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Abstract. We present a novel multi-view reconstruction approach that
effectively combines stereo and shape-from-shading energies into a sin-
gle optimization scheme. Our method uses image gradients to transition
between stereo-matching (which is more accurate at large gradients) and
Lambertian shape-from-shading (which is more robust in flat regions). In
addition, we show that our formulation is invariant to spatially varying
albedo without explicitly modeling it. We show that the resulting energy
function can be optimized efficiently using a smooth surface representa-
tion based on bicubic patches, and demonstrate that this algorithm out-
performs both previous multi-view stereo algorithms and shading based
refinement approaches on a number of datasets.

1 Introduction

High-quality digitization of real world objects has been of great interest in recent
years. The demand for effective and accurate digitization methods is increasing
constantly to support applications such as 3D printing and visual effects. Passive
reconstruction methods such as multi-view stereo [1] are able to achieve high
quality results. However, stereo methods typically operate on image patches
and/or use surface regularization in order to be robust to noise. As a result,
they often cannot recover fine-scale surface details accurately. These details are
often captured by shading variations, and recent work has focused on shading-
based refinement of the geometry obtained from multi-view stereo (or in some
cases using depth sensors or template models). Starting from the work of Wu
et al. [2] that can only be used for objects with constant albedo, algorithms have
evolved to operate on implicit surfaces [3] and real time settings [4]. All these
methods treat the coarse input geometry as a fixed ground truth estimate of the
shape and use it to regularize their optimization. Consequently, uncertainties in
the inital reconstruction method are discarded and cannot be resolved reliably.

Another challenge for shading-based refinement techniques is that observed
image intensities combine shading and surface albedo. Inferring fine-scale detail
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from shading thus requires reasoning about surface albedo. This significantly
increases the number of variables in the optimization. Most current techniques
either assume constant albedo or apply strong regularization on the albedo,
which can often fail on real-world surfaces.

In contrast to previous work, we propose a new multi-view surface recon-
struction approach that combines stereo and shading-based data terms into a
single optimization scheme. At the heart of our algorithm is the observation that
stereo-matching and shape-from-shading have complementary strengths. While
stereo correspondences are more accurate in regions with many large image gra-
dients, shape-from-shading is typically more robust in flat regions with no albedo
variations. The resulting algorithm provides three distinct advantages over pre-
vious work:

– It leads to a combined multi-view stereo and shading-based reconstruction
that balances the two terms without committing, a priori, to either of them.

– It uses a simple image gradient-based trade-off between stereo and shading
energies that maximizes their effectiveness.

– It treats spatially varying albedo implicitly, i.e. our optimization is robust
against spatially varying albedo without explicitly modeling it.

We show that this combined energy can be optimized efficiently using a
continuous surface representation [5]. We demonstrate the effectiveness of this
technique on various datasets and show that it outperforms previous MVS and
shading-based refinement techniques.

2 Related Work

High-quality surface reconstruction has been an active field of research over the
past decade, and approaches have been developed for various forms of input data.
Our technique uses an unstructured set of images (with camera parameters) of
an approximately Lambertian scene and does not require any special hardware
setup. We will review related methods that either operate on similar input data
or use ideas similar to our approach.

Multi-view Stereo. Multi-view stereo algorithms [1] are arguably one of the
most general passive reconstruction techniques. Approaches such as Goesele
et al. [6] and Furukawa and Ponce [7] have shown that geometry can be recovered
even for large scale and uncontrolled Internet data. Other approaches use more
controlled settings or additional input such as object silhouettes [8]. Multi-view
stereo approaches usually add a form of regularization to deal with structure-
less areas that are not well matched by classical stereo terms such as photo
consistency. Similarly regularization is used in two-view stereo methods such
as Hirschmueller [9], Bleyer et al. [10], and Galliani et al. [11], which can also
be applied to multi-view scenarios by combining many two-view estimates into
a robust multi-view estimate. In contrast, our goal is to avoid explicit regu-
larization; instead, we use a new shading-based data term to handle sparsely



Shading-Aware Multi-view Stereo 471

textured regions where a traditional stereo term is not very effective. To do this
we optimize both depth and normals of a continuous surface. In terms of surface
representation, stereo algorithms usually recover a single depth per-pixel [6], a
global point cloud [7], or an implicit surface model [8], all of which we found
difficult to apply to our approach. Recently another surface representation was
proposed inside a multi-view framework by Semerjian [5]. This approach uses
bicubic patches to define a surface per view that has continuous depth and nor-
mals. We found this representation to be appropriate for our method and adopt
it as described later.

