[1]. �

Proposition 3.3. Surface tractions (14) are collinear with vector m.

Proof. The proof is analogous to the proof of Proposition 3.1. �
Remark 3.2. a) Analysis of expression (11) shows that multiple roots exist, if and

only if the material properties of a medium satisfy inequality

m ⊗ n · ·Ck · ·n ⊗ m >
(m · sym(n · Ck · ν) · m)2

m ⊗ ν · ·Ck · ·ν ⊗ m
. (15)

This inequality ensures the phase speed determined by Eq.(11) to be real. Now, it
remains to observe that (15) is a direct consequence of positive definite condition (3).
Thus, for any positive definite monoclinic medium there is one and only one value of the
phase speed, at which multiple roots arise.

b) Expressions (11), (12) reveal that for an orthotropic material having chrystallo-
graphical axes collinear with vectors m, n, and ν, multiple roots arise at

c = cT
mn, (16)
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SH-WAVES IN LAMINATED PLATES 157

where cT
mn is the speed of the shear bulk wave propagating in n and polarized in the m

direction. Moreover, at this speed the corresponding multiple roots γk vanish.

4. Modified transfer matrix method.
4.1. Transfer matrices. According to Propositions 3.1 and 3.2 the scalar amplitudes

of the displacements and surface tractions acting in the k-th layer on the plane ν ·x = x′

can be represented in the form(
uk(x′)
tk(x′)

)
= Mk(x′) ·

(
C2k−1

C2k

)
, (17)

where uk(x′) ≡
∣∣uk(x′)e−ir(n·x−ct)

∣∣, tk(x′) ≡
∣∣tk(x′)e−ir(n·x−ct)

∣∣ are the corresponding
scalar amplitudes, and Mk is a 2 × 2 matrix. Taking into account expressions (7), (9),
(13), and (14), matrix Mk takes the form:

a) Aliquant roots

Mk(x′)=

⎛
⎜⎜⎜⎜⎜⎜⎝

(ir)−1 sinh(irαkx′) (ir)−1 cosh(irαkx′)

⎛
⎜⎜⎝ak

⎛
⎜⎜⎝ αk cosh(irαkx′)

+βk sinh(irαkx′)

⎞
⎟⎟⎠+bk sinh(irαkx′)

⎞
⎟⎟⎠

⎛
⎜⎜⎝ak

⎛
⎜⎜⎝ αk sinh(irαkx′)

+βk cosh(irαkx′)

⎞
⎟⎟⎠+bk sinh(irαkx′)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

ireirβkx′
,

(18)
where ak = m ⊗ ν · ·Ck · ·ν ⊗ m, bk = m ⊗ ν · ·Ck · ·n ⊗ m.

b) Multiple roots

Mk(x′) =
(

(ir)−1
x′

(γkak + bk) ((1 + irγkx′) ak + irx′bk)

)
ireirγkx′

. (19)

Note that according to (8) parameter βk in (18) is independent of the phase speed c.
The following proposition takes place:

Proposition 4.1. For both aliquant and multiple roots matrices Mk are nonsingular at
any real x′.

Proof. The proof can be found in [1].
We should also note that for an orthotropic layer the matrix Mk takes the form:

Mk(x′) = ir

(
(ir)−1 sinh (irγkx′) (ir)−1 cosh (irγkx′)
akγk cosh (irγkx′) akγk sinh (irγkx′)

)
. (18′)

Now, by use of transfer matrices Mk, the unknown coefficients
−→
C (n) ≡ (C2n−1; C2n)

corresponding to n-th layer can be expressed in terms of coefficients
−→
C (1) ≡ (C1;C2)

related to the first layer:

−→
C (n) = M−1

n (hn/2) ·
(

n−1∏
k=2

(
Mk(−hk/2)·M−1

k (hk/2)
))

· M1(−h1/2) · −→C (1), (20)

where hk, k = 1, ..., n is the thickness of the corresponding layer.
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4.2. Traction-free outer surfaces. Expressions (9) and (14) allow us to formulate
traction-free boundary conditions in the form{

t1(h1/2) ≡ −→
T (1)(h1/2) · �C(1) = 0,

tn(−hn/2) ≡ −→
T (n)(−hn/2) · �C(n) = 0,

(21)

where tk are the corresponding scalar amplitudes of the surface tractions;
−→
T (k) =

