
Shadow Configuration as a Network Management Primitive

Richard Alimi, Ye Wang, Y. Richard Yang
Laboratory of Networked Systems, Yale University

New Haven, CT, USA

ABSTRACT
Configurations for today’s IP networks are becoming increasingly
complex. As a result, configuration management is becoming a
major cost factor for network providers and configuration errors
are becoming a major cause of network disruptions. In this paper,
we present and evaluate the novel idea of shadow configurations.
Shadow configurations allow configuration evaluation before de-
ployment and thus can reduce potential network disruptions. We
demonstrate using real implementation that shadow configurations
can be implemented with low overhead.

Categories and Subject Descriptors: C.2.1 [Computer Commu-
nication Networks]: Network Architecture and Design – Network
communications; C.2.3 [Computer Communication Networks]: Net-
work Architecture and Design – Network Operations
General Terms: Algorithms, Design, Management.
Keywords: Network Management, Network Diagnostics

1. INTRODUCTION
Modern IP networks are becoming increasingly complex to con-

figure, as these networks continue to evolve to offer multiple ser-
vices (e.g., both routing and access control), integrate equipment
from multiple vendors, and conduct continuous performance and
feature tuning. As a result, it is difficult to generate and maintain
the configuration even for a moderately-sized network. A recent
survey [40] found that configuration errors are a large portion of
operator errors, which are in turn the largest contributor to failures
and repair time. Another survey [29] found that more than 60% of
network downtime is due to human configuration errors. It further
showed that more than 80% of IT budgets are allocated towards
maintaining the status quo, a percentage that will only increase due
to “increased complexity, lower budgets, and continued business
demand.”

One way to reduce configuration errors is to use configuration
generation tools (e.g., [2]) and/or validate the configuration files us-
ing static analysis or simulation (e.g., [15,17,22,37,53]). Although
these tools can be quite useful, for example, it has been noted that
the configuration analysis tool NetDB provides AT&T significant
cost savings [47], these tools are inherently limited in the problems
that they can detect. In particular, since configuration files alone
do not determine the behaviors of a network, analyzing only the
configuration files based on an abstract model of the network and
equipment behaviors may leave many problems undetected.

Recognizing the limitations of static analysis and simulation tools,
some network operators and equipment vendors build test networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

For example, Cisco has built the NSite [11] facility to test network
configurations before actual deployment. However, for most com-
panies, the cost of maintaining a testbed sufficiently similar to the
operating network is prohibitive.

Given the limitations of these existing approaches, configuration
modifications are frequently deployed into the operating networks
without realistic testing. As a contrast, software developers depend
mostly on debuggers and actually running their programs before
deployment. They run unit and regression tests for correctness and
conduct stress tests to validate the programs under load. It would be
difficult to imagine the extent of software errors if programs were
deployed after only passing through analysis or simulation tools
without actually running on the target platform. However, there is
no such capability for IP network configuration [38].

In this paper, we propose such a novel capability called shadow
configurations. With shadow configurations, a network operator
may specify two configuration files for a router: one real (current)
and one shadow (alternate). The shadow configuration files on a
set of routers form a shadow configuration that the network opera-
tor intends to replace the current configuration files. The operator
can test the shadow configuration files on the actual network with-
out enabling them as the network’s real configuration. Running on
the existing network infrastructure, this capability is low cost, and
thus may be utilized in daily operations. During the testing process,
the current network configuration is still running and forwards real
traffic; the shadow configuration carries only testing traffic and will
not cause disruptions to the operation of the current configuration,
even if there are errors in the shadow configuration. The operator
conducts correctness and performance tests on the shadow config-
uration. Our usage of the term “shadow” is motivated by computer
graphics, where instead of directly modifying the current display
buffer, the display system often uses a shadow buffer to compute
the next frame to be displayed.

In particular, by running a set of configuration files directly on
the actual network to which they will be applied, a shadow con-
figuration allows a network operator to evaluate the integrated ef-
fects of alternate configuration files, router software implementa-
tion (including protocol mis-implementations!), the physical net-
work status, and dynamic information such as imported external
route advertisements. Many integrated effects on routing are natu-
rally summarized by the forwarding information base (FIB) at each
router. We take advantage of the compact FIB representation and
develop techniques to analyze the FIBs for configuration validation
and adjustment.

Further exploring its benefits, we show how shadow configura-
tion allows a network operator to evaluate, before actual deploy-
ment in the real network, whether a set of configuration changes
will have the desired effect on network performance. Such realis-
tic performance evaluation reduces the dependency on unrealistic
models or assumptions of router processing or the network. Also,
the availability of the on-going real traffic in the actual network
allows the operator to duplicate a controlled portion of it as test-
ing traffic in addition to generated testing traffic. This reduces the
need to generate realistic testing traffic patterns. One potential is-
sue of conducting testing on the shadow configuration is that if we
naively send both shadow and real traffic, the combined traffic may
overload some network links. Thus, we develop a novel technique,

referred to as packet cancellation, to allow both real and shadow
traffic to be forwarded in parallel without overloading the network.

After the operator is satisfied with the new configuration, she can
simply quickly and smoothly swap the real and shadow configura-
tions with minimal network disruptions. We develop a commitment
capability for shadow configurations to reduce the effects of churn
and convergence. This usage pattern can be viewed as “two-phase
commitment” for network configurations.

To demonstrate feasibility, we extend the Linux kernel and im-
plement necessary components to support shadow configurations in
both Quagga [41] and XORP [23] software routers. We show that
shadow configurations can be implemented efficiently, with only
12 additional lines of code on the kernel’s forwarding fast path for
packets not using packet cancellation, and no code changes to rout-
ing processes. The FIB memory increase to support both real and
shadow configurations is less than 35% for the worst-case router
under a variety of shadow configurations for a large US tier-1 ISP;
the average is much smaller, less than 7%. At run time, our shadow-
enabled forwarding engine under heavy traffic has no more than
1.2% CPU usage overhead with a shadow configuration installed.

We also demonstrate the usage of shadow configurations. We
show in real implementation that the commitment ability avoids
the transient routing convergence period under router maintenance,
shutdown and OSPF weight changes. We demonstrate our packet
cancellation technique in a usage scenario where the operator tests
the impact of a new configuration on a streaming video application.
In this case, the combined (raw) shadow and real traffic intensity
can be as high as 1.05 times the capacity of some links. However,
packet cancellation shields real traffic from shadow traffic while
at the same time, the measured performance of the shadow video
streams is close to the case when it is using the network alone (dif-
ference is less than 1%).

In summary, we have made the following contributions:
• We propose the novel capability of shadow configurations.
• We develop novel techniques for configuration analysis, evalua-

tion and management.
• We provide an implementation and demonstrate that the shadow

configuration capability can be implemented with low overhead.

2. MOTIVATING USAGE SCENARIOS
To drive our system design, we conducted a survey of operator

configuration usage scenarios. Below, we list several key usage sce-
narios that we would like to support using shadow configurations.
The objective of the list is not to be complete, but to motivate our
design.
Equipment Maintenance, Testing: A network operator may need
to shutdown a running router or link for maintenance. For example,
many hardware and software updates suggest that a router or net-
work interface card be taken offline during the process. To prepare
for a shutdown, the operator makes the shadow configuration the
same as the real configuration except that the link or router to be
shutdown does not appear in the shadow configuration. The oper-
ator evaluates the shadow configuration, makes potentially neces-
sary adjustments, and then commits it as the real configuration.

As another example of an equipment shutdown usage scenario,
a surveyed operator commented that he needs to periodically shut-
down a primary link to test if its backup link is operational and
will be used after network reconvergence. Since the capacity of
the backup link may be lower than the primary link, such tests may
cause network disruptions. With shadow configurations, he can just
shutdown the primary link in the shadow configuration and test if
the backup link will be used in the shadow configuration after re-
convergence.

After the maintenance or addition of a new network device, the
operator includes the device in the shadow configuration, evaluates

Forwarding Engine

Run-time Shadow Management

Configuration Management

NIC0 NIC1 NIC2

Shadow Bandwidth Control

Shadow-enabled FIB

Shadow Management

Commitment

Configuration User Interface FIB analysis Shadow Traffic Control

Delta-Debugging

IS-IS

OSPF

BGP

OSPF

IS-IS

BGP

Figure 1: System architecture for network management with
shadow configurations.

the effects, and makes adjustments before switching to the new con-
figuration. This step can be particularly useful as multiple surveyed
network operators commented that it is common for issues to arise
after a maintenance upgrade.

Configuration Parameter Tuning: Many network operators need
to tune configuration parameters to address performance or secu-
rity issues. For example, a network operator may conduct traffic
engineering to improve network performance, and many traffic en-
gineering techniques (e.g., [18, 19, 39, 42]) require the modifica-
tion of configurable parameters (e.g., OSPF weights or egress point
selections). However, such parameter adjustments may cause dis-
ruptions due to human error or routing reconvergence. As another
example, a network operator may change its network access control
list. However, such changes may lead to network disruption due to
mis-configurations or unexpected interaction with routing. Shadow
configurations support such tuning of parameters and testing cor-
rectness and performance.