Combining Multi-view and Photometric Cues. To recover more detail in
regions where depth reconstruction is not very accurate, several methods have
combined multi-view and photometric principles. Most of them, however, rely
on a controlled and complex capture setup. The approach by Nehab et al. [12]
combines two separate reconstructions. They capture depth using structured
light, acquire surface normals using photometric stereo, and integrate both these
estimates in a separate step. Other approaches such as Hernandez et al. [13] and
Zhou et al. [14] combine photometric stereo information from multiple view
points into a single framework. This requires a large amount of input data and
a complex acquisition system as both light and camera positions need to be
controlled. Beeler et al. [15] augment the geometry of captured faces with fine
details using the assumption that small concavities in the skin appear darker
than flat areas. They do not require a lot of input data but are still dependent
on a calibrated capture setup as they do not have a variable lighting model.

Shading-Based Refinement for General Illumination. Most recently, a
new line of work uses shading cues from images captured under uncontrolled
illumination to improve a given geometry. Wu et al. [2] presented the first app-
roach that uses a precomputed multi-view stereo reconstruction to estimate a
spherical harmonics approximation of the lighting. They use this lighting and a
shading model to improve the stereo reconstruction. Their approach is able to
recover fine-scale details but is limited to objects with a single, constant albedo.
Later, Yu et al. [16] and Han et al. [17] both presented algorithms that operate
on a single RGB-D input image (e.g., from a Kinect sensor). These sensors usu-
ally generate very coarse geometry and shading-based refinement increases the
quality and resolution of the output. Xu et al. [18] also extended the idea and
developed a simultaneuos opimization of lighting and shape parameters. They
do, however, require additional information about the visual hull of the object.
Using GPU-based parallel solvers, Wu et al. [19] and Or-El et al. [4] were able
to achieve real-time performance on similar input data. All these techniques are
still limited to a single albedo [4,17,18], a fixed set of constant albedo clusters
[16], or a coarse initial albedo estimate [19]. Other methods focus on more spe-
cific scenarios such as faces. Chai et al. [20] fit a parametric face model to an
input image and use it for lighting estimation and shading-based refinement. The
first technique to include a spatially varying albedo was proposed by Zollhoefer
et al. [3]. They include the albedo in the optimization and constrain it using
a chromaticity-based regularization scheme similar to Chen and Koltun [21].
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Fig. 1. Left: An illustration of our Retinex-based assumption of separating albedo from
shading. Large gradients in the image are usually caused by albedo changes; small
gradients on the other hand are observed due to lighting. Based on this we compute a
trade-off between stereo and shading energies. Right: Visualization of the trade-off for
an input image. For every pixel we use mainly our stereo term (dark regions) or our
shading term (bright regions) based on the magnitude of the image gradient.

While, this prevents shading from being absorbed into the albedo, it can fail in
scenes where the albedo variation is not accurately predicted by chromaticities
(e.g., albedos with the same chromaticity but different brightness).

Although shading-based refinement techniques have improved significantly in
recent years, the basic principle of all existing methods remains the same: They
use fixed input geometry, estimate lighting, and later refine the geometry using
shading cues. While we also compute a lighting function on a coarse estimate
of the geometry, we integrate the geometry refinement directly into the multi-
view stereo reconstruction method. This allows us to balance stereo matching
and shading cues as we can resolve ambiguities in the multi-view stereo energy,
instead of treating the input geometry as fixed. This approach ultimately also
enables us to optimize the geometry independent of the (potentially spatially-
varying) albedo, i.e., without explicitly including albedo terms into our energy.
This is a significant advantage because we do not have to rely on albedo regu-
larization models that can often fail on real-world scenes.

