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Abstract

We study the shadow of a charged rotating black hole in f(R) gravity. This black hole is

characterized by mass, M , spin, a, electric charge, Q and R0 which is proportional to cosmological

constant. We analyze the image of the black hole shadow in four types 1) at r → ∞, 2) at r → rO

in vacuum, 3) at r → ∞ and 4) at r → rO for an observer at the presence of plasma. Moreover,

we investigate the effect of spin, charge and modification of gravity on the shape of shadow. In

addition, we use two observables, the radius Rs and the distortion parameter δs, characterizing the

apparent shape. We show that for all cases, the shadow becomes smaller with increasing electric

charge. Also, by increasing the rotation parameters, circular symmetry of the image of black hole’s

shadow will change. Furthermore, in the presence of plasma, plasma parameter also effects on size

of the shadow.
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1. INTRODUCTION

Is it possible to analyze the shadow of an object which had not been observed yet? The

study of black holes is as old as the theory of general relativity, with lots of research and

literature in this field, but there are still many unknown issues. The main problem in the

study of black holes, is lack of observational data. According to predictions of general rel-

ativity, there are two observational methods to collect information about the black holes,

i.e. gravitational lensing and detection of gravitational waves. The possibility of the ex-

istence of a black hole in an area in space increases by detection of gravitational lensing

effect and gravitational waves; such as, the observational LISA project data [1], which was

proof of binary black holes. Recently, observer are motivated to look for the possible black

hole in the center of Milky Way. There are two projects which called Event Horizon Tele-

scope (EHT) [2, 3] and European BlackHoleCam (BHC) [4], have started to collect data in

this field. The aim of these projects are obtaining another observational evidence for black

holes, that it is called ”shadow” of black holes. To understand the concept of shadow, we

should provide a correct definition of it. Suppose a light source at rL and an observer at

rO, where rL > rO. Therefore, the light rays have two paths; 1) They are deflected by

black hole and back to the light source, so we have brightness in the observer’s sky, 2) They

go to the event horizon and they do not come back to the light source, in this case, the

observer’s sky have darkness. The darkness in the observer’s sky called shadow. Already,

several black holes were studied in pure gravity and at least properties of most of them

have been analyzed theoretically, so theoretical study of shadow for these black holes are

possible. This approach effects on a better understanding of the theory of gravity and black

holes, also, the shape of different black holes shadow and the impression of various param-

eters can be investigated. It is shown that the image of Schwarzschild black hole’s shadow

is circular and have a photon sphere [5], while the Kerr black hole, has a photon region,

and it doesn’t have a circular shadow image, which means that it can take into account

for the deviation from circular symmetry [6]. Lensing in Schwarzschild black hole [7] and

geometry of photon surface [8] had been studied too. So, shadow deviation from circular

form, can determine the spin parameter of black holes. In this story, there are many studies

on different black holes, such as, Kerr [9], Kerr-Newman [10], Kerr-NUT [11], regular black

hole [12], multi-black hole [13], black holes in extended Chern-Simons modified gravity [14],
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Randall-Sundrum braneworld [15] and Kerr black holes with scalar hair [16, 17]. Deviation

of circular symmetry and the changes in the size of shadow image is defined as δs and Rs,

by Hioki and Maeda [18]. However, in most of investigations on the study of black hole’s

shadow, the location of observer is at infinity. In this work, we study the case of observer at

infinity and the case of observer at limited distance, following Ref. [19]. The study of black

holes, has been considered not only in general relativity, but also in extended and alterna-

tive theories such as, braneworld cosmology [20], Lovelock gravity [21], scalar tensor [22] and

f(R) gravity. In fact, these theories are replaced and refined to justify some subjects like,

cosmic acceleration, dark matter, cosmic inflation and the solar system abnormalities [23–

30]. However, the properties of black holes always has been considered in these theories too,

such as [31] and [32]. In this paper, we investigate shadow of a charged rotating black hole

in f(R) gravity in the absence and the presence of plasma for an observer at infinity and

especially in a limited distance. Here, we consider, there is no light source close to the black

hole, which means, we use the light like geodesic as path of the incident light rays. This

paper is organized as follow, In Sect.2 and .3, we summarize the properties of f(R) gravity

and its geodesics. In Sect.4, we calculate shadow for an observer at r = ∞. In Sect.5, we

obtain an analytical formula for an observer in r = rO . In Sect.6 and .7, we analyze these

situations in the presence of plasma and our results conclude in Sect.8.