Network Diagnosis: One problem with network diagnosis is that
it is difficult to conduct root-cause analysis (e.g., end-to-end perfor-
mance violations). Although many network diagnosis techniques
have been proposed lately (e.g., [5, 13, 25, 28, 31, 32, 43, 45, 46]), a
major limitation of network support is that they cannot easily con-
duct unit or “destructive” testing [47] as is done in software debug-
ging. Shadow configurations allow a network operator to construct
a shadow network on a subset of the network, and compare the
differences in the real and shadow configurations to help with root-
cause analysis. In particular, the delta [54] testing technique for
software debugging can be particularly helpful to the automation
of configuration debugging.

Feature/Service Testing: A network operator may be reluctant
to enable new features (e.g., queue management or scheduling al-
gorithms) or services (e.g., VoIP) on her operational routers due to
concerns of unknown performance impacts, as many factors affect
network performance [8, 35, 49, 55]. Shadow configurations allow
the operator to conduct an evaluation in the shadow configuration.
She can finally commit the shadow configuration as the real one
once the integration is verified to work correctly.

3. SYSTEM OVERVIEW
We now present an overview of our system. The key components

in our system are shown in Figure 1. We focus on a high-level
overview in this section. Details and implementation of several
components will be discussed in the following sections.

We divide our system into three layers: (1) forwarding engine;
(2) run-time shadow management layer; and (3) configuration man-
agement.

3.1 Forwarding Engine
Foundation
The key component is a forwarding engine supporting both real
and shadow configurations. In this discussion, we focus on the

srnet

ISP AS

Peering AS

X

New router

Shadow traffic

control
Shadow packets dropped

Figure 2: Network with an srnet being used to install a new
router to support new services. The new router has its real
configuration disabled during installation.
forwarding information base (FIB) for presentation, but note that
the forwarding engine handles other items such as access control
lists (ACLs) as well.

Let {1, · · · ,N} be the set of routers in a configuration. Let C =
{C1, · · · ,CN} be their configuration files. In abstraction, the control
plane converts the configuration files into a configuration for the
forwarding plane: C⇒ { f ibi}i, where f ibi is the FIB at router i.
The FIB entries at an interface maps a destination IP address to an
output interface.

We refer to a set of connected routers running a shadow con-
figuration as a shadow-running network or srnet for short. In this
paper, we consider only the case where a srnet belongs to a sin-
gle autonomous system (AS). A srnet is likely to be the whole IP
network of the AS, but can be only a subnet. The latter possibility
gives flexibility such as incremental deployment. A router i inside
a srnet has two configuration files: Cri for the real configuration and
Csi for the shadow. In the forwarding engine, it will then have two
FIBs, (f ibri , f ib

s
i), for the real and shadow respectively.

A link (interface) may leave a srnet, and we refer to such a link
as a border link. The FIB at such a border link will need to contain
ingress and egress policies for how to handle incoming and exiting
shadow packets. Figure 2 shows a network containing a srnet.

When a packet arrives at a border link of a router i, the router
uses the ingress policy to determine whether it should apply f ibri
or f ibsi . We refer to a packet forwarded using the shadow config-
uration as a shadow packet, and a packet forwarded according to
the real configuration as a real packet. Router i uses a shadow bit
in the IP header to indicate whether it is a shadow packet or a real
packet.

When another router j receives a packet, it checks whether the
packet is a real packet or a shadow packet, and uses the correspond-
ing forwarding table. If it is a shadow packet and is leaving the
srnet, the egress policy is applied (e.g., dropped).

Shadow Bandwidth Control
With both shadow and real traffic using the same network, we need
a shadow bandwidth control component to regulate the bandwidth
sharing. In particular, testing the performance of a shadow config-
uration should not cause disruption to the real traffic. We focus on
network bandwidth, but one could also consider processing band-
width. For example, per-packet processing such as IP lookup may
be the bottleneck.

We support three modes of shadow bandwidth control:
• Priority: real traffic has higher priority than shadow;
• Partition: each configuration is allocated a portion of bandwidth;
• Packet cancellation.

Priority and partition modes can be useful, for example, when the
payload must be carried end-to-end to include the responses of end
hosts and servers or when evaluating deep-packet inspection. In the
partition mode, the network operator can specify non-work con-
serving scheduling for shadow packets to provide “scaled-down”
testing bandwidth and arrival processes.

Packet cancellation is designed to allow an operator to conduct
stress tests on the shadow configuration to reveal issues under higher
load. The operator can certainly try to wait for a time period when
the real traffic is low. However, there may not exist such a time
period, or the real traffic load that the operator would like to dupli-
cate for testing happens only when the real traffic is relatively high.
Packet cancellation has the following two objectives:
• Performance of the real traffic is not severely degraded;
• Performance measurements taken from shadow packets should

be close to the measurements that would be observed if the shadow
configuration were the only active configuration.
Packet cancellation is presented in Section 5.

3.2 Run-time Shadow Management
Our next layer provides two main functions:

• It provides a run-time and management environment for real and
shadow configurations and routing processes (e.g., multiplexing
of control packets, CPU and bandwidth management). We dis-
cuss one implementation in Section 7, including a technique for
exchanging information with routers outside a srnet (e.g., with
BGP) that presents a single consistent view to the outside world.

• It provides a commitment capability to smoothly swap the con-
figurations, which is important for many usage scenarios. This is
especially desirable because the convergence process is a major
source of disruption: reconvergence after a configuration change
can cause network outages [1] or additional configuration er-
rors [30]. We present our commitment protocol in Section 6.

3.3 Configuration Management Layer
This layer provides multiple utilities to take advantage of and

control the capability of shadow configurations. We have imple-
mented the following tools:
• Configuration user interface (cui): the operator is presented with

two command-line terminals, one real and the other shadow. Us-
ing this interface, a network operator issues traditional router
commands such as traceroute and ping. Additional com-
mands are provided to control our commitment protocol.

• Shadow traffic control (stc): the operator is allowed to specify
shadow traffic (e.g., real traffic to be duplicated to the shadow
configuration and intensity of generated shadow traffic) and col-
lect traces.

We have also investigated other useful tools:
• Shadow configuration analysis using FIB (scaf): a tool to detect

routing loops and reachability issues. We give more detail on
this tool in Section 4.

• Shadow regression tester (srt): a tool to play test cases (e.g.,
reachability of important applications at important locations).

• Configuration delta debugging (cdb): a tool based on the obser-
vation that by comparing the FIB and performance of the real
configuration with the shadow configuration, we can automate a
large fraction of configuration diagnosis.

4. SHADOW ANALYSIS USING FIB
In this and the next two sections, we present the details of shadow

configuration analysis using FIB, packet cancellation, and shadow
commitment. They are presented in this order as this is a common
order in many usage scenarios.

4.1 Objectives and Overview
With the availability of a shadow configuration, the network op-

erator can analyze { f ibsi}i before they become installed for real
packet forwarding.

In particular, we investigate how to detect forwarding loops us-
ing the collection of FIB states. As made evident by measurement
results [24] and online detection algorithms [51], forwarding loops
happen frequently in real networks. Since routing loops can cause
unnecessary load and dropped packets, detecting loops caused by
a new configuration before its actual deployment can have great
value. Our system computes the set of destination addresses as
well as routers present in the loop, providing the network operator
with detailed information from which she can debug the problem.

We also detect reachability issues, another common type of con-
figuration errors [33,53]. Some reachability issues can be extremely
challenging to detect using any static analysis or simulation tools
because they depend on software implementation. For example, the
Cisco document [10] reports a common OSPF routing problem be-
fore Cisco IOS Release 12.1(3) related with forwarding addresses.
The reachability issue noted was caused by the software implemen-
tation of a Cisco-specific optimization, and thus can be difficult to
isolate using only configuration files. By looking directly at the FIB
states, our system can bypass detailed modeling and abstractions,
and provide the network operator useful reachability information to
help debug the problem.

Note that for presentation clarity, we consider only unicast ad-
dresses; we assume that there exists a unique nexthop in each FIB
for a single destination address. Also note that it is straightforward
to add other forwarding mechanisms (e.g., label switched paths) to
our analysis.

4.2 Representative IP Addresses
A major complexity in reachability and forwarding loop anal-

ysis is that FIB lookup in modern routers is implemented using
longest prefix matching, and different routers in the same network
may have different sets of destination IP prefixes.

To use existing efficient graph algorithms to check reachability
and forwarding loops, we first pre-process FIBs to compute repre-
sentative IP addresses. With representative IP addresses, FIB anal-
ysis is done on individual IP addresses, without the need to handle
longest prefix matching.

Consider a simple example where each FIB table in the network
consists of the following destination IP prefixes: a default route
(i.e., 0.0.0.0/0), 10.1.0.0/16, and 10.1.0.0/24. Then if we verify that
there is no reachability or routing loop problem for each IP address
in the set {0.0.0.0, 10.1.0.0, 10.1.1.0, 10.2.0.0}, then the network
has no reachability or routing loop problem.