(Xk; Yk), k = 1, n; and components Xk and Yk take the form:
a) Aliquant roots

Xk(±hk/2)

= (ak (αk cosh (irαkhk/2)±βk sinh(irαkhk/2)) ± bk sinh(irαkhk/2)) ire±irβkhk/2,

Yk(±hk/2) (22)

= (ak (±αk sinh(irαkhk/2)+βk cosh(irαkhk/2))+ bk cosh(irαkhk/2)) ire±irβkhk/2.

b) Multiple roots

Xk(±h1/2) = (γkak + bk) ire±irγkhk/2,

Yk(±h1/2) = ((1±irγkhk/2)ak ± irbkhk/2) ire±irγkhk/2.
(23)

Now, boundary condition (21)1 allows us to express (up to a multiplier) coefficients C1

and C2 in terms of components of the vector
−→
T (1). Introducing orthogonal to

−→
T (1)(h1/2)

vector
−→
T⊥

(1)(h1/2) = (−Y1(h1/2); X1(h1/2)) (24)

and taking
−→
C (1) =

−→
T⊥

(1)(h1/2), (25)

we satisfy boundary condition (21)1.
Satisfying boundary condition (21)2 can be achieved by taking scalar multiplication

of the right-hand side of Eq. (20) with vector
−→
T (n)(−hn/2) and equating it to zero

according to (21)2. This yields the desired secular equation of the MTM method:

−→
T (n)(−hn/2)·

(
M−1

n (hn/2)·
(

n−1∏
k=2

(Mk(−hk/2)·M−1
k (hk/2))

)
· M1(−h1/2)

)
·−→T⊥

(1)(h1/2)=0. (26)

4.3. Clamped outer surfaces. These boundary conditions can be expressed in the form:{
u1(h1/2) ≡ −→

U (1)(h1/2) · �C(1) = 0,

un(−hn/2) ≡ −→
U (n)(−hn/2) · �C(n) = 0,

(27)

where uk are scalar amplitudes of the corresponding displacements. According to (7),
(13), components of the two-dimensional vectors

−→
U (k) = (Rk; Sk) k = 1, n are:

a) Aliquant roots

Rk(±hk/2) = ± sinh(irαkhk/2) e±irβkhk/2,

Sk(±hk/2) = cosh(irαkhk/2) e±irβkhk/2.
(28)

b) Multiple roots
Rk(±hk/2) = e±irγkhk/2,

Sk(±hk/2) = ± (irhk/2) e±irγkhk/2.
(29)
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Introducing orthogonal to
−→
U (1)(h1/2) vector

−→
U⊥

(1)(h1/2) = (−S1(h1/2); R1(h1/2)) , (30)

boundary condition (27)1 can be satisfied by taking
−→
C (1) =

−→
U⊥

(1)(h1/2). (31)

Now, boundary condition (27)2 yields the following secular equation that is similar to
(26):

−→
U (n)(−hn/2)·

(
M−1

n (hn/2)·
(

n−1∏
k=2

(Mk(−hk/2)·M−1
k (hk/2))

)
· M1(−h1/2)

)
·−→U⊥

(1)(h1/2)=0. (32)

4.4. Mixed boundary conditions. Herein we consider the traction-free upper surface
and clamped bottom surface of the plate:{

t1(h1/2) ≡ −→
T (1)(h1/2) · �C(1) = 0,

un(−hn/2) ≡ −→
U (n)(−hn/2) · �C(n) = 0.

(33)

For the regarded case the secular equation takes the form

−→
U (n)(−hn/2)·

(
M−1

n (hn/2)·
(

n−1∏
k=2

(Mk(−hk/2)·M−1
k (hk/2))

)
· M1(−h1/2)

)
·−→T⊥

(1)(h1/2)=0. (34)

Modification of Eq. (34) for the case, when upper surface is clamped and the bottom is
traction-free, is obvious.

Remark 4.1. The left-hand sides of secular equations (26), (32), and (34) can be
regarded as the implicit equations with respect to the wave number r (at the fixed phase
frequency ω). Using in these equations the relation

r =
ω

c
, (35)

we arrive at the implicit equations yielding the dispersion relations in terms of the fre-
quency ω and phase speed.