2. FIELD EQUATIONS IN f(R) MODIFIED GRAVITY

In this section, we study field equation and metric in f(R) gravity. The action with

Maxwell term is

S = Sg + SM , (1)

where, Sg and SM are the gravitational action and the electromagnetic actions as

Sg =
1

16π

∫

dDx
√

|g|(R + f(R)), (2)

SM =
−1

16π

∫

d4x
√−g[FµνF µν ], (3)

where, R is the scalar curvature, R + f(R), is the function defining the theory under con-

sideration, and g is the determinant of the metric. The Maxwell and field equation are

∇µF
µν = 0, (4)
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Rµν

(

1 + f ′(R)
)

− 1

2

(

R + f(R)
)

gµν +
(

gµν∇2 −∇µ∇ν

)

f ′(R) = 2Tµν , (5)

where, ∇ is the usual covariant derivative, Rµν , is the Ricci tensor and the stress-energy

tensor of the electromagnetic field is given by

Tµν = FµρF
ρ
ν − gµν

4
FρσF

ρσ, (6)

with

T µµ = 0. (7)

the constant curvature scalar R = R0 and The trace of Eq. (5), leads to

R0

(

1 + f ′(R0)
)

− 2
(

R0 + f(R0)
)

= 0, (8)

which introduces the negative constant curvature scalar as

R0 =
2f(R0)

f ′(R0)− 1
. (9)

Using this relation in equation (5) gives the Ricci tensor

Rµν =
1

2

( f(R0)

f ′(R0)− 1

)

gµν +
2

(

1 + f ′(R0)
)Tµν . (10)

Finally, Alexis Larranaga [33], introduced the axisymmetric ansatz in Boyer–Lindquist–type

coordinates (t, r, θ, ϕ) inspired by the Kerr-Newman-AdS black hole solution as

ds2 = −∆r

ρ2
[

dt− asin2θdϕ

Ξ

]2
+
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2 +
∆θsin

2θ

ρ2
[

adt− r2 + a2

Ξ
dϕ

]2
. (11)

where

∆r = (r2 + a2)
(

1 +
R0

12
r2
)

− 2Mr +
Q2

(1 + f ′(R0))
, (12)

Ξ = 1− R0

12
a2, ρ2 = r2 + a2cos2θ, ∆θ = 1− R0

12
a2cos2θ, (13)

which, a is the angular momentum per mass of the black hole, R0 is a constant proper to

cosmological constant (R0 = −4Λ) and Q is the electric charge.
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3. THE GEODESIC EQUATIONS

In this section, we study the geodesic equation and introduce effective potential. The

Hamilton–Jacobi equation is
∂S

∂τ
+

1

2
gij

∂S

∂xi
∂S

∂xj
= 0, (14)

Eq. (14), can be solved with an ansatz for the action

S =
1

2
ετ − Et+ Lzφ+ Sθ(θ) + Sr(r). (15)

The angular momentum L and the energy E, are the constants of motion as

gttṫ + gtϕϕ̇ = −E, gϕϕϕ̇ + gtϕṫ = L. (16)

By substituting Eq. (15) and (16) in Eq. (14), we get

∆θ(
ds

dθ
)2 + εa2cos2θ − 2aELΞ−E2a2sin2θ

∆θ

+
L2Ξ2

∆θsin2θ
= −∆r(

ds

dr
)2−

εr2 +
(a2 + r2)2E2 + a2L2Ξ2 − 2aELΞ(r2 + a2)

∆r

, (17)

where each side depends on r or θ only. We derive the equations of motion using the

separation ansatz Eq. (15), and with the help of the Carter constant [34]

ρ4(
dr

dτ
)2 = −∆r(K + εr2) +

[

(a2 + r2)E − aLΞ
]2

= R(r), (18)

ρ4(
dθ

dτ
)2 = ∆θ(K − εa2cos2θ)− 1

sin2θ

(

aEsin2θ − LΞ
)2

= Θ(θ), (19)

ρ2(
dϕ

dτ
) =

aEΞ(a2 + r2)− a2Ξ2L

∆r

− 1

∆θsin2θ
(aΞEsin2θ − Ξ2L), (20)

ρ2(
dt

dτ
) =

E(r2 + a2)2 − aLΞ(r2 + a2)

∆r

− sin2θ

∆θ

(Ea2 − LΞa

sin2θ
). (21)

In following, we investigate null geodesic, so ε=0, and we have

ρ4(
dr

dτ
)2 = −∆rK +

[

(a2 + r2)E − aLΞ
]2

= R(r), (22)