3 Energy Formulation

Our energy balances geometric errors versus shading errors depending on the
local image gradient. This is motivated by Land’s Retinex theory [22], which
assumes that shading introduces only small image gradients, changing the surface
brightness gradually. Strong gradients on the other hand are usually caused
by changes in surface materials and are thus independent of the illumination.
Retinex theory has been commonly used to separate surface albedo and shading
[23,24] (see Fig. 1).

In our context, this observation has two implications. First, in multi-view
reconstruction the geometric stereo term is usually accurate and robust in regions
with strong gradients but fails for small gradients. Many stereo methods therefore
use surface regularization to keep textureless areas smooth. We instead utilize
the fact that small gradients are most likely caused by lighting and define an
additional data term based on a shading function that specifically constrains the
direction in which the surface should change. Second, we show that, in regions of
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small gradients, we can factor the surface albedo out completely, resulting in an
albedo-free shading term. Our error terms are based purely on point wise image
gradients and do not involve image values or larger patches of pixels.

The input to our algorithm is an unstructured set of images as well as known
camera parameters which can be either pre-calibrated or recovered by stucture
from motion tools such as VisualSFM [25]. We aim to compute a depth map for
evey view i using a set of neighbor views j ∈ Ni.

3.1 Geometric Error

Our camera model follows standard definitions [26]. A 3D point X is transformed
into an image location x in the camera coordinate system according to a camera
calibration matrix K, rotation R, and translation t as

x = K (RX + t) . (1)

For homogeneous coordinates the projection from a pixel coordinate xi in camera
i into another camera j can then be defined according to a depth value di(xi)
along the principal ray of view i:

Pj(xi, di(xi)) = Kj

(

RjR
−1
i

(

K−1
i xi · di(xi) − ti

)

+ tj

)

(2)

The geometric error is now defined as a stereo term based on matching intensity
gradients from the main view into neighboring views according to the current
depth function. Traditional stereo methods often optimize using image values
over a local patch of pixels. Even for illumination invariant measures such as
normalized cross-correlation, this would be more difficult to integrate into our
Retinex assumption as a patch of pixels is more likely to be affected by both
albedo and shading changes. Instead, we specifically optimize this energy for local
image gradients. A gradient-based stereo term was introduced by Scharstein [27]
but has only been adapted in some specific scenarios like gradient domain ren-
dering [28]. Semerjian [5] recently showed that a point-wise measure of gradients
can be very effective for surface reconstruction if used correctly. We adopt this
measure as it is well suited for our approach. For any two views i, j and their
intensity functions Ii, Ij , and a pixel coordinate xi it can be written as:

Ej
g(di,xi) = ∇Ii(x) − ∇Ij(Pj(xi, di(xi))). (3)

Here, and in further equations, ∇ denotes image gradients which are the deriva-
tives computed with respect to image coordinates xi. Note that this also involves
the derivative of the projection Pj which transforms the gradient into the cor-
rect coordinate system. In addition to constraints beween the main view and
its neighbors, we also define pairwise terms between two neighbors as used by
Semerjian [5]. Still using the depth of the main view di we get:

Ej,k
g (di,xi)=Ej

g(di,xi)−Ek
g (di,xi)=∇Ij(Pj(xi, di(xi))−∇Ik(Pk(xi, di(xi)), (4)

where Ei,j
g = Ej

g . This essentially measures the difference in error between neigh-
bors and avoids overfitting to only one neighbor.
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3.2 Shading Error

Lighting Model: Similar to previous work [2,3] we assume Lambertian
reflectance. This allows us to define shading as a function of the surface normal
n, and independent of the viewing direction. We also use third-order spherical
harmonics basis functions Bh to approximate the incoming illumination. The
outgoing radiance R(x) at a point x, with albedo a(x) and normal n(x), is a
weighted sum of these bases, which we define as our shading function S:

R(x) = a(x) ·
16
∑

h=1

Bh(n(x)) · lh = a(x) · S(n(x), l) (5)