The algorithm f indrepip (Figure 3) computes the set A of repre-
sentative IP addresses for a network. The algorithm computes the
set Ai of representative addresses for each FIB f ibsi . The set A for
the whole network is obtained by merging the Ai’s. To make the
merging efficient using a priority queue, the algorithm maintains
each Ai to be sorted.

When processing each entry in f ibsi , the algorithm adds to Ai up
to two addresses. The first is the beginning address of the desti-
nation prefix associated with the entry, and the second is the be-
ginning address of the next range that could come after the entry’s
destination prefix.

4.3 Computing Reachability and Loops
Once the set of representative addresses is found, each address

can be analyzed using standard graph algorithms to detect reacha-
bility issues and forwarding loops:

1. Reachability: (1) set of routers Ra that can reach address a;
and (2) set of routers Wa with FIB entries for address a but
cannot reach address a;

2. Forwarding loops: sets of routers La participating in forward-
ing loops for address a.

findrepip({ f ibsi}i) – Compute representative address set A
01. foreach f ibsi do
02. Ai ← /0 //sorted rep addr for f ibsi
03. foreach entry e in f ibsi do
04. Ai ← Ai ∪{min{e.addr_range}}
05. if max{e.addr_range} �= 222.255.255.255 then
06. Ai ← Ai ∪{1+max{e.addr_range}}
07. endif
08. endfor
09. endfor
10. // Merge rep addr into single sorted list
11. A← priority_queue_merge({Ai}i)
12. return A

Figure 3: Algorithm for computing representative addresses
given { f ibsi}.

5. SHADOW PACKET CANCELLATION
With a consistent and reachable forwarding state, the network

operator next might ask, “If I adopt this alternate configuration on
my network, how will it perform?” Such a question is important
when deploying new services such as voice or streaming media, or
when the operator may want to evaluate the likely impacts of the
new configuration on service level agreements.

At this point, the reader might suggest that since the operator
already has the FIBs of the shadow configuration, she may com-
pute or simulate the performance characteristics using a traffic de-
mand matrix. This is certainly a feasible approach and our system
can support it. Such computation- or simulation-based approaches,
however, implicitly rely on a model for packet processing inside
each router for features such as QoS or any particular queue man-
agement techniques. New techniques such as traffic shaping or dif-
ferentiated services would require modifications to the model [12].
On the other hand, enabling direct measurements allows processing
within the routers to be treated as a black box.

5.1 Overview
Recall that the objectives of packet cancellation are that (a) both

real and shadow traffic are forwarded according to their original
queue management schemes, and (b) shadow packets are (typi-
cally) only delayed by other shadow packets while real packets are
(typically) only delayed by other real packets.

This mode uses two techniques: packet (payload) cancellation
and a virtual clock. The key insight is that the payload of shadow
data packets may not always need to be transmitted; that is, when
the focus of an evaluation is on network performance metrics such
as delay, the shadow data packets then are not intended to be re-
ceived by end hosts. Thus, we need only to (1) retain the informa-
tion relevant to forwarding the traffic within the network, and (2)
know the correct payload size so that gathered performance mea-
surements remain meaningful.

Given the preceding insight, we allow a router to append the
header of a shadow packet to a real packet before it is transmitted
over the link. The input interface at the receiving router removes
the appended shadow header, and processes it accordingly. If the
shadow traffic is delayed too much by the real traffic, we can ap-
pend multiple shadow headers to catch up with the delay.

5.2 Shadow Data Packet Cancellation
We now describe how our scheme processes shadow data pack-

ets. At the output interface, shadow packets and real packets are
separated into two queues, Qs and Qr. This also allows the shadow
configuration and real configuration to define different queue sizes
and queuing disciplines. When it is time to transmit the next packet,
the line card applies the algorithm shown in Figure 4.

Specifically, if Qs is empty, send head(Qr), the head of the real
packet queue; otherwise, extract the headers of the shadow pack-
ets that should be transmitted and combine them with head(Qr).

pktsched() – packet cancellation and scheduling.
01. if not empty(Qr) then
02. p← dequeue(Qr) // Select real packet
03. // Append shadow packet headers
04. for 1 . . .MAX_CANCELLABLE do
05. if not virtual_clock_expired(peek(Qs))
06. break
07. p← append(p, ip_hdr(dequeue(Qs))
08. endfor
09. transmit(p)
10. elseif not empty(Qs) then
11. // Send shadow packet if available
12. if virtual_clock_expired(peek(Qs))
13. transmit(dequeue(Qs))
14. endif

Figure 4: Packet cancellation and scheduling.

IP1 Payload IP2

IP1
P
ayload

IP
2

IP2

IP
1

Pa
ylo

ad

Figure 5: Shadow packet header combined with a real packet
for transmission on a single link.
We may extract multiple (up to MAX_CANCELLABLE, set to 3
in our implementation) shadow packets to “piggyback” on a real
packet due to packet payload sizes and previous delay of shadow
packets. To determine whether a shadow packet should be trans-
mitted or piggybacked, the shadow queue maintains a virtual clock.
The virtual clock estimates whether the transmission of a shadow
packet should be started (virtual_clock_expired) if there were only
shadow traffic.

Note that it is important that when extracting headers from a
shadow packet, we extract all IP headers to allow the scheme to
work properly when tunnels or VPNs are configured. If any IP
header that must be interpreted is encrypted, the scheme may not
work. The TCP/UDP header, if it exists, should also be extracted
since it may be required for packet filtering (e.g., in Cisco’s policy
routing, NetFlow sampling, and firewalls). In a simple IP network
without tunnels or VPNs, the extracted headers will consist of a
single IP header and a TCP/UDP header, and will typically be 40
or 28 bytes in size.

There is one additional piece in the scheme. It must be possi-
ble for the incoming interface at the receiving router to determine
whether it is receiving a single packet or combined packet. If the
link-layer payload is larger than length indicated by the IP header,
the router strips off the appended headers, verifying their IP ver-
sion, header length, and optionally the checksum.

Figure 5 shows how a shadow payload can be canceled with a
real packet for transmission over a link. The shadow header is ex-
tracted at the receiving interface and forwarded independently.

With packet cancellation, it is possible that the full size of the
transmitted frame becomes larger than the next interface’s MTU,
causing the packets to be silently dropped at the next hop. To
handle this, one could simply decrease the MTU to accommodate
the additional canceled packets. To avoid additional fragmentation,
one could instead increase the MTU, but internally process packets
(i.e., handle fragmentation) at the routers according to the original
MTU.

Further consideration is required when operating on Ethernet. To
provide intuition, the algorithm in Figure 4 might fill in all “whites-
pace” left by real traffic with full shadow packets, causing the link
utilization to approach 100% and causing large delay variations.
One simple way to solve the problem is to always transmit only the
shadow header and set a timer to throttle shadow queue transmis-
sion rate when the real queue is empty. In our implementation, we
found that the available timers are too inaccurate to retain the ap-
propriate packet delay variations. Thus, we adopt the heuristic that

even when the real queue is empty, only the shadow packet header
is transmitted if link utilization is above a certain threshold (we use
85%). Since a previous hop may have trimmed a shadow packet,
it may be necessary to expand the packet and zero-fill the payload
when below the threshold.

5.3 Shadow Control Packet Forwarding
We previously considered only shadow data packets. Packet can-

cellation cannot be applied to shadow control packets, such as route
advertisements, SNMP messages, or ICMP packets. For safety and
because control packets can originate from many places (routing
processes, ARP, ICMP, etc.), we opt to explicitly mark a shadow
packet that can be canceled (e.g., in generated testing traffic) with a
PD bit, indicating that its payload is dropable. We process shadow
control packets using a separate queue.

5.4 Overhead and Perturbation Analysis
FIB Lookup
One potential bottlebeck is FIB lookup instead of bandwidth. Since
a combined packet received in packet cancellation mode contains
multiple headers that might require separate lookups, it is crucial
that the router be able to support this additional processing burden.

Forwarding engines in many routers are designed to handle worst-
case scenarios where all incoming packets have the minimum size.
In particular, assume that a router can support α L

Kmin packets per
second where L is the link speed in bytes per second; Kmin (typi-
cally, Kmin = 40 bytes) is the minimum packet size; and α ≤ 1 is
the efficiency factor.

Let kr denote the packet sizes of real traffic and ks the packet
sizes of shadow traffic. Let αr be the link utilization caused by real
traffic and αs that of shadow traffic. To sustain lookup, we need:

E

[
αrL
kr

]
+E

[
αsL
ks

]
< α

L
Kmin

.

Using the packet size distribution in [26], we can compute αs
given αr and α. For α ≥ 0.7 and αr ≤ 0.8, we have αs ≥ 0.75,
meaning the link utilization for shadow traffic can reach up to 75%
while still being supported by the forwarding engine.