ρ4(
dθ

dτ
)2 = ∆θ(K)− 1

sin2θ

(

aEsin2θ − LΞ
)2

= Θ(θ), (23)
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ρ2(
dϕ

dτ
) =

aEΞ(a2 + r2)− a2Ξ2L

∆r

− 1

∆θsin2θ
(aΞEsin2θ − Ξ2L), (24)

ρ2(
dt

dτ
) =

E(r2 + a2)2 − aLΞ(r2 + a2)

∆r

− sin2θ

∆θ

(Ea2 − LΞa

sin2θ
). (25)

Now, we introduce dimensionless quantities such that ξ = L
E
and η = K

E2 , which are constant

along the geodesics, so Eq. (22) becomes

ρ4(
dr

dτ
)2 = −∆r(E

2η) +
[

(a2 + r2)E − a(Eξ)Ξ
]2

= R(r). (26)

For the radial motion of particles, the effective potential is substantial tool which can be

obtained by using the equation [35]

ρ4(
dr

dτ
)2 + Veff = 0. (27)

So,

Veff = ∆r(E
2η)−

[

(a2 + r2)E − a(Eξ)Ξ
]2
. (28)

Circular orbits of the photons are important to find out ξ and η [36]

Veff = 0,
dVeff
dr

= 0. (29)

The condition in Eq. (29) is equal to R(r) = 0 and
dR(r)

dr
= 0 Using Eqs. (28) and (29), we

can obtain the parameters η and ξ.

4. THE SHADOW FOR AN OBSERVER IN r = ∞

In this section, we want to analyze the shadow of black holes for an observer in r = ∞,

so we introduce the celestial coordinate α and β, which are [37]

α = lim
rO−→∞

(r2O sin(θO)
dϕ

dr
), (30)

and

β = lim
rO−→∞

r2O
dθ

dr
, (31)

where, θO is the inclination angle between the rotation axis of the black hole and the line

of sight of the observer, also considering an observer far away from the black hole, we have
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rO → ∞. Using Eq. (22)– (24), and take the limit of a faraway observer, the celestial

coordinates take the forms

α = −ξ csc θO, (32)

and

β = ±
√

η + a2 cos2 θO − ξ2 cot2 θO. (33)

For an observer located in the equatorial plane of the black hole, i.e. θO =
π

2
, the gravita-

tional effects are maximum, and α and β become

α = −ξ, (34)

and

β = ±√
η. (35)

For an observer at infinity, we put Λ = 0, because when Λ = 0, ∆r convert to second order

equation in terms of r

∆r = (r2 + a2)− 2Mr +
Q2

(1 + f ′(R0)
, (36)

and the horizons can be obtained as

r± =M ±
√

M2 − Q2

(1 + f ′(R0))
− a2, (37)

where, a2 ≤ a2max, in which a2max =M2− Q2

(1+f
′
(R0))

. In the case of, a2 > a2max, instead of black

hole, we have a naked singularity, and the case a = amax, is called extremal black hole. Since,

outside of the event horizon, (△r) is greater than zero, ∂r is spacelike, so, communication

is possible here. This region is called domain of outer communication and our observer

is located in this region. In fact, when Λ 6= 0, the space time is not flat asymptotically.

Therefore, the observer at the domain of outer communication is apart from an observer

who placed at ∞, by cosmological horizon when, Λ > 0 [19].

In following, considering the above conditions, we plot β in terms of α to obtain the

counter of the black hole’s shadow. These plots are represented for different values of

rotation parameter (a = 0, a = 0.5, a = 0.7 and a = 1) and electric charge Q, in Fig.1. It

can be seen that by increasing the electric charge, the shadows become smaller and, also

increasing of spin parameter a, leads to change in symmetry of the image of shadows.

In addition, for studying the size and deviation of black hole’s shadow, we introduce

two observable Rs and δs parameters. Rs indicates the size of shadow, and δs explains the
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(a) (b) (c)

(d)

FIG. 1: The image of black hole’s shadow in f(R) gravity, a = 0, a = 0.5, a = 0.7 and a = 1 for (a), (b), (c) and (d)

respectively. For each value of a, Q = 0(blue dash-dot line), Q = Qc

2
(red dash line) and Q = Qc(green filled solid

line) for (a), (b), (c)but for (d) only, Q = 0 is considered. The brown solid line is reference circle. The detail of

parameters is shown in table I (see Appendix).

deviation of the shadow from circular. We consider three points top, bottom and rightmost

of the shadow (see Fig.2 [38]), which expressed respectively by (αt, βt),(αb, βb) and (αr, 0),

so we have

Rs =
(αt − αr)