The lighting parameters l are computed ahead of surface optimization using
a coarse initial surface model derived from basic stereo. This optimization is
identical to Zollhoefer et al. [3], i.e., we initialize the albedo as constant and
simply solve a linear least squares system. In contrast to Zollhoefer et al., we
optimize l using only our single main image. Using more images would make
this estimation more robust, but we explicitly want to optimize for a separate
lighting model per image to be invariant to changing light conditions, e.g., an
object moving on a turn table or outdoor scenes with uncontrolled lighting.
We also set our albedo to a constant value. As we will describe later, we are
able to optimize the geometry without explicitly modeling the albedo. This has
many advantages for the optimization procedure, but unlike Zollhoefer et al. [3]
we cannot create an improved lighting model in further iterations. While there
are obvious scenarios that will break this approach, the low number of lighting
parameters causes the estimation to be robust enough for a variety of objects, as
we will demonstrate in the results. In fact, we observed that in practical scenarios
it is much more likely that errors appear due to specular surfaces, self shadowing
and inter-reflections, which cannot be dealt with in either case.

Shading Error: Our shading term is also based on image gradients. Similar to
[3], we assume that the observed image gradient, ∇I, should be identical to the
gradient of the reflected intensity predicted by our model, ∇R, with:

∇R(x) = ∇a(x) · S(n(x), l) + a(x) · ∇S(n(x), l). (6)

However, at this point we do not have an accurate model of the albedo. Previous
approaches therefore include the albedo in the optimization leading to a signifi-
cantly bigger, under-constrained problem. This requires an explicit regularization
on the albedo using approximate measures such as pairwise differences based
on chromaticity. Instead, we use the Retinex assumption to create an albedo
independent optimization that does not require any explicit regularization. A
common approach for intrinsic images [21,23] is to operate in the log domain as
this makes albedo and shading terms additive instead of multiplicative:

log(R(x)) = log(a(x)) + log(S(n(di(x)), l)). (7)
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If we take the gradient with respect to image coordinates we get:

∇ log(R(x)) =
∇a(x)

a(x)
+

∇S(n(di(x)), l)

S(n(di(x)), l)
. (8)

If we now assume—according to the Retinex theory—that small gradients are
caused solely by lighting, the albedo gradient vanishes and we can write:

∇ log(R(x)) =
∇S(n(di(x)), l)

S(n(di(x)), l)
. (9)

This means that the difference, ∇ log(I(x)) − ∇ log(R(x)), can in fact be mini-
mized by solely optimizing over the shading function, S(n(x), l). This indicates
an albedo invariance which can also be thought of in the following way: If the
albedo is locally constant, an intensity gradient is only caused by a change in
surface normals, and given a lighting model, the surface normals have to change
in a particular direction which does not depend on the actual value of the albedo.
Our shading error is therefore defined as

Es(di,x) =
∇I(x)

I(x)
−

∇S(n(di(x)), l)

S(n(di(x)), l)
. (10)

Note that this is a simple point-wise measure which matches the point-wise
nature of our gradient-based stereo term and suggests a balanced optimization
if both are combined.

3.3 Combined Energy

To formulate our final energy function we combine both data terms in a simple
but effective way. For pixels with strong gradients, we rely on the geometric
stereo term as it is very robust. For small gradients, we additionally use our
shading error as it constrains the surface according to the given lighting model.
As we want to do this on a per-pixel basis, we need a continuous trade-off to
avoid artifacts. Our solution is to use the magnitude of the image gradient to
compute a weight on the shading error term, see Fig. 1 for an example. For a set
of neighbors, Ni, including i itself, and a set of pixels, Vi, that are visible in the
corresponding neighbors, the final energy is defined as:

E(di) =

k>j
∑

j,k∈Ni

∑

xv∈Vi

|Ej,k
g (di,xv)| +

α

‖∇I(xv)‖2
|Es(di,xv)|, (11)

where α = 0.01 balances the scale of both terms as the shading error is measured
in the log domain. We use the same value for all our datasets. We also experi-
mented with normalizing the weight across pixels. The new weight β would then
also affect the geometric error, i.e., (1 − β)Eg + βEs, resulting in a total weight
of 1 for each pixel. However, this led to worse results. Note that the final energy
is constructed only with local measures and does not contain any explicit regu-
larization terms. Instead it is implicitly regularized by the Retinex assumption
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Fig. 2. Surface representation based on bicubic patches. Each patch is defined via 4
nodes (illustrated as circles) that are located at pixel corners (illustrated as dots on the
pixel grid). When moving to a higher scale the patch is subdivided and some patches
are removed if they have a high error.

and the lighting model. We also use the L1 norm for both our data terms as it
is more robust to outliers that do not correspond to our Retinex assumption. It
also avoids scale issues in the optimization that can be caused by the shading
energy becoming very large in dark areas.