5. Homogeneous (single-layered) plate.
5.1. Plate with traction-free boundary conditions. For such a plate the secular equa-

tions (26), (32), and (34) can be considerably simplified by excluding the transfer matri-
ces. This yields

−→
T (1)(−h1/2) · −→T⊥

(1)(h1/2) = 0, (36)

where h1 is the thickness of the plate. Substituting components X1, Y1 into (36) yields

X1(h1/2)Y1(−h1/2) − Y1(h1/2)X1(−h1/2) = 0. (37)

a) Aliquant roots.

Proposition 5.1. At the aliquant roots: (i) there are dispersion surface waves satisfying
the dispersion relation

ω =
nπc

α1h1
, n = 1, 2, ..., (38)
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where the parameter α1 is defined by (8)1; (ii) the dispersion relation (38) is valid, if and
only if the phase speed belongs to the interval

c ∈ (c0; ∞),

c0 ≡
√

1
ρ1

(
(m ⊗ n · ·C1 · ·n ⊗ m) − (m·sym(n·C1·ν)·m)2

(m⊗ν··C1··ν⊗m)

) . (39)

Proof. Proof of (i) flows out from Eq. (37) with the help of (22), (35), and Remark
3.1. The proof of (ii) follows from Eq. (8)1, since condition (39) ensures the parameter
α1 to be real, otherwise the phase frequency becomes complex. �

Remark 5.1. a) The right-hand side of (39) shows that the lower bound c0 for pos-
sible velocities of the regarded waves depends upon material properties. This bound
may coincide with the shear bulk wave speed cT

mn for an arbitrary orthotropic plate
with m · sym(n · C1 · ν) · m = 0, or it may be subsonic for a monoclinic plate with
m · sym(n · C1 · ν) · m 	= 0.

b) Analysis of Eq. (37) reveals that along with the dispersion surface waves satis-
fying Eq. (38), there can be another apparent non-dispersion and non-homogeneous
horizontally polarized shear wave propagating with the phase speed

c =

√
m ⊗ n · ·C1 · ·n ⊗ m − (m⊗ν··C1··n⊗m)(m⊗n··C1··ν⊗m)

m⊗ν··C1··ν⊗m

ρ1
, (40)

at which Eq. (37) is satisfied. But Eq. (40) yields exactly the same value for the phase
speed as Eq. (11) for appearing multiple roots. So, the regarded apparent solution should
be excluded at this stage, as related to multiple roots.

b) Multiple roots.
At multiple roots Eq. (37) along with Eqs. (12), (23), and (35) yield:

Proposition 5.2. At multiple roots there is one horizontally polarized non-dispersion
shear wave satisfying traction-free boundary conditions; such a wave exists for any mon-
oclinic plate with positive definite elasticity tensor (see Remark 3.2a).

Remark 5.2. If the elasticity tensor belongs to the rhombic (orthotropic) system and
the crystallographical axes are collinear with vectors m, n and ν, then the regarded
non-dispersion wave turns out to be the shear bulk wave.

5.2. Clamped plate. For a plate with clamped boundary conditions the secular equa-
tion takes the form −→

U (1)(−h1/2) · −→U⊥
(1)(h1/2) = 0, (41)

where vectors
−→
U (1) ,

−→
U⊥

(1) were introduced in Section 4.3. Substituting components
R1, S1 into (41) yields

R1(h1/2)S1(−h1/2) − S1(h1/2)R1(−h1/2) = 0. (42)

a) Aliquant roots.
With help of (28) and (35), Eq. (42) yields:

Proposition 5.3. At the aliquant roots: (i) there are dispersion surface waves satisfying
dispersion relation (38); (ii) dispersion relation (38) is valid, if and only if the phase speed
satisfies condition (39).
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b) Multiple roots.
For multiple roots Eq. (42) along with (12), (29), and (35) lead to the following

proposition:

Proposition 5.4. At multiple roots no horizontally polarized surface waves propagate.