2 + β2
t

2(αt − αr)
. (38)

Furthermore, δs is indicated by (ᾱp, 0) and (αp, 0) as

δs =
(ᾱp − αp)

Rs

, (39)

In which, (αp, 0) and ( ᾱp, 0), are the points, where the contour of the shadow and reference

circle cut the horizontal axis at opposite side of (αr, 0). In Fig. 3, the observable Rs and δs

for different values of f
′

(R0) is plotted. We can see that, by increasing f
′

(R0), Rs increases

and δs decreases. Thus, the larger value of parameter f
′

(R0) leads to increasing in the size

and decreasing in the distortion of the shadow.
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FIG. 2: The black hole shadow and reference circle. ds is the distance between the left point of the shadow and the reference

circle.

(a) Rs and f
′

(R0) for θo = π
2

(b) δs and f
′

(R0) for θo = π
2

FIG. 3: Changes of Rs and δs for an observer at r → ∞. a = 0.3, a = 0.6 and a = 0.7 for the purple (dot line), the blue (dash

line) and the red (dash-dot line) respectively.

5. SHADOW OF BLACK HOLE FOR AN OBSERVER AT r = rO

In this section, we study shadow of black hole for an observer at r = rO. We are interested

in spherical lightlike geodesics, i.e. lightlike geodesics that stay on a sphere r = constant.

The region which is filled by these geodesics are called photon region. Photon region around

the black hole is essential for building shadow, in fact, we can say that the shadow is an image

of photon region. We put our observer at (rO, θO), in the domain of outer communication,

in this case Λ > 0 and we consider a light source at r = rL where rL ≥ rO. In introduction,
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we explain how the shadow forms. Now, we have an observer at (rO, θO) and our purpose is

to calculate the shadow of black hole in this situation. At first, we choose an orthonormal

tetrad [39] at the observer’s sky (see Fig.4) as

FIG. 4: An observer at (ro,θo) with an orthonormal tetrad (e0, e1, e2, e3) according to Eqs. (40).































e0 =
(a2+r2)

Ξ
∂t+a∂ϕ√

∆rρ
|(ro,θo),

e1 =
√
∆θ

ρ
∂θ |(ro,θo),

e2 = −(
a sin2 θ

Ξ
∂t+∂ϕ√

∆θρ sin θ
) |(ro,θo),

e3 = −
√
∆r

ρ
∂r |(ro,θo) .

(40)

Note that, these orthonormal tetrad can be changed by different position of an observer.

Since, put our observer in the domain outer communication, so △r is positive, and the

coefficients in Eq. (40) are real. The vector e3 gives the spatial direction to the center of black

hole (see Fig. 4). In addition, each light ray λ(s) has the coordinate r(s), θ(s), ϕ(s), t(s), so

the tangent vector at the position of the observer can be written as

λ̇ = ṙ∂r + θ̇∂θ + ϕ̇∂ϕ + ṫ∂t, (41)

or

λ̇ = Ω(−e0 + sinω cosψe1 + sinω sinψe2 + cos θe3), (42)

where, Ω is a scalar factor and it can be obtained from Eqs. (11), (40) and (41) as

Ω = g(λ̇, e0) =
aL− (a2+r2)

Ξ
E√

∆rρ
|(rO,θO) . (43)

With comparison coefficients of ∂ϕ and ∂r in Eqs. (41) and (42), we have

sinψ = −ρ
√
∆θ sin θ

sinω
(
ϕ̇

Ω
+

a

ρ
√
∆r

) |(rO ,θO), (44)
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cosω = − ρṙ√
∆rΩ

|(rO,θO), (45)

where ψ and ω are the celestial coordinate. Also, as previous section, the constants of motion

for this light ray are ξ and η, as

η =
16r2∆r

∆′2
r

, (46)

and

ξ =
(a2 + r2)

Ξa
− 4r∆r

Ξa∆′

r

, (47)

where ∆
′

r represents the derivative of ∆r respect to r. Using Eqs. (22), (24), (43), (46) and

(47), we have

sinψ =
Ξ

sin θ
√
∆θη

(Ξξ − a sin2 θ) +

√
∆r

sin θ
√
∆θ

(aΞ sin2 θ − Ξ2ξ)

(aξ − r2+a2

Ξ
)

√

1
Ξ2 − 1

1
Ξ

+

√
∆θ√
∆r

sin θ

sinω
a(Ξ2 − 1) |θO , (48)

and

sinω =

√
∆rη

1
Ξ
((r2 + a2)− aξΞ)

−

√

1
Ξ2 − 1

1
Ξ

|rO . (49)

Next, we use the Eqs. (46)– (49) and stereographic projection from the celestial sphere onto

a plane (see Fig.5) to plot the images of black hole’s shadow. In fact, Eq. (48) and (49) gives

the counter of the shadow of black hole. In fact, the counter of the shadow demonstrated

the light rays which approach to the spherical light like geodesic with radius rp.