Performance Measurement Accuracy
Our packet cancellation scheme tries to remain as consistent as pos-
sible with the original forwarding behaviors for both shadow and
real packets. This is important since the operator must have con-
fidence that the measurements obtained on real and shadow traffic
are indicative of the measurements that would be observed if only
real or only shadow traffic were present in the system.

To better understand our scheme, consider a basic model: pack-
ets have uniform sizes, all packets have space reserved for an addi-
tional shadow header, and packets do not arrive in the output queue
when a transmission is in progress. Then, we can show that there
will be no delay or loss perturbations for either real or shadow pack-
ets.

CLAIM 1. For any packet p, dr(p) = ds(p) = 0 where dr(p)
(resp., ds(p)) is the end-to-end packet delay perturbation for a real
(resp., shadow) packet.

CLAIM 2. For any packet p, lr(p) = ls(p) = 0 where lr(p)
(resp., ls(p)) is the packet loss perturbation for a real (resp., shadow)
packet.

6. SHADOW COMMITMENT
As we discussed in Section 3, with a consistent and reachable

forwarding state and satisfactory performance, the network opera-
tor may then decide to apply the shadow configuration as the net-
work’s actual configuration. We define the objective of the commit-
ment process to be swapping the shadow and real configurations at

all routers within the srnet. Swapping allows the network to roll-
back if an error occurs or the operator finds the new configuration
unacceptable.
6.1 Overview

Although there are several previous studies on updating FIBs
across routers (e.g., [20,21,56]), our shadow configuration commit-
ment problem is distinct from these previous problems. For exam-
ple, many types of changes and routing processes may be involved
in a configuration change, so routing-protocol specific techniques
(e.g., [21]) may not apply.

Our protocol is inspired by the simple and clean map dissemi-
nation protocol proposed by Lakshminarayanan et al. in [34]. We
address additional issues in our specific context including integra-
tion with version control of distributed configuration files, rollback
of configurations, and simplicity of router maintenance.

To integrate with configuration version control (e.g., CVS), be-
fore each commitment, the operator broadcasts two tags to each
router: Cold identifies the real configuration before swap, and Cnew
the shadow configuration before swap. An additional functionality
of the tags is to mark packets to avoid forwarding loops during the
swapping period; this is inspired by the map dissemination in [34].
After commitment, the tags should be removed for simplicity of
router maintenance.

Consider the scenario when routers always tag packets (e.g., with
global map sequence numbers [34]), and the network operator pow-
ers on a new router. After reading its local configuration file, a
routing process (either shadow or real) must communicate with the
corresponding routing processes of its neighboring routers. How-
ever, since the router does not know which tag denotes the real con-
figuration and which denotes the shadow, it may not be able to tag
routing messages correctly such that they are demultiplexed to the
correct routing processes at its neighbors. One could design vari-
ous ways to work around this problem (e.g., designating globally
constant tags or a protocol to allow a router to query tags), but they
introduce extra complexity. Our commitment protocol chooses to
remove the tags after commitment so that the shadow bit has well-
defined semantics (0 indicates current and 1 indicates shadow) dur-
ing normal operation.

6.2 Protocol Operation
The protocol proceeds in four phases. Messages to the routers

are sent first using the real configuration, then the shadow configu-
ration in the case where the real configuration is non-operational.
Phase 1: During the first phase, the operator sends a TAG DISTRI-
BUTION message containing two tags to each router. The two tags
are temporary network-wide identifiers for the configurations: Cold
identifies the real configuration before swap, and Cnew the shadow
configuration before swap. Upon receiving these tags, each router
creates a lookup table to remember the mapping. To report its con-
figuration file to version control (diff is enough) and to make
sure that all routers have received the tags, each router responds to
the TAG DISTRIBUTION message with an acknowledgment. The
operator waits to receive an acknowledgment from each router.

To prevent links from being oversubscribed while commitment
is in process, testing traffic marked with the PD bit (discussed in
Section 5) is immediately dropped by routers as of this phase. This
is done by adding an output filter rule.
Phase 2: During the second phase, every router knows the tags, so
the operator sends a TAG PACKET message to all routers causing
them to start marking packets with tags. Since routers do not re-
ceive the TAG PACKET message simultaneously, some packets are
marked with tags and some use the shadow bit during this phase.
Packets generated at the router by a configuration are marked with
that configuration’s tag, and received packets already marked with
tags are forwarded according to the appropriate configuration. Tags
are added to packets received without tags: if the shadow bit is un-

(a) (b) (c)

R1

R2 R2

R1

R2

R1

e e e

Figure 6: Scenario showing how a transient state can cause
temporary congestion. White routers have not yet swapped;
black routers have swapped.
set, it uses the tag of current real configuration (currently Cold);
otherwise, it uses the tag of the current shadow configuration (cur-
rently Cnew). If a router has not received the TAG PACKET mes-
sage but receives a packet with a tag, it additionally triggers the
router to transit to a state as if it had received the TAG PACKET
state. This indirect triggering can speed up this phase.

Before moving to phase 3, the network must wait for the follow-
ing two conditions to become true: (1) no routers are still marking
packets using the shadow bit; (2) no packets using the shadow bit
are in transit.

At the second half of the Phase 2, the two conditions are satisfied.
For the first condition, the operator needs to receive an acknowledg-
ment from each router. After the first condition is true, the operator
satisfies the second condition by waiting for a short time (e.g., the
estimated upper bound of link latency) until all packets have been
processed by the next router in their path.
Phase 3: During the third phase, since no packets will be using the
shadow bit, the routers can safely swap the configurations. The op-
erator transmits a SWAP message to the routers. Each router swaps
the real and shadow configuration after receiving the message, and
sends an acknowledgment back to the operator. Note that the tags
associated with each configuration are not swapped. Also note that
ingress routers that have received the SWAP message now tag un-
marked packets withCnew instead ofCold .
Phase 4: In the last phase, the operator sends a MARK SHADOW
BIT message to each router, allowing them to again mark pack-
ets using the shadow bit. To report success, each router sends an
acknowledgment back to the operator.

6.3 Error Handling and Rollback
There are potential error conditions during commitment. Link

or router failures cause the routing and forwarding processes (e.g.,
fast rerouting) to automatically start to react and bypass the failed
equipment. The presentation below is focused on error conditions
leading to the disruption to our commitment protocol.
Transient States: We define a transient state as a state where some
data packets use the old configuration and others use the new con-
figuration. A potential pitfall of a transient state is that the utiliza-
tion of some links may be higher than it would be under either of
the two configurations. Consider an example shown in Figure 6.
Routers R1 and R2 will both change forwarding paths in the new
configuration. In Figure 6(a), neither has swapped and only R2 for-
wards through link e. After R1 has swapped in Figure 6(b), the
link is used by both routers, possibly causing temporary conges-
tion. Once R2 swaps in Figure 6(c), the transient state ends and the
final router is no longer using link e. Note that such transient states
also can happen under some circumstances with other approaches
such as the map dissemination approach [34].
Recovery and Rollback: During phase 1, if any one router reports
an error or the controller does not receive acknowledgments from
all routers, the commitment should abort. As a soft state design, if
a router does not receive TAG PACKET before its local timeout, it
should change back to the normal state. During phases 2 and 4, if
the operation of any router is unsuccessful or times out, the operator
will retry the phase. Routers can remain in their current states, as
this is not a transient state. It is straightforward if the operator
chooses to rollback to the original configuration since the tags are
already distributed and only phases 2, 3, and 4 of the protocol need
be executed.

The only phase in which a transient state can happen is phase
3. Here, it is important for the state not to be permanent. Con-
sider what can happen during phase 3. If acknowledgments are
received from all routers, the transient state has already ended and
no rollback is necessary. If at least one acknowledgment is missing,
there are two possible reasons: a router did not receive or process
the SWAP command, or the SWAP is processed but the acknowl-
edgment was not delivered. We would like to detect the first case.
Since an error may have occurred at such routers (e.g., a routing
process crashed), it may not be possible to query them directly.
Thus, the operator queries the router’s neighbors. If the router in
question is tagging its forwarded traffic (recall that only real pack-
ets are present) with Cold , then there exists a router that has not
processed the SWAP message, and the srnet should rollback. Note
that even if a router crashes during commitment, both the real and
shadow configurations of other routers within the srnet reconverge
appropriately.

PROPOSITION 1 (SAFETY). Packets never alternate back and
forth between configurations. Thus, the commitment protocol does
not create any additional forwarding loops. Also, control packets
such as route advertisements are delivered correctly even while the
commitment protocol is executing.

PROPOSITION 2 (LIVENESS). If for every router, commitment
control messages are delivered in finite time, and the router either
responds to the messages or is recovered offline in finite time, the sr-
net returns to normal operation, and the transient state is no longer
present.

7. SHADOW IMPLEMENTATION
To demonstrate feasibility, we have implemented a fully opera-

tional system supporting shadow configurations. We now discuss
in detail Layers 1 and 2 of our system architecture. The related
components are shown in Figure 1.