5.3. Plate with mixed boundary conditions. For such a plate the secular equation takes
the form

−→
U (1)(−h1/2) · −→T⊥

(1)(h1/2) = 0, (43)

where it is assumed that the upper surface is traction-free, while the bottom surface is
clamped. Substituting components Rk, Sk and Xk, Yk into (43) yields

S1(−h1/2)X1(h1/2) − R1(−h1/2)Y1(h1/2) = 0. (44)

a) Aliquant roots.
Analysis of Eq. (44), taking into account (8), (22), and (28), allows us to formulate:

Proposition 5.5. At the aliquant roots no horizontally polarized waves propagate.

b) Multiple roots.
Similar to Proposition 5.4, we have:

Proposition 5.6. At multiple roots no horizontally polarized waves propagate.

Remark 5.3. a) Summarizing, we arrive at the following characterization of propagat-
ing ability for the regarded SH-waves: (i) for a traction-free plate there are both disper-
sion (with the unbounded speed interval defined by (39)) and non-dispersion waves; (ii)
for a clamped plate only dispersion waves can propagate (for this case the speed interval
coincides with (39)); and (iii) for a plate with mixed boundary conditions no wave can
propagate. Thus, to cut off the non-dispersion wave it is needed to clamp both surfaces
of a traction-free plate, while clamping one surface eliminates both of these waves.

b) The presented analysis also reveals that for all the considered boundary conditions
the phase speed and frequency are delimited from zero. This fact results in the absence
of either horizontally polarized stationary waves or waves with infinite wavelength.

c) Expression (38) allows us to obtain the lowest limiting frequencies ωlim attained at
c → ∞ for both traction-free and clamped plates:

ωlim =
nπcT

mν

h1
, n = 1, 2, ..., (45)

where cT
mν is the speed of the transverse bulk wave propagating in ν and polarizing in

the m direction.
d) Analysis of expressions (8) and (38) reveals that at c → c0 + 0 (c0 was defined by

(39)), the corresponding frequencies become unbounded.

6. Two-layered plate with orthotropic layers. Herein we assume that the crys-
tallographical axes of both layers are collinear, and vectors m, n and ν coincide with
these axes.
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6.1. Traction-free plate. According to Eq. (26) the secular equation for such a plate
becomes −→

T (2)(−h2/2) · M−1
2 (h2/2) · M1(−h1/2) · −→T⊥

(1)(h1/2) = 0. (46)

Taking into account Eqs. (18) and (22), composition in the left-hand side of Eq. (46)
yields up to a multiplier ir2a1γ1:

a1γ1 sin (ωγ1h1/c) cos (ωγ2h2/c) + a2γ2 cos (ωγ1h1/c) sin (ωγ2h2/c) = 0, (47)

where indices 1 and 2 refer to the corresponding layers. Equation (47) is the resulting
equation we are looking for.

Proposition 6.1. a) Equation (47) admits no solutions at the phase speed

c ∈
(
0; min

(
(cT

mn)1; (cT
mn)2

))
. (48)

b) There are dispersion solutions at the phase speed belonging to the interval

c ∈
(
min

(
(cT

mn)1; (cT
mn)2

)
; ∞

)
. (49)

c) There is a non-trivial dispersion solution at the phase frequency ω → 0 (the phase
frequency is not delimited from zero).

Proof. a) At the phase speed belonging to the interval (48), Eq. (47) transforms into

tanh (iωγ1h1/c)
tanh (iωγ2h2/c)

= −a2γ2

a1γ1
, (50)

but the latter equation has no solutions at positive ω and c, because the left- and right-
hand sides of Eq. (50) have different signs (arguments at tanh-functions are real, since
both γ1 and γ2 are imaginary).

To prove b) it is sufficient to present solutions corresponding to simultaneous vanishing
of either sine or cosine functions in (47). This gives the following values for the phase
speed:

c =
√

a1d2h2
2m2−a2d1h2

1n2

a1ρ2h2
2m2−a2ρ1h2

1n2 , c =
√

a1d2h2
2−a2d1h2

1+4a1d2h2
2m(1+m)−4a2d1h2

1n(1+n)

a1ρ2h2
2−a2ρ1h2

1+4a1ρ2h2
2m(1+m)−4a2ρ1h2

1n(1+n)
,

n, m ∈ Z+

(51)
where the first solution corresponds to vanishing sine functions and the other one to
cosine. Integers n and m are chosen in such a way that the phase speed belongs to the
interval (49). In (51) we denote dk = m⊗ n · ·Ck · ·n⊗m. At these values of the phase
speed, the corresponding frequencies become