Moreover, the cartesian coordinate are obtained by

x(rp) = 2 tan(
ω(rp)

2
) sin(ψ(rp)),

y(rp) = 2 tan(
ω(rp)

2
) cos(ψ(rp)), (50)

So, these equations are used for plotting the image of black hole’s shadow. Some examples

of these plots are shown in (Figs. 6 - 8). In this figures, θO = π
2
and the observer is located

in the domain of outer communication.

It can be seen from Figs. 6 - 8, by increasing the spin parameter, the shadow of black

holes become more asymmetric into vertical axis.
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FIG. 5: For each light ray, we choose ω and ψ from Eq. (42) (left figure). The red ball in the right figure presents

stereographic projection of the point ω and ψ on the celestial plane. The red dotted circles show the celestial equator

θ = π
2

and its projection.

(a) (b) (c)

FIG. 6: Shadow of black holes for Λ = 0. The electric charge, (Q = 0, amax = 1), (Q = 0.75, amax = 0.86) and

(Q = 1.35, amax = 0.43) in (a), (b) and (c) respectively. Each figure is shown for different value of amax. In the green

solid filled pictures a =
2

100
amax, in the dash red picture a =

2

5
amax and in the blue dash-dot plot a =

4

5
amax. The

brown solid line is reference circle. The detail of parameters is shown in table II (see Appendix).

Also, in Fig. 9, the effect of θO on the image of black hole’s shadow is demonstrated.

It can observe from this figure that by decreasing θO from π
2
to limit of 0, the asymmetric

decreases. Moreover, the effect of Λ on the size and shape of shadow is shown in Fig. 10. It

is obvious from Fig. 10, that for Λ from 0 to 6× 10−2 and for the observer placed at θO = π
2

and rO = 5M , the size of shadow become smaller. But in Fig. 10(d), since a = 0, these

changes don’t appear.
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(a) (b) (c)

FIG. 7: Shadow of black holes for Λ = 10−2. The electric charge, (Q = 0, amax = 1), (Q = 0.75, amax = 0.86) and

(Q = 1.35, amax = 0.44) for (a), (b) and (c) respectively. Each figure is shown for different value of amax. In the

green solid filled pictures a =
2

100
amax, in the dash red picture a =

2

5
amax and in the blue dash-dot plot

a =
4

5
amax. The brown solid line is reference circle. The detail of parameters is shown in table II (see Appendix).

(a) (b) (c)

FIG. 8: Shadow of black holes for Λ = 6× 10−2. The electric charge, (Q = 0, amax = 1.02), (Q = 0.75, amax = 0.88) and

(Q = 1.35, amax = 0.46) in (a), (b) and (c) respectively. Each figure is shown for different value of amax. In the green

solid filled pictures a =
2

100
amax, in the dash red picture a =

2

5
amax and in the blue dash-dot plot a =

4

5
amax. The

brown solid line is reference circle. The detail of parameters is shown in table II (see Appendix).
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(a) θO ≃ 0 (b) θO=π
6

(c) θO=π
4

(d) θO=π
3

(e) θO=π
2

FIG. 9: Shadow of a black hole for an observer at rO = 5M and different inclination angles θO, with fixed Q = 1.35,Λ = 10−2

and a = 85
100

amax. The brown solid line is reference circle.
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(a) (b)

(c) (d)

FIG. 10: Shadow of black holes for a = 70
100

amax. Q = 0, Q = 0.75, Q = 1.35 and Q = 1.49 in (a), (b), (c) and (d)

respectively. Each figure is shown for different value of Λ. The blue dash-dot line is for Λ = 0, in the dashed red line

Λ = 10−2 and in the green solid filled line Λ = 6× 10−2, the detail of parameters is shown in table III.
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6. SHADOW OF BLACK HOLE IN THE PRESENCE OF PLASMA AT r −→ ∞

In this section, we will discuss shadow of black hole in the presence of plasma at r −→ ∞.