7.1 Objectives
There are three primary objectives fulfilled by our implemen-

tation: (1) identify operating system configuration entities with the
shadow and/or real configurations; (2) keep CPU and memory over-
head low by merging configuration entities where possible; (3) re-
duce code changes (e.g., to routing processes and network tools)
after introducing shadow configurations.

7.2 Supporting Shadow Configurations
A key issue in implementing support for shadow configurations

is associating entities maintained within the operating system (e.g.,
FIB entries, filtering rules, interfaces, neighbor entries, and pack-
ets) with the appropriate configuration. To demonstrate that this can
be done with minimal effort, we present an implementation consist-
ing of extensions to the Linux Kernel (version 2.6.22.9). Our design
is able to support both XORP [23] (version 1.4) and Quagga [41]
(versions 0.98.6 and 0.99.9) without any source code changes to
either software package. Either can be used interchangably above
our shadow-enabled kernel, which illustrates support in heteroge-
nous environments.

Figure 7 shows the major components of the implementation.
We emphasize that different routers may choose different imple-
mentation as long as the messaging format (i.e., how shadow data
packets and shadow control packets are encoded) is standardized.
Separating Configurations: Each entity is associated with a par-
ticular configuration. Entities corresponding to the current real con-
figuration are applied to transit traffic and routing processes that
communicate with the outside world, while entities corresponding
to the current shadow configuration are being evaluated by the op-
erator.

We append data structures for necessary entities with a mask,
where each bit position corresponds to a particular configuration.

Linux kernel

Routing Processes

Configuration Management Tools

NIC driver 0

Shadow-enabled FIB

cui

xorp_ospfv2

xorp_rtrmgr

xorp_bgpospfd bgpd

zebra

Forwarding/Bandwidth Control

Socket API

scaf stc cdb

zebra

ospfd bgpd xorp_ospfv2

xorp_rtrmgr

xorp_bgp

NIC driver 1

proxy

Figure 7: Implementation of router supporting shadow config-
urations: Shaded parts are new or modified.

If an entity appears in more than one configurations, multiple bits
are set in the mask.

One installed configuration is considered as the real while an-
other is considered the shadow. This mapping is maintained in
a simple two-entry translation table, allowing the commitment’s
swap operation to simply swap the entries in the translation table.
Shadow-enabled FIB: We merge entries in FIB table for both con-
figurations to reduce memory overhead. FIB entries use a mask to
indicate the configurations to which the destination subnet belongs.

We extend the FIB lookup, insertion, and deletion algorithms to
handle the merged FIB table. If the forwarding behaviors (e.g.,
next hops) in the two configurations are different, we record the
difference inside the entry.

Other similar kernel tables, such as neighbor entries, filtering
rules, and interface addresses are handled similarly.
Socket API: Extending the kernel tables is not enough. When
a userspace program, such as a routing process or a testing tool
communicates with the kernel, it uses the socket API. We extend
the kernel’s socket data structure to reference the configuration to
be used when transmitting packets and demultiplexing incoming
packets. Routing processes in different configurations can safely
bind to the same IP addresses and ports.
Packets: Our current packet format supports IPv4 and ARP, but
the same methodology can be applied to IPv6 or other Layer 3 pro-
tocols. During normal operations, each packet needs two bits: a
shadow bit S, and a PD bit to indicate whether the payload can
be dropped. Both S and PD are always 0 for transit traffic. For
IPv4 packets, S uses the low bit of the version field, and the PD
uses the unused flag bit. Such a mapping causes shadow packets
to be automatically dropped by routers that are not shadow-aware.
Two additional bits are needed during commitment: TP indicates
whether a tag is present, and TG indicates the tag. We store TP
in the highest bit of the TOS field and TG in the next highest bit.
We use the highest four bits of the ARP header’s operation field to
mark ARP packets. Note that it is also possible to encode some or
all of this information in a shim header.

Packets received by the kernel are demultiplexed according to the
translation table (and the tag assignment during commitment). A
reference to the appropriate configuration is stored in the packet’s
data structure for usage in key parts of the TCP/IP stack such as
the routing cache and FIB lookups, ICMP errors, and UDP/TCP
demultiplexing.
Shadow-aware Programs: Since we also would like provide
support for existing programs, we allow a default configuration
to be defined for a process, and the attribute is inherited by child
processes. Sockets created by a process initially belong to the
process’s default configuration. We can then launch any program
within the desired configuration.

A shell is started for each configuration to enable an operator
to apply changes to a particular configuration. The shell indicates
whether its configuration is currently defined as the real or shadow.
Routing Processes and Tools: In most implementations, routing
processes are normal user processes. Changing networking con-
figurations in the Linux kernel is primarily done using netlink

sockets. By starting a routing process in the appropriate shell, its
sockets are associated with that configuration and the kernel inter-
prets the changes to entities as applying to that configuration. We
configure Quagga and XORP such that two instances can be run-
ning concurrently, allowing both a shadow and real configuration
to be deployed.

The same technique is applied to common network testing tools
such as ping, traceroute, and homegrown scripts, allowing
them to operate without modification. We use this approach with
our custom traffic generation program and measurement program
used in our evaluations.

It is possible that some vendors add shadow-awareness directly
to userspace processes (e.g., to use a shared RIB to further reduce
memory overhead or supporting additional features in traceroute),
while others may want to reduce code changes.
Connection to Outside: Our implementation uses proxies to han-
dle control plane connectivity to outside of a srnet. Such connec-
tivity is necessary to support incremental deployment and interdo-
main scenarios. These simple proxies can handle not only normal
operations but also shadow commitment.

Consider the example of eBGP. Suppose without shadow config-
urations a BGP routing process b has a BGP peer e in another do-
main; that is, b has a TCP connection at port 179. With shadow con-
figurations, corresponding to b, there may be two BGP processes
br and bs for the real and shadow configurations. We introduce a
proxy bp for b. Then bp peers with the external BGP peer e (by
listening at the IP address and BGP port 179). The process bp for-
wards each incoming BGP message from e to both br and bs, which
can then apply its ingress filtering policies. Whenever br sends a
BGP message to e, it is forwarded to bp which forwards to e.

We use a novel transaction rollback technique to handle commit-
ment with visible external effects. Specifically, the proxy keeps a
log of forwarded messages. Whenever bs sends a BGP message
to e, it is stored locally by bp. If the network swaps the real and
shadow configurations, bp computes the differences of the mes-
sages of br and bs, rolls back the unnecessary impacts of br (i.e.,
withdraw different routes), and then installs the effects of bs with-
out disconnecting the external BGP connection.
Shadow-aware Interfaces: It is necessary for routers to drop shadow
packets and untag transit packets (in the case of commitment) be-
fore exiting an srnet. We enable a shadow-aware attribute on each
interface that participates in the srnet.

Since our evaluation environment utilizes ARP, there is one ad-
ditional complexity during commitment. Egress traffic should not
be delayed or possibly dropped while it waits for the new configu-
ration to query for the MAC address of the peering router outside of
the srnet. Thus, we configure the kernel to accept unsolicited ARP
replies and duplicate any received ARP reply to the shadow config-
uration for interfaces with the shadow-aware attribute disabled.

8. EVALUATIONS
We first present our methodology, then present our results in two

parts. In the first part, we present results that show that the overhead
of supporting shadow configuration is very small. In the second
part, we demonstrate the effectiveness of shadow configurations in
three usage scenarios.

8.1 Methodology
Implementation: We use our implementation as described in Sec-
tion 7.
Configurations: We use the configuration files of the two operat-
ing networks in Table 1. US-ISP is a large US tier-1 ISP.

We use the configurations of US-ISP only for evaluation of FIB
size overhead. The rest of our experiments use a small illustrative
topology and an emulation of the Abilene backbone. We use Emu-
lab’s [52] 3 Ghz PCs with 1 Gbps and 100 Mbps Ethernet links. We

Network #Nodes #Directed Links Syntax
Abilene 9 26 Juniper
US-ISP - - Cisco
Table 1: Network configurations used.

take additional steps to load configuration data into our emulation
of the Abilene backbone. Configuration commands are translated
to both XORP and Quagga syntax. Then BGP routes from Abi-
lene’s July 2007 BGP RIB dumps are injected as static routes at
virtual egress points, dummy0 interfaces, at the appropriate routers.
Routes for the University of Utah are removed so as not to inter-
fere with the Emulab addresses configured on the routers. Since
the versions of XORP and Quagga used did not support IS-IS, we
translated Abilene’s configurations to use OSPF.
Data Traffic: We use CAIDA [6] packet traces in our evaluations.
When using these traces on our emulation of the Abilene backbone,
we remove packets for destination addresses not appearing in the
BGP routes accepted by Abilene.
Performance Measurements: To obtain performance measure-
ments under packet cancellation, we use a custom utility similar
to iperf that timestamps generated packets just following the IP
header and sends using raw sockets. The timestamp is not lost dur-
ing packet cancellation. We modify the kernel to deliver canceled
packets to raw sockets. The server computes delay between send-
ing and receiving time, and uses linear regression to subtract off
mean delay and account for clock drift.