ω =
nπc

γ1h1
, ω =

(1/2 + n)πc

γ1h1
, n ∈ Z+. (52)

The Christoffel parameter γ1 in (52) is real due to considering speed interval. It should
also be noted that there could be other kinds of solutions, not related to the vanishing
of either sine or cosine functions.

c) First, we observe that function F (ω, c) in the left-hand side of Eq. (47) is analytic
with respect to both c ∈

(
min

(
(cT

mn)1; (cT
mn)2

)
; ∞

)
and ω ∈ ( −∞, ∞), and it is odd

with respect to ω. The latter condition does not allow us to construct the implicit
function c(ω) directly at ω = 0. But we are able to define an even and differentiable at
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ω = 0 branch of this implicit function (an odd and continuous at ω = 0 branch cannot
exist due to Proposition 6.1a). Applying the implicit function theorem to the even branch
c(ω) yields

∂ωF (ω, c) = 0, at ω = 0. (53)

Equation (53) delivers a necessary condition for c′(0) = 0 . Solving Eq. (53) yields
the phase speed cs at which Eq. (53) is satisfied:

cs =

√
(m ⊗ n · ·C1 · ·n ⊗ m)h1 + (m ⊗ n · ·C2 · ·n ⊗ m)h2

ρ1h1 + ρ2h2
. (54)

Thus, in contrast to the preceding section, for a two-layered traction-free plate the phase
frequency is not delimited from zero. �

Remark 6.1. a) Direct verification shows that

min
(
(cT

mn)1; (cT
mn)2

)
< cs < (cT

mn)1 + (cT
mn)2

provided (cT
mn)1 	= (cT

mn)2.
b) Probably the most interesting observation is concerned with the last condition of

Proposition 6.1. In fact, it ensures existence of the SH-wave propagating with the finite
speed cs at vanishing phase frequency; see also [5]–[7]. Thus, the regarded branch of the
SH-wave at the speed cs must have an infinite wavelength resembling a solitary wave.
It should also be noted that for Love waves there exists a similar solution at the phase
speed approaching the shear bulk wave speed in the substrate, but such a wave as being
leakage (it does not attenuate with depth in the substrate) is of limited interest.

c) Another observation concerns the same speed interval and the existence of the con-
sidered SH-waves at any admissible physical properties of the layers. In this respect these
waves differ from the genuine Love wave, which exists only if (cT

mn)layer < (cT
mn)substrate;

see [1].
6.2. Clamped plate. For such a plate the secular equation takes the form

−→
U (2)(−h2/2) · M−1

2 (h2/2) · M1(−h1/2) · −→U⊥
(1)(h1/2) = 0. (55)

Taking into account Eqs. (18) and (28), composition in the left-hand side of Eq. (55)
yields up to a multiplier (ir2a1γ1 ):

a2γ2 sin (ωγ1h1/c) cos (ωγ2h2/c) + a1γ1 cos (ωγ1h1/c) sin (ωγ2h2/c) = 0. (56)

Proposition 6.2. a) Equation (56) admits no solutions at the phase speed belonging
to the interval (48).

b) There are dispersion solutions at the phase speed belonging to the interval

c ∈
(
min

(
(cT

mn)1; (cT
mn)2

)
; ∞

)
. (57)

c) There is no non-trivial dispersion solution at the phase frequency ω → 0 (the phase
frequency is delimited from zero).

Mainly, the proof is analogous to the proof of Proposition 6.1, except Proposition 6.2c.
To prove the latter it is sufficient to demonstrate that no even branch of the implicit
function c(ω) exists in the vicinity of ω = 0. Due to the implicit function theorem this is
equivalent to condition (53). From (53) we obtain the following two values of the phase
speed: (cT

mn)1 and (cT
mn)2, at which this equation is satisfied, but the subsequent analysis
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reveals that no continuous branches c(ω) at small ω correspond to these values of the
phase speed. �

6.3. Plate with mixed boundary conditions. For such a plate the secular equation takes
the form −→

U (2)(−h2/2) · M−1
2 (h2/2) · M1(−h1/2) · −→T⊥

(1)(h1/2) = 0. (58)