4 Surface Representation and Optimization

As discussed in Sect. 2, we use the framework of Semerjian [5] to optimize our
energy function. It provides a surface representation with a continuous definition
of depth values and surface normals which is very beneficial for our combined
energy. Optimizing a depth map for each view allows us to handle datasets with
varying lighting conditions and enables straight forward parallel processing. As
this framework uses a different approach compared to simple pixel-wise depth
values, we briefly summarize the main aspects.

4.1 Surface Representation

The surface is not represented as depth values per pixel but rather as a set of
bicubic surface patches. Every patch is defined by bicubic interpolation between
4 nodes, and neighboring patches share two nodes (see Fig. 2). A node itself
represents 4 optimization variables: the depth, the first derivatives of the depth
and the mixed second derivative. The nodes are located at image coordinates of
the main view and each bicubic patch covers a set of pixels. This also enables
an easy formulation of scale, as patches can cover more pixels to represent a
coarser scale and can be subdivived to move to a finer scale. At the finest scale
the patches cover a 2 × 2 set of pixels.

4.2 Optimization

Given this representation, we can efficiently optimize the non-linear energy
(Eq. 11) using a Gauss-Newton type solver. As our shading error is albedo-free,
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we do not need to introduce additional variables and can operate solely on the
surface representation. Starting from an initial guess the current energy is lin-
earized, and we solve for an update to the optimization variables. Let d be the
vector of optimization parameters, d̂ the update, and f(d) the vector of residuals
generated by our energy E. Linearizing the error function around the current
solution using the Jacobian, Jf , leads to the common linear system:

f(d + d̂) ≈ f(d) + JT
f
d̂,

(

JT J
)

d̂ = −JT f (12)

The approximate Hessian JT J consists of 4 × 4 blocks that correspond to the
4 optimization variables at each node. It is also very sparse due to the limited
support of the bicubic patches; each node is used for a maximum of 4 patches.
The linear system can therefore be solved efficiently using a conjugate gradient
solver. The inverse of the block diagonal of JT J is a good preconditioner and can
be computed quickly using Cholesky decompositions on the blocks.

4.3 Final Algorithm

We first create an initial geometry using the multi-scale formulation and surface
operations of Semerjian [5] for coarse scales. Smaller patch sizes of 8×8 and lower
are then optimized using our new energy. Applying our shading term for coarse
scales would not improve the final result as geometry details are only revealed at
finer scales. Another reason is efficiency; the shading error additionally involves
the gradient of the shading function and is therefore more complicated to com-
pute which increases the runtime compared to simple regularization. Finally, the
reconstructed surfaces from all views are converted to a point set with normals
and can be fused with any surface reconstruction algorithm [29–31]. Each view
can also be represented as a depth or normal map.

5 Results

In the following, we evaluate our method using a variety of datasets. For
all our results we used 6–9 neighbor images (except for the sparse Middlebury
datasets) and fused them into a global model using Floating Scale Surface Recon-
struction (FSSR) [30]. We chose this approach because it does not fill holes that
may appear in the geometry due to large errors in our stereo and/or shading
energy.

We first evaluate our approach on the well known Middlebury benchmark
[1]. Comprehensive results are available on the website. The Dino dataset has
many areas that are affected by self shadowing and interreflections. As Fig. 3
shows, our optimization can handle these effects in many cases if enough stereo
information from multiple views is available. Note that our optimization handles
cast shadows to some extent implicitly since the weight for the shading term is
low at the shadow boundaries, and cast shadows can be matched well with
stereo matching. The lighting model is, however, still wrong inside the shadowed