8.2 Overhead
Since we intend that shadow configuration be used in production

networks, the overhead of supporting it should be small. One rea-
son we chose Linux is to see the overhead in a general platform. We
consider (a) data path forwarding overhead due to additional com-
plexity to support a shadow configuration; (b) FIB storage overhead
due to addition of a shadow configuration; and (c) FIB update over-
head due to addition of a shadow configuration.
Data Path Forwarding Overhead: Our results show that there
is truly a negligible overhead on the data forwarding path due to
the additional complexity of supporting a shadow configuration.
For this test, we use a particular traffic load both with the stan-
dard Linux kernel, and then again with our shadow-enabled kernel.
When employing our shadow kernel, we load a shadow configura-
tion but do not generate shadow traffic.

We use a topology with 3 routers with 1 Gbps Ethernet links;
there is a sending, intermediate, and receiving router. The sending
router uses the Linux kernel’s pktgen module to generate 300-
byte packets so we can stress-test the intermediate router’s forward-
ing path. Our implementation doesn’t use any additional memory
copies for real packets, so larger packet sizes do not add overhead
in our shadow kernel.

The sending router transmits packets for 30 seconds with ran-
domly generated destination IP addresses in the range 10.0.0.4-
10.255.255.255 to ensure that FIB lookups (on the intermediate
router) are rarely handled by the routing cache. The intermediate
router configures one default route for 10.0.0.0/8 to route to the re-
ceiving router, and also adds additional 9306 randomly generated
entries from 10.0.0.0/8 with a prefix length distribution matching
the global BGP tables published by the Route Views Project on
January 18, 2008 [44]. Note that there are no prefix lengths shorter
than 8. Also, 9293 routes are added in shadow configuration, with
60% of the prefixes shared with the real configuration.

The comparison in CPU utilization between our shadow kernel
and the standard kernel are shown in Figure 8. The machines are
hyperthreaded, so we increase the data rate until the CPU han-
dling the input interface interrupts reaches 100% utilization. The
reported value is the overall CPU utilization including both CPUs.
Our implementation does not noticeably increase CPU utilization

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

C
PU

 U
sa

ge
 (%

)

Throughput (Mbps)

Standard Kernel
Shadow Kernel

Figure 8: System CPU utilization
for varying traffic rates (300-byte
packets).

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 U
sa

ge
 (%

)

Time (sec)

Standard Kernel
Shadow Kernel

Figure 9: System CPU utilization
for FIB updates (100 Mbps, 300-
byte packets).

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

M
em

or
y

In
cr

ea
se

 (%
)

Normalized Router ID (Sorted)

Single Router Removed

35%

 0 20 40 60 80 100
% Routers Removed

Multiple Routers Removed

35%

Figure 10: FIB storage overhead for topology
changes in shadow configuration (US-ISP).

as compared to the standard kernel. Note that the full 1 Gbps ca-
pacity is not reached due to the smaller packet sizes. Our imple-
mentation can achieve the same rates cited by [4] for 1430-byte
packets.
FIB Storage Overhead: One concern is that the number of FIB
entries will be increased. However, for most networks, the network
prefixes are relatively fixed, and thus should appear in both real and
shadow configurations. Accordingly, the number of entries and IP
prefix lookup costs do not increase significantly. We incur a storage
overhead only if the shadow and real configurations specify differ-
ent next-hop behaviors, since otherwise only a single FIB entry is
required.

Scenario Changed FIB Entries Memory Overhead
Remove NEWY↔WASH 13074 4.7%
Remove LOSA 4467 1.6%
Remove KANS 19874 7.2%

Table 2: FIB storage overhead (Abilene).
Table 2 shows the increase in FIB size across all routers for the

Abilene network due to configuration changes made in the shadow
configuration. Both the real and the shadow configurations have
more than 90,000 FIB entries. We observe these topology changes
lead to a small overall storage increase. Although in the theoretical
worst case the storage may double, in our real implementation the
increase is less than 8% due to the sharing between real and shadow
next-hops. We anticipate that this sharing is common.

To evaluate the scenarios for a larger network, we use the config-
uration of US-ISP, a large tier-1 ISP. We use its backbone topology,
OSPF link weight configuration, and external routes to compute
the FIB size at each router. Each router has a few hundreds of thou-
sands of FIB entries. The presented memory overhead is based on
data structure sizes in the Linux kernel implementation.

Figure 10 shows the results for two scenarios. The vertical bar
denotes the maximum and minimum per-router memory overhead,
and the dark points denote the average memory overhead over all
routers. In the first scenario, we show the memory overhead when
only a single router at a time is removed from the network in the
shadow configuration. We observe that in the worst cases, the
routers with the worst FIB overhead have their FIB storage in-
creased by no more than 35%. These “worst” routers are often stub
routers with low connectivity in the topology. Thus, one way to
reduce their storage, if necessary, is forwarding entry aggregation
or virtual address mapping. The average is much lower, under 5%
in most cases. Next, we show the FIB memory overhead as routers
are removed one-by-one in the shadow configuration. There is no
case in which the router with the worst FIB overhead has its FIB
storage increased by 35%. The average overhead is much lower
than the worst case.
FIB Update Overhead: Since we also extend the FIB insertion
and deletion routines to handle shadow configuration, we also eval-
uate the performance when the FIB is being frequently updated. We
use the same setup as the prior experiment on FIB data forwarding
processing overhead, but we also randomly add and delete between
1 and 100 routes in the real configuration in 10.0.0.0/8 each second
at the intermediate router as it is forwarding traffic.

Figure 9 shows the results. Again, there is no noticeable differ-
ence between supporting shadow configuration or not. Note that
when running this experiment without the FIB updates, the CPU
utilization for both our shadow kernel and the standard kernel fluc-
tuates much less, but both remain nearly identical for the duration
of the experiment.

8.3 Usage of Shadow Configurations
We now demonstrate the effectiveness of shadow configuration

in three usage scenarios.
Equipment Maintenance: A usage scenario of shadow configura-
tion is equipment maintenance. We use this scenario to demonstrate
the performance of our commitment protocol.

In this experiment, we use the Abilene topology and configura-
tions, and generate transit traffic according to the CAIDA traces
from peering routers configured at New York, Seattle, and Atlanta.
Emulab’s delay nodes are used to model propagation delays.

In this scenario, we bring the Kansas router down for mainte-
nance and return it to service when finished. The real configuration
is initially cloned to the shadow configuration. Next, we disable
OSPF in the shadow configuration on the Kansas router, wait 10
seconds, then commit at time 48. The network operator may then
safely perform upgrades, and restart it when finished. Once the
shadow configuration with Kansas enabled converges, the configu-
rations are again swapped, causing the Kansas router to again for-
ward transit traffic.

 75

 80

 85

 90

 95

 100

 105

 110

 0 20 40 60 80 100

R
TT

 (m
s)

Time (s)

Commit
before
shutdown

Short transient
 period

Swap back
after restart

Figure 11: RTT between peers at New York and Seattle during
commitment and rollback.

Figure 11 shows the round-trip time between the peering routers
at New York and Seattle. Note that there are three modes of op-
eration at 82 ms, 92 ms, and 102 ms due to the Abilene routers
asynchronously executing the swap in phase 3 of the commitment
protocol. This arises because the ICMP echo request follows a dif-
ferent path than the reply, due to tagging at the ingress routers. The
intermediate transition phase lasts for a short time, but the packet
forwarding behavior during this transition phase is clean and con-
trolled. Importantly, there are no packet losses.

Our commitment protocol is executed over serial consoles to
each router. We are currently developing a protocol to access the
routers’ configuration terminals using both the shadow and real
configurations such that the protocol is resistant to misconfigura-
tion in one of the two configurations.

Parameter Tuning: The next usage scenario for shadow configu-
rations we evaluate is parameter tuning. We update a set of OSPF
link weights simultaneously. The real configuration uses Abilene’s
normal link weights, and we then change all of the link weights in
the network to be the inverse of the bandwidth (i.e., all equal in the
Abilene case) using two methods: (1) manual configuration and (2)
shadow configurations.

To perform the manual configuration, we update the link weights
using parallel Telnet sessions, which takes about 4 seconds. With
shadow configurations, we update the link weights in the shadow
configuration, wait 20 seconds for convergence, and then execute
the commitment protocol.

 70
 80
 90

 100
 110
 120
 130
 140

 0 5 10 15 20 25 30 35

R
TT

 (m
s)

Time (s)

Manual Configuration

 0 5 10 15 20 25 30 35
Time (s)

Shadow Commitment

Figure 12: RTT between peers at New York and Seattle during
OSPF link weight change.

We immediately notice in Figure 12 that using the shadow con-
figuration avoids the reconvergence process. Under manual config-
uration, the round-trip time between the peer routers at Seattle and
New York fluctuate between 83 ms and 135 ms before settling on
the converged value of 80 ms. Using shadow configurations pro-
vides a quick and smooth transition since convergence takes place
in the shadow configuration prior to commitment.
New Service Testing: The last usage scenario we evaluate is test-
ing of new services. We use this scenario to demonstrate our packet
cancellation technique and show that (1) there is little effect on tran-
sit traffic and (2) performance measurements on shadow traffic are
indicative of its true performance.