Equation (58) corresponds to the clamped bottom surface. Taking into account Eqs.
(18) and (34), composition in the left-hand side of Eq. (58) yields up to a multiplier
ir2a1γ1:

−a2γ2 cos (ωγ1h1/c) cos (ωγ2h2/c) + a1γ1 sin (ωγ1h1/c) sin (ωγ2h2/c) = 0. (59)

Proposition 6.3. a) Equation (59) admits no solutions at the phase speed belonging
to the interval (48).

b) There are dispersion solutions at the phase speed belonging to the interval (57).
c) There is no non-trivial dispersion solution at the phase frequency ω → 0 (the phase

frequency is delimited from zero).

Proof. The proof is analogous to the proof of Proposition 6.2. �
Remark 6.2. Again, as was pointed out in Remark 6.1c, the considered SH-waves

exist at any admissible values of physical properties of the layers.

7. Three-layered traction-free plate with orthotropic layers. Herein we con-
sider a three-layered plate whose outer layers have equal physical properties and thick-
ness. All these layers are assumed to be orthotropic with the crystallographical axes
coinciding with vectors m, n and ν. According to Eq. (26) the secular equation for such
a plate becomes
−→
T (1)(−h1/2) ·M−1

1 (h1/2) ·M2(−h2/2) ·M−1
2 (h2/2) ·M1(−h1/2) ·−→T⊥

(1)(h1/2) = 0. (60)

We recall that both outer layers have the same properties denoted by index 1; index 2
refers to the internal layer. Taking into account Eqs. (18) and (22), composition in the
left-hand side of Eq. (60) yields up to a multiplier ir a1γ1

a2γ2
:

a1γ1a2γ2 sin (2ωγ1h1/c) cos (ωγ2h2/c)
+

(
a2
2γ

2
2cos2 (ωγ1h1/c)−a2

1γ
2
1sin2 (ωγ1h1/c)

)
sin (ωγ2h2/c) = 0.

(61)

Equation (61) is the resulting equation we are looking for.

Proposition 7.1. a) Equation (61) admits no solutions at the phase speed

c ∈
(
0; min

(
(cT

mn)1; (cT
mn)2

))
. (62)

b) There are dispersion solutions at the phase speed belonging to the interval

c ∈
(
min

(
(cT

mn)1; (cT
mn)2

)
; ∞

)
. (63)

c) There is a non-trivial dispersion solution at the phase frequency ω → 0 propagating
with the speed

cs =

√
2 (m ⊗ n · ·C1 · ·n ⊗ m)h1+ (m ⊗ n · ·C2 · ·n ⊗ m)h2

2ρ1h1 + ρ2h2
(64)
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(the phase frequency is not delimited from zero).

Proof. The proof is analogous to the proof of Proposition 6.1.
Remark 7.1. a) Direct verification shows that

min
(
(cT

mn)1; (cT
mn)2

)
< cs < (cT

mn)1 + (cT
mn)2,

provided (cT
mn)1 	= (cT

mn)2.
b) Proposition 7.1 ensures existence of the SH-waves in the regarded traction-free plate

at any admissible properties of both outer and internal layers.
c) Assuming that the dimensionless parameter ωγ2h2

c is real, and ωγ2h2
c → 0 , or h2 → 0

(very thin internal layer) at ωγ2
c = O(h2), then Eq. (61) yields

ω =
nπc

2γ1h1
, n = 1, 2, ..., (65)

where the phase speed c is necessarily greater than max
(
(cT

mn)1; (cT
mn)2

)
. It is interest-

ing to note that at ωγ2h2
c → 0 physical properties of the internal layer are not essential,

though this layer should remain solid with the non-vanishing shear module and density.
d) Assuming ωγ1h1

c is real, and ωγ1h1
c → 0, or h1 → 0 (very thin outer layers) at

ωγ1
c = O(h1), then Eq. (61) yields

ω =
nπc

γ2h2
, n = 1, 2, ..., (66)

where the phase speed should exceed max
(
(cT

mn)1; (cT
mn)2

)
. As in the preceding remark,

the corresponding physical properties of the outer layers are not essential.
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