In 1975, Bicak and Hadrava [40], had been investigated the travel of radiation for a dispersive

and isotropic environment in General Relativity. In addition, the shadow of black hole in

the presence of plasma has been discussed in Refs. [41–43]. In this section, we analyze the

effect of the plasma around the black holes in f(R) gravity. The plasma has the refraction

index equal to n = n(xi, ω). This refraction index is attached to the photon four-momentum

as [44]

n2 = 1 +
pαp

α

(pβuβ)2
, (51)

where uβ, is the observer velocity. Note that, for the vacuum environment, n = 1. Intro-

ducing the specific form of the plasma frequency for analytical results, we have [45]

n2 = 1− ω2
e

ω2
v

, (52)

where, ωv, is the photon frequency and ωe, is the plasma frequency. Using the Hamilton-

Jacobi equation for this geometry [46]

∂S

∂τ
= −1

2
[gijpipj − (n2 − 1)(p0

√

−g00)2]. (53)

The equations of motion of photons in the presence of plasma can be obtained as

ρ4(
dr

dτ
)2 = −∆r(K + εr2) +

[

(a2 + r2)E − aLΞ
]2

+ (r2 + a2)2(n2 − 1)E2 = R(r), (54)

ρ4(
dθ

dτ
)2 = ∆θ(K − εa2cos2θ)− 1

sin2θ

(

aEsin2θ − LΞ
)2 − (n2 − 1)a2E2 sin2 θ = Θ(θ), (55)

ρ2(
dϕ

dτ
) =

aEΞ(a2 + r2)− a2Ξ2L

∆r

− 1

∆θsin2θ
(aΞEsin2θ − Ξ2L), (56)

ρ2(
dt

dτ
) =

n2E(r2 + a2)2 − aLΞ(r2 + a2)

∆r

− sin2θ

∆θ

(n2Ea2 − LΞa

sin2θ
). (57)

Now, we consider the plasma frequency as [47]

ω2
e =

4πe2N(r)

me

, (58)
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where, m and e are the mass and electron charge respectively. Also, in Eq. (58), N(r), is

the plasma number density, which is considered as below

N(r) =
N0

rh
, (59)

So, we have

ω2
e =

4πe2N0

merh
=

k

rh
, (60)

in which, h ≥ 0. In following, for this case, we consider h = 1 [48], and n is equal to
√

1− k
r
.

Therefore, we obtain the constants of motion (i.e. η and ξ), using R(r) = 0 and Ṙ(r) = 0

conditions in Eq. (54). Then, for an observer in θo=π/2, the celestial coordinates (30)– (31)

will take the forms

α = − ξ

n
,

β =

√

η + a2 − n2a2

n
. (61)

Now, using α and β, we plot some examples of black holes shadow in the presence of plasma,

which are shown in Fig.11. It can be seen from Fig.11 that the shape and size of the shadow

are dependent to values of a, Q and plasma parameters. In addition, for this situation, again

we put Λ = 0, because our observer is placed at infinity.

In Fig. 12, the effects of different plasma parameter k on the shape of shadow are

investigated. One can see that, the size of black hole’s shadow decreases in the presence

of plasma, in other words, the size of shadow decreases when k increases. Moreover, the

influence of charge and rotation parameters in the presence of plasma, are similar to vacumm

state (i.e. by increasing electric charge, the size of shadow become smaller, as well as, by

increasing spin parameter, the symmetry of black hole’s shadow decreases). On the other

hand, the radius of shadow in the presence of plasma, is always less than or equal to vacuum

state.

7. THE SHADOW FOR AN OBSERVER IN (rO ,θO) IN THE PRESENCE OF

PLASMA

In this section, we plot the shadow of black hole in f(R) gravity for an observer in r=rO

in the presence of plasma. For this purpose, by the conditions R(r) = 0 and dR(r)
dr

= 0 for
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(a) a = 0 (b) a = 0.5

(c) a = 0.7 (d) a = 1

FIG. 11: Shadow of the black hole in the presence of plasma for different values of the rotation parameter a = 0, a = 0.5,

a = 0.7 and a = 1 in (a), (b), (c) and (d) respectively. In each figure, Q = 0, Q = Qcrit

2
and Q = Qcrit is shown by

blue dash dot line, red dash line and green solid filled line respectively. The solid brown circle is reference circle.

The detail of parameters is shown in table IV(see Appendix).