478 F. Langguth et al.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Results on the Dino dataset of the Middlebury benchmark with decreasing
number of input images. This dataset has strong shadowing which can be seen in the
input image. However, in areas where our lighting model is correct we are able to
recover a high amount of detail in the geometry even for sparse input data. Top: (a)
Input image; (b) our reconstruction on full dataset, 363 images, using 9 neighbors; (c)
ring dataset, 46 images, using 4 neighbors; and (d) sparse ring dataset, 16 images, using
only 1 or 2 neighbors. Bottom: Results on full dataset submitted by (e) Furukawa et al.
[7], (f) Galliani et al. [11], and (g) Semerjian [5]; and (h) ground truth.

areas since the incoming illumination is partially occluded. On the full dataset
our result has an accuracy of 0.49 mm and a completeness of 96.9 %. For the
sparse Dino dataset where stereo cues are not very strong, our shading term
causes holes in the shadowed areas as we cannot find consistent normals in
these areas. However, compared to other approaches, we are able to recover a
significant amount of detail in areas that are not affected by shadows. In fact, we
reconstruct the same amount of detail independent of the sparsity of the input
data, which highlights another strength of our shading term. Even for the very
sparse input data of 16 images and using only 2 neighbors we can reconstruct
more detail than top scoring approaches on the full dataset. For the full Temple

dataset (Fig. 4), we are able to achieve a high accuracy even though the back
of the object has many concavities leading to strong interreflections that cannot
be represented by our global lighting model. Compared to the results submitted
by Semerjian [5] our shading term improves the accuracy on the full dataset by
0.15 mm to 0.47 mm and we achive a completeness of 98.7 %.

Figures 5 and 6 show fountain-P11, an outdoor dataset from the Strecha
et al. [32] benchmark. The normal maps in Fig. 5 show the effect of different
surface regularization weights on the original approach of Semerjian [5]. There is
no globally correct weight as the reconstructed geometry is either too smooth or
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(a) (b) (c) (d)

Fig. 4. Results on the Temple dataset of the Middlebury benchmark. From left to right:
(a) Galliani et al. [11]; (b) Fuhrmann et al. [30] using the stereo from Goesele et al.
[6]; (c) our reconstruction; and (d) ground truth. Our reconstruction achieves a good
balance between capturing fine-scale detail without introducing noise.

too noisy. In contrast, our approach reconstructs smooth but detailed geometry
due to the image gradient magnitude-based weight. Figure 6 demonstrates that
this also translates to the fused geometry as integrating multiple views cannot
remove the noise inherent in Semerjian’s reconstruction effectively.

Next we present a multi-scale outdoor dataset included in the FSSR paper
[30]. Figure 7 shows that our approach can recover detailed geometry in such a
setting. The normal map captures even the finest details recovered in a single
view. Our results from vastly different scales can be combined into a consistent
model with FSSR. However, we can observe the boundaries between scales as the
resolution and accuracy of the geometry changes drastically. This still illustrates
an advantage compared to other systems that operate on a global model: our
approach can scale to any amount of images and can easily reconstruct different
levels of detail in a single dataset, whereas keeping a multi-scale global model in
an efficient data structure is challenging and not arbitrarily scalable.

Figure 8 shows a dataset presented by Zollhoefer et al. [3]. This object already
provides many gradients for stereo matching so we do not expect our shading
term to result in a substantial improvement. Note, however, that our reconstruc-
tion has significantly better quality compared to the normal map reconstructed
with Semerjian’s approach, and compared to the Zollhoefer et al. [3] reconstruc-
tion provided on their project web page.

Finally, Fig. 9 presents results on a dataset captured under varying lighting
conditions. The Owl was captured on a turn-table with fixed lights and a fixed
camera, resulting in different lighting for each image (w.r.t. the image coordi-
nates). The object is nearly diffuse apart from the dark specular areas where all
the methods shown here fail. We compare against a patch based stereo method
[6], which has no effective regularization as each pixel is optimized independently.
This results in a very uneven surface and noise in (almost) textureless regions.
Semerjian [5] uses a simple regularization term that keeps the surface varia-
tion low. This is effective in producing a continuous surface, but cannot recover
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(a) (b) (c) (d)

Fig. 5. The fountain-P11 dataset from Strecha et al. [32]. From left to right: Closeup
normal maps for single views of the bottom left area for different weights on surface
regularization (a) high, (b) medium, and (c) low; and (d) normal map of our recon-
struction. Basic regularization cannot find a good trade-off between overly smooth and
noisy geometry. Our result reveals fine details without introducing noise.