Real Shadow
Config Abilene configuration Abiliene configuration with 4 link

weights adjusted for load balanc-
ing

Traffic Transit traffic generated
from CAIDA traces with
30% utilization on bot-
tleneck link

Duplicated real traffic and UDP
streaming video with 6 servers
and 12 clients

Table 3: New service testing experiment setup.
Setup: In this scenario, a network operator is testing a streaming
video application under a new set of OSPF link weights. Our setup
is shown in Table 3.

UDP packet traces are constructed using a high-definition movie
trailer and the VideoLAN [48] VLC software. The movie trailer
alternates between complex scenes (using up to 22 Mbps) and a
black background with text (using 450 Kbps).

With this setup, there exist time intervals when the combined
(raw) real and shadow traffic intensity exceeds link capacity on
some links, meaning bandwidth partitioning is not effective for ob-
taining accurate performance results.

Delay nodes are removed from the Emulab experiment since we
want to observe small-scale variations over multihop flows. We
also use 100 Mbps links to more easily observe delay variation
given the resolution of our measurement tools.
Safety for Transit Traffic: Our experiments show that the shadow
traffic has little effect on the real traffic when packet cancellation is
enabled. We show the measured performance for two paths. Fig-
ure 13 shows the delay variation for traffic from Seattle to Chicago.

The real traffic performance with packet cancellation enabled over-
laps the performance when only real transit traffic is present, while
the delay variation rises sharply up to about 15 ms without packet
cancellation. Similar behavior is observed between Salt Lake City
and Atlanta (Figure 14), where the round-trip time increases from
under 1 ms up to 20 ms without packet cancellation. Round-trip
time is largely unaffected with packet cancellation enabled.
Shadow Performance Accuracy: We next show that packet can-
cellation provides accurate performance measurements despite the
presence of real transit traffic. In our experiment, there are multiple
streaming sessions that have incorrect measurements when packet
cancellation is not enabled. For example, the throughput measure-
ment for the video stream from Houston to Chicago (Figure 16)
shows the correct value of 22 Mbps. Without packet cancellation,
the measurements incorrectly show that only 18 Mbps is supported.

Multiple video streams in our experiments also show that loss
rates with packet cancellation are indicative of the true value. Fig-
ure 15 shows the loss rate of streams served by Salt Lake City.
Without packet cancellation, it is erroneously reported to be up to
14%, while packet cancellation correctly has no losses.
Fine-grained Accuracy: Finally, we show in more detail how real
traffic is protected and performance characteristics of shadow traf-
fic are preserved under packet cancellation. We use a simple il-
lustrative topology shown in Figure 5 and the CAIDA traces. Fig-
ure 17 shows CDFs of delay variation for both real and shadow traf-
fic. The observed performance for real traffic is largely unchanged
as we increase shadow traffic until raw total traffic intensity reaches
link capacity (100%). Similarly, delay variations for shadow traffic
closely approximate its actual behavior.

9. RELATEDWORK
The importance of configuration management has motivated many

recent studies and proposals on this topic (e.g., [3, 7, 14, 36]). Due
to space limitation, we review only the most directly related work.
Static Analysis and Simulation Tools: These studies are very
useful for configuration validation in many settings (e.g., [15, 17,
22, 37, 53]). Shadow configurations provide a complementary tool
and have several advantages such as scalability. A particular ad-
vantage is that it does not depend on an abstract model of the real
network and therefore will not miss configuration errors caused by
the inconsistency between the real network and the model.
• Since static analysis and simulation tools often depend on an ab-

stract model of the real network, they may miss configuration
errors caused by the inconsistency between the real network and
the model (e.g., forgotten network equipment or network con-
nectivity).

• The final configuration depends on the whole network process-
ing environment: the hardware, firmware, and software features
(including the bugs!) of the routers. Typical networks are hetero-
geneous networks consisting of equipment from multiple ven-
dors with distinct hardware, firmware and software features. As
an example of the complexity, a survey [36] of 31 production
networks found that over 200 different software versions were
running on multiple hardware platforms. As another example,
some routers may also offer special non-standard features (e.g.,
Cisco-specific BGP decision steps in addition to the conven-
tional BGP decision process [53]). As yet another example, the
Cisco document [10] reports a common OSPF routing problem
related with forwarding addresses. The reachability issue was
caused by a bug in Cisco IOS before Release 12.1(3).

• The interactions of multiple services can be a source of config-
uration errors. Today’s networks are complex and certain be-
haviors may only arise when two features interact. As a simple
example, the routing protocol can compute a backup path but all
packets rerouted to the backup path can be dropped by a packet

-5
 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50 60

D
el

ay
 V

ar
ia

tio
n

(m
s)

Time (s)

Real Only
Cancellation Enabled

Cancellation Disabled

Figure 13: Delay variation for real tran-
sit traffic (Seattle→Chicago).

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

R
TT

 (m
s)

Time (s)

Real Only
Cancellation Enabled

Cancellation Disabled

Figure 14: RTT in real configuration
(Salt Lake City→Atlanta).

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 10 20 30 40 50 60 70

Lo
ss

 R
at

e
(%

)

Time (s)

Shadow Only
Cancellation Enabled

Cancellation Disabled

Figure 15: Loss rate for streams (Salt
Lake City server).

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

Th
ro

ug
hp

ut
 (M

bp
s)

Time (s)

Shadow Only
Cancellation Enabled

Cancellation Disabled

Figure 16: Stream throughput (Houston→Chicago).

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4

Pr
ob

ab
ili

ty

Delay Variation (ms)

Real at 40% Utilization

No Shad.
20% Shad.
40% Shad.
60% Shad.

-0.4 -0.2 0 0.2 0.4
Delay Variation (ms)

Shadow at 40% Utilization

No Real
20% Real
40% Real
60% Real

Figure 17: Delay variation CDF (illustrative topology).
filter. Most tools typically focus on a single piece or set of func-
tionality (e.g., routing, access control, or QoS).

• The configuration evaluation system should scale as the network
size grows. Many simulators can have limited capacity as com-
pared to the network it is simulating, making it difficult and in-
efficient to run tests with large demands.

• On the forwarding plane, the performance depends on traffic de-
mand pattern, FIBs, hardware capability, and software imple-
mentations. If a tool conducts performance evaluation based on
a very coarse-grained model (e.g., a link is characterized by two
simple numbers such as propagation delay and bandwidth), per-
formance problems may not be revealed.

Comparison with Virtualization: One possibility to address some
of the problems of static analysis or simulation is to utilize the re-
cently proposed network virtualization techniques such as Planet-
Lab slices [9], VINI [4], CABO [16], or Juniper’s Logical Router
feature [27].

A key difference between shadow configurations and these vir-
tualization techniques such as PlanetLab and VINI is objective.
Specifically, the main objective of the aforementioned virtualiza-
tion studies is on building general, flexible experimental facilities
for researchers. Thus, the focus is more on providing capabilities
such as flexible (overlay) experimental topology constructions, and
flexible routing and forwarding (or programmability on the network
elements in general). Also, as application-oblivious experimental
facilities, general virtualization would need to consider each virtual
network as independent and thus a key issue is to provide isolation
among them.

The objective of shadow configurations, on the other hand, is to
provide an effective and easy-to-use capability for network opera-
tors in the specific but important domain of configuration testing. A
configuration may have multiple virtual networks (e.g., VPNs) con-
structed inside according to the configuration files in the shadow
configuration, but this is transparent to us. In a specific domain,
general flexibility may not be necessary, and the overhead may be
too high in production networks.

Conceptually, one can consider the real and the shadow configu-
rations as two virtual networks. From this perspective, our main
contribution is a novel usage of virtualization for the important
domain of network configuration management. Instead of forcing
users to adapt to the underlying technique (i.e., asking operators to

explicitly construct virtual experiments for configuration manage-
ment), we use the user interface that a network operator is already
using to provide an easy-to-use tool. The most important design
objective of shadow configurations is simplicity and ease of use,
as this is the objective prompted in many settings (e.g., the collec-
tive plea of LISA 2006 Configuration Workshop). In addition, we
enrich the domain of application of virtualization by creating two
correlated virtual networks for a single task. Our novel capabili-
ties of packet cancellation and configuration commitment provide
examples where it may be beneficial to extend beyond general vir-
tualization where virtual networks are typically considered inde-
pendent.

One recent work that also applies virtualization to network con-
figuration management is VROOM [50]. Their objective is to re-
duce logical topology change by allowing dynamic binding be-
tween virtual routers to physical routers. This objective is different
from our objective, which in one sentence is to discover issues in a
new configuration before its real deployment.