Eq. (54), we can obtain the constant of motion, i.e. (ξ and η) as

η =
4r(a2n2∆

′

r + r2n2∆
′

r − a2∆
′

r − r2∆
′

r + 2r∆r +
√
N )

∆′2
r

, (62)

N = (4a2n2r∆r∆
′

r + 4r3n2∆r∆
′

r − a2n2∆
′2
r

−4a2r∆r∆
′

r − 4r3∆r∆
′

r + a2∆
′2
r + 4r2∆2

r + r2∆
′2
r − n2r2∆

′2
r ). (63)
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FIG. 12: plot showing the influence of k for a = 0.7 and Q = 0. The blue dash-dot line indicate k = 0, the dash red line show

k = 0.15 and the green filled line show k = 0.25.

and

ξ =
(a2 + r2)

aΞ
− 2r∆r

aΞ∆′

r

−
√
N ′

aΞ∆′

r

. (64)

N ′

= (4∆
′

r∆r(a
2n2r + n2r3 − a2r − r3) + ∆

′2
r (r

2 − a2n2 − n2r2 + a2) + 4r2∆2
r). (65)

The equations, (62) and (64) convert to (46) and (47) when n is equal to 1(vacuum case).

Using equations (40), (44), (45), the geodesic equations in the presence of plasma (54)– (57)

and constant of motion, (62) and (64), we obtain the cartesian coordinates as

x(rp) = 2 tan(
ω(rp)

2
) sin(ψ(rp)),

y(rp) = 2 tan(
ω(rp)

2
) cos(ψ(rp)). (66)

Now, we use of x(rp) and y(rp) parameters to plot some examples of black hole’s shadow.

In this situation, the observer is in (rO ,θO) in the domain of outer communication, so we

can put Λ > 0. The shadows for different value of spin a, and electric charge Q, are shown

in Figs.13 and 14.

One can see that by increasing Q the size of shadow become smaller, and by increasing a

the shape of shadow deviate into the horizontal axis, which effect of spin parameter in this

situation is similar to vacuum case for an observer in specific coordinate (rO ,θO), but it is

important to note that in similar circumstances, the radius of shadow are smaller than or

equal to radius of black hole’s shadow in vacuum.
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(a) (b) (c)

FIG. 13: Shadow of black hole in the presence of plasma for specific observer. In this figure Q = 0.75. Λ = 0, Λ = 0.01 and

Λ = 0.06 in (a), (b) and (c) respectively. In (a) and (b), shows 40
100

amax,
50
100

amax and 65
100

amax by the blue

dash-dot line, the red dash line and the green filled shape respectively. In (c), the blue dash-dot line, shows

10
100

amax, the red dash line shows 20
100

amax and the green filled shape shows 40
100

amax. The solid brown circle is

reference circle. The detail of parameter are shown in table V (see Appendix).

(a) (b) (c)

FIG. 14: Shadow of black hole in the presence of plasma for specific observer. In this figure Qcrit = 0.75 and a = 65
100

amax.

Λ = 0, Λ = 0.01 and Λ = 0.06 in (a), (b) and (c) respectively. In each figure, the blue dash-dot line, shows Q = 0

and the green filled shape, shows Q = 0.75. The solid brown circle is reference circle. The detail of parameter are

shown in table VI (see Appendix).

In addition, we analyze the effect of inclination θO on the shape of black hole’s shadow

in Fig. 15. We see that the symmetry into the vertical axis becomes better, if the observer

approaches the axis, in the limit of θO −→ 0.
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(a) θO ≃ 0 (b) θO=π
6

(c) θO=π
4

(d) θO= pi
3

(e) θO=π
2

FIG. 15: Shadow of a black hole for an observer at rO = 5M and different inclination angles θO, with fixed Q = 0.75,Λ = 0.01

and a = 65
100

amax.
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8. CONCLUSIONS

In this paper, we investigated a charged rotating black holes in f(R) gravity. First, we

obtained geodesic equation for this space time. Then, using geodesic equations, we studied

image of black hole’s shadow in the absence and the presence of plasma for an observer at

infinity and limited distance. The results show that space time parameters, effect on the

size and symmetry of black hole’s shadow. It can be seen that for all cases, increasing the

rotation parameter, reduces circular symmetry of shadow image of the black hole. Also, it is

shown that by increasing the electric charge Q, the size of shadow, decreases. Furthermore,

the effect of modified gravity parameter f ′(R0), was investigated for an observer who was

placed at infinity in vacuum. We observed that, by increasing f ′(R0), the size of shadow

image, increases and the symmetry of black hole’s shadow will improve. In addition, for

an observer at infinity, size of shadow in the presence of plasma is less than or equal to

the size of shadow in vacuum. Also, changes of inclination angle θO and Λ parameter, were

investigated for an observer at limited distance. We show that, by changing θO from π
2
to

limit of zero, deviation of shadow image decreases in vacuum and in the presence of plasma.