Fig. 6. The fountain-P11 dataset from Strecha et al. [32]. From left to right: Recon-
struction by our implementation of Semerjian [5] using a low regularization weight to
recover details; by our new optimization; and ground truth.

details in regions without strong gradients. In contrast, our combined method
recovers a smooth surface and is able to relate small gradients to surface details.

5.1 Runtime

A C++ implementation of our technique is available as open source software1.
This unoptimized prototype shows a roughly 20 % runtime increase compared
to our implementation of Semerjian [5]. In practice, the full Dino and Temple

datasets were computed in 75 and 63 min on a 32-core machine. The multi-scale
outdoor dataset from Fuhrmann et al. [30] included 204 high resolution images
and was computed in 115 min on the same machine, while the Owl dataset with
10 images took around 7 min. For a fair comparison to other stereo methods, we
are reporting the run-times of our complete multi-view algorithm and not only
the time required for solving our shading-based optimization.

1 https://github.com/flanggut/smvs.

https://github.com/flanggut/smvs
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Fig. 7. Results on an outdoor dataset. Top: Input images at different scales, and our
global model with details. Our method recovers more detail in regions that are imaged
at higher-resolution. Bottom: A closeup input image; the reconstructed depth map
shaded with the lighting; and close-up normals with regular (10−2) and low (10−4)
value for α – decreasing the weight of the shading term results in more noise and less
detail as the stereo term dominates the energy.

5.2 Limitations

We make two main assumptions in our method that can lead to errors in the final
geometry if they are violated. First, we assume that the scene is Lambertian and
a low frequency spherical harmonics lighting can accurately represent the illumi-
nation. As we show in the Middlebury Dino dataset, shadows and interreflections
will cause errors in the reconstruction but we are still able to reconstruct details
in areas where our lighting model is correct. A more sophisticated lighting model
could solve the issues in future work, and would require only minor changes to
our geometry optimization. Second, we assume that we can separate albedo and
lighting according to the magnitude of the image gradient. While this holds for
many datasets, there are objects where the albedo changes gradually, and this
violation of Retinex can show up in our geometry if we relate these small gradi-
ents to shading and therefore changes in the surface normal. This suggests that
some geometry regularization might still be needed in certain regions where we
cannot easily decide between albedo and shading. As we rely solely on the stereo
error for strong gradients, we are also limited by its accuracy. In certain con-
figurations, e.g., observing horizontal lines under horizontal camera motion, or
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Fig. 8. The Figure dataset. Top from left to right: An input image of the dataset;
normal maps from the surface computed by our implementation of Semerjian [5], and
our shading based approach. Bottom: Result presented by Zollhoefer et al. [3] (available
at project website); and our fused model.

Fig. 9. Reconstruction of the Owl dataset with changing lighting in each image. From

left to right: An input image; reconstruction by Goesele et al. [6]; by our implementation
of Semerjian [5]; and using our new optimization. Our results capture more structural
details (see the eyes for example) with less overall noise.

fine structures with aliasing effects, the stereo term might lead to wrong depth
estimates that we cannot fix with our normal-based shading term.

6 Conclusion

In this paper, we have presented a novel multi-view surface optimization algo-
rithm that efficiently combines a stereo energy term with a shading-based energy
term in a single, combined approach, to create high quality reconstructions.
Building on the Retinex assumption, we are able to completely remove the
albedo from the shading-based error, which has not been done before. Our for-
mulation relies solely on pixel-wise data terms and an implicit regularization
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via the shading function and surface representation. We present results that
improve on previous multi-view stereo algorithms and shading based refinement
systems. Our approach is limited by the basic lighting model and cannot account
for self-shadowing, indirect illumination, and specular materials. In future work
we will improve on this to create a more robust system that can be applied to
more complex scenes. Overall, we believe that the idea of combining stereo and
shading energies can be very powerful and will lead to more general approaches.
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