10. CONCLUSION AND FUTUREWORK
In this paper, we presented the novel idea of shadow configura-

tions. We developed novel techniques such as packet cancellation
and shadow commitment to substantially improve the capability of
configuration evaluation and management. There are many avenues
for future exploration. In particular, we would like to conduct an
extensive evaluation on using shadow configuration for automating
configuration debugging and network diagnostics. We would also
like to study their usage in carrier-grade installations.

11. ACKNOWLEDGMENTS
Richard Alimi and Y. Richard Yang were supported in part by grants

from the U.S. NSF. We would like to thank Yuan Dong and Ehab Al-Shaer
for greatly beneficial initial discussions. The main algorithm of FIB anal-
ysis was contributed by Hao Wang. He has also made many other key ob-
servations. We are also grateful to Lorenzo Alvisi, Jim Aspnes, Matthew
Caesar, Charles Kalmanek, Karthik Lakshminarayanan, Erran Li, Jennifer
Rexford, Zhong Shao, Avi Silberschatz, and Xiaowei Yang for valuable
suggestions.

12. REFERENCES
[1] M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Seshan,

J. van der Merwe, and J. Yates. Routerfarm: Towards a dynamic,
manageable network edge. In ACM SIGCOMM INM, 2006.

[2] P. Anderson and A. Scobie. Large scale Linux configuration with
LCFG. In Proc. of ALS, Berkeley, CA, 2000.

[3] H. Ballani and P. Francis. Conman: A step towards network
manageability. In ACM SIGCOMM, Kyoto, Japan, Aug. 2007.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI veritas: Realistic and controlled network experimentation. In
ACM SIGCOMM, Pisa, Italy, Sept. 2006.

[5] M. Caesar, L. Subramanian, and R. Katz. A case for an Internet
health monitoring system. In HotDep, 2005.

[6] CAIDA: Cooporative association for Internet data analysis.
http://www.caida.org/.

[7] X. Chen, Z. M. Mao, and K. van der Merwe. Towards automated
network management: Network operations using dynamic views. In
ACM SIGCOMM INM, 2007.

[8] B.-Y. Choi1, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot.
Analysis of point-to-point packet delay in an operational network. In
Proceedings of IEEE INFOCOM ’04, Hong Kong, China, Apr. 2004.

[9] B. Chun and et al. Planetlab: an overlay testbed for broad-coverage
services. ACM CCR, 33(3):3–12, 2003.

[10] Cisco Systems. Common routing problem with OSPF forwarding
address.
http://www.cisco.com/warp/public/104/10.pdf.

[11] Cisco Systems. Network solutions integrated test environment:
Delivering on the promise of innovation. URL: http://www.
cisco.com/application/pdf/en/us/guest/netsol/
ns522/c2072/cdccont_0900aecd80458f98.pdf, 2006.

[12] M. Crovella, C. Lindemann, and M. Reiser. Internet performance
modeling: the state of the art at the turn of the century. Performance
Evaluation, 42:91–108, 2000.

[13] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. Netdiagnoser:
Troubleshooting network unreachabilities using end-to-end probes
and routing data. In In the Proceedings of CoNEXT’07, Dec. 2007.

[14] W. Enck, P. McDaniel, Subhabrata, P. Sebos, S. Spoerel,
A. Greenberg, S. Rao, and W. Aiello. Configuration management at
massive scale: System design and experience. In USENIX, Santa
Clara, CA, June 2007.

[15] N. Feamster and H. Balakrishnan. Detecting BGP configuration
faults with static analysis. In NSDI, May 2005.

[16] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in
your spare time. ACM CCR, 37(1):61–64, 2007.

[17] A. Feldmann. Netdb: IP network configuration debugger/database.
Technical report, AT&T Research, July 1999.

[18] A. Feldmann and J. Rexford. IP network configuration for
intradomain traffic engineering. IEEE Network Magazine, pages
46–57, Sept./Oct. 2001.

[19] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with
traditional IP routing protocols. IEEE Communication Magazine,
Oct. 2002.

[20] P. Francois and O. Bonaventure. Avoiding transient loops during IGP
convergence in IP networks. In IEEE INFOCOM, Miami, FL, Apr.
2005.

[21] P. Francois, M. Shand, and O. Bonaventure. Disruption free topology
reconfiguration in OSPF networks. In IEEE INFOCOM, Anchorage,
AK, May 2007.

[22] H. Hamed, E. Al-Shaer, and W. Marrero. Modeling and verification
of IPSec and VPN security policies. In IEEE ICNP, Boston, MA,
Nov. 2005.

[23] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.
Designing extensible IP router software. In NSDI, May 2005.

[24] U. Hengartner, S. Moon, R. Mortier, and C. Diot. Detection and
analysis of routing loops in packet traces. In IMW, Marseille, France,
Nov. 2002.

[25] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, M. Jordan,
A. D. Joseph, and N. Taft. Communication-efficient online detection
of network-wide anomalies. In IEEE INFOCOM, Anchorage, AK,
May 2007.

[26] W. John and S. Tafvelin. Analysis of Internet backbone traffic and
header anomalies observed. In IMC, Aug. 2007.

[27] Juniper Networks. Intelligent logical router service. URL:
http://www.juniper.net/solutions/literature/
white_papers/200097.pdf, Oct. 2004.

[28] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A tool for failure
diagnosis in IP networks. InMineNet, Aug. 2005.

[29] Z. Kerravala. As the value of enterprise networks escalates, so does
the need for configuration management, Jan. 2004.

[30] Z. Kerravale. Configuration management delivers business resiliency.
The Yankee Group, 2002.

[31] E. Kiciman and L. Subramanian. A root cause localization model for
large scale systems. In IEEE INFOCOM, Anchorage, AK, May 2007.

[32] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP fault
localization via risk modeling. In NSDI, San Francisco, CA, May
2005.

[33] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.
Detection and localization of network black holes. In IEEE
INFOCOM, Anchorage, AK, May 2007.

[34] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica. Achieving convergence-free routing using
failure-carrying packets. In ACM SIGCOMM, Kyoto, Japan, Aug.
2007.

[35] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. User-level
Internet path diagnosis. In SOSP, Bolton Landing, Oct. 2003.

[36] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and
A. Greenberg. Routing design in operational networks: A look from
the inside. In ACM SIGCOMM, Portland, OR, Aug. 2004.

[37] S. Narain. Network configuration management via model finding. In
Proceedings of LISA, pages 155–168, 2005.

[38] S. Narain. Overview of configuration validation. Presentation at
LISA 2006 Configuration Workshop, Dec. 2006.

[39] A. Nucci, S. Bhattacharyya, N. Taft, and C. Diot. ICP link weight
assignment for operational tier-1 backbones. IEEE/ACM
Transactions on Networking, Aug. 2007.

[40] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why Internet
services fail and what can be done about these? In USENIX USITS,
Oct. 2003.

[41] Quagga Software Routing Suite. http://www.quagga.net/.
[42] B. Quoitin, S. Uhlig, and O. Bonaventure. Using redistribution

communities for interdomain traffic engineering. In QoFIS’02 LNCS
2511, Oct. 2002.

[43] M. Roughan, T. Griffin, M. Mao, A. Greenberg, and B. Freeman.
Combining routing and traffic data for detection of IP forwarding
anomalies. In SIGMETRICS, New York, NY, June 2004.

[44] University of Oregon Route Views Project.
http://www.routeviews.org/.

[45] A. Soule, K. Salamatian, and N. Taft. Combining filtering and
statistical methods for anomaly detection. In IMC, Aug. 2005.

[46] M. Steinder and A. S. Sethi. A survey of fault localization techniques
in computer networks. Science of Computer Programming,
53:165–194, 2004.

[47] L. Tatman. Incorporating routing analysis into IP network
management. URL: http://www.agilent.com/labs/
features/2003_wp_roca.pdf, May 2003.

[48] VideoLAN - VLC media player. http://www.videolan.org/.
[49] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush. A measurement

study on the impact of routing events on end-to-end internet path
performance. ACM CCR, 36(4), 2006.

[50] Y. Wang, J. van der Merwe, and J. Rexford. VROOM: Virtual
ROuters On the Move. In HotNets-VI, Atlanta, GA, Nov. 2007.

[51] A. Whitaker and D. Wetherall. Forwarding without loops in icarus. In
IEEE OEPNARCH, 2002.

[52] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks. In
OSDI, Boston, MA, Dec. 2002.

[53] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg,
G. Hjalmtysson, and J. Rexford. On static reachability analysis of IP
networks. In IEEE INFOCOM, Miami, FL, Apr. 2005.

[54] A. Zeller. Yesterday, my program worked. today, it does not. Why?
In ESEC / SIGSOFT FSE, pages 253–267, 1999.

[55] B. Zhang, T. S. E. Ng, A. Nandi, R. Riedi, P. Druschel, and G. Wang.
Measurement-based analysis, modeling, and synthesis of the internet
delay space. In IMC, Aug. 2006.

[56] Z. Zhong and et al. Avoiding transient loops through
interface-specific forwarding. In IWQoS, 2005.