In addition, we show that for an obserever at limited distance in vacuum, increasing Λ, will

effect on the size of shadow and it becomes smaller. All detail data of figures, have been

shown in table (I–VI) (see Appendix). For future research, it would be interesting to study

black hole’s shadow in Kerr-Sen Dilaton-Axion space time.
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Appendix

Constant parameters Fig. a Qcrit ∆r(roots)

Λ = 0 1(a) 0 1.49 1.11,0.88

θO = π
2 1(b) 0.5 1.29 1.10,0.89

M = 1 1(c) 0.7 1.07 1.03,0.96

f ′(R0) = 1.25 1(d) 1 0 1

TABLE I: The details of parameter in Fig.1, for an observer at infinity, the Q and a parameter was investigated in this figure

in vacuum.

Constant parameters Fig. Q amax ∆r(roots)

θO = π
2 6(a) 0 1 1

Λ = 0 6(b) 0.75 0.86 1.10,0.89

M = 1 6(c) 1.35 0.43 1.07,0.92

θO = π
2 7(a) 0 1 0.92,1.09,16.22,-18.24

Λ = 0.01 7(b) 0.75 0.86 0.88,1.13,16.23,-18.24

M = 1 7(c) 1.35 0.44 0.98,1.02,16.24,-18.26

θO = π
2 8(a) 0 1.02 0.99,1.14,5.75,-7.90

Λ = 0.06 8(b) 0.75 0.88 0.93,1.19,5.78,-7.91

M = 1 8(c) 1.35 0.46 0.97,1.12,5.84,-7.94

TABLE II: The details of parameter in Fig.6–8, for an observer at limited distance, effect of spin parameter, a was

investigated in this figure in vacuum.
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Constant parameters Fig. Λ Q a
amax

amax ∆r(roots)

θO = π
2 0 1.71,0.29

f ′(R0) = 1.25 10(a) 0.01 0 70
100 1 0.28,1.73,16.21,-18.24

M = 1 0.06 0.28,1.89,5.72,-7.90

θO = π
2 0 1.62,0.37

f ′(R0) = 1.25 10(b) 0.01 0.75 70
100 0.86 0.37,1.64,16.22,-18.25

M = 1 0.06 0.37,1.78,5.76,-7.92

θO = π
2 0 1.29,0.70

f ′(R0) = 1.25 10(c) 0.01 1.35 70
100 0.46 0.70,1.31,16.24,-18.26

M = 1 0.06 0.69,1.41,5.84,-7.94

θO = π
2 0 1.10,0.89

f ′(R0) = 1.25 10(d) 0.01 1.49 70
100 0 0.88,1.13,16.25,-18.26

M = 1 0.06 0.85,1.24,5.86,-7.95

TABLE III: The details of parameter in Fig.10, for an observer at limited distance. The effect of Λ, was investigated in this

figure in vacuum.

Constant parameter Fig. Qcrit a ∆r(roots)

Λ = 0 11(a) 1.48 0 1.08,0.89

θO = π
2 11(b) 1.26 0.5 1.21,0.78

M = 1 11(c) 1 0.7 1.24,0.75

f
′

(R0) = 1.25 11(d) 0 1 1.34,0.65

TABLE IV: The details of parameter in Fig.11 for an observer at ∞, the effect of a and Q, was investigated in this figure in

the presence of plasma. Plasma parameter is k = 0.1.
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Constant parameters Fig. Λ Q amax ∆r(roots)

θO = π
2 13(a) 0 0.86 1.62,0.37

f
′

(R0) = 1.25 13(b) 0.01 0.75 0.86 1.64,0.37,16.22,-18.25

M = 1 13(c) 0.06 0.88 1.78,0.37,5.76,-7.92

TABLE V: The details of parameter in Fig.13, the effect of spin parameter, a for an observer at limited distance in the

presence of plasma. Plasma parameter is k = 0.1.

Constant parameter Fig. Λ Qcrit a ∆r(roots)

θO = π
2 14(a) 0 0.559 1.66,0.33

f
′

(R0) = 1.25 14(b) 0.01 0.75 0.559 1.85,0.17,16.21,-18.24

M = 1 14(c) 0.06 0.344 1.97,0.20,5.74,-7.92

TABLE VI: The details of parameter in Fig.14, the effect of electric charge parameter, Q for an observer at limited distance

in the presence of plasma. The plasma parameter is k = 0.1.
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