
Shadow Volume Reconstruction from
Depth Maps

MICHAEL D. McCOOL
University of Waterloo

Current graphics hardware can be used to generate shadows using either the shadow volume
or shadow map techniques. However, the shadow volume technique requires access to a
representation of the scene as a polygonal model, and handling the near plane clip correctly
and efficiently is difficult; conversely, accurate shadow maps require high-precision texture
map data representations, but these are not widely supported.

We present a hybrid of the shadow map and shadow volume approaches which does not have
these difficulties and leverages high-performance polygon rendering. The scene is rendered
from the point of view of the light source and a sampled depth map is recovered. Edge
detection and a template-based reconstruction technique are used to generate a global shadow
volume boundary surface, after which the pixels in shadow can be marked using only a one-bit
stencil buffer and a single-pass rendering of the shadow volume boundary polygons. The
simple form of our template-based reconstruction scheme simplifies capping the shadow
volume after the near plane clip.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism—Color, shading, shadowing, and texture; I.4.8 [Image Processing]: Scene
Analysis—Range data

General Terms: Algorithms, Human Factors, Performance

Additional Key Words and Phrases: Hardware accelerated image synthesis, illumination,
image processing, shadows

1. INTRODUCTION
Shadows are a very important spatial cue. They help determine the relative
positions of objects, particularly depth order and the height of objects above
the ground plane. Since a shadow is basically a projection of the scene from
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an alternative viewpoint, cast shadows can also elucidate the shape of an
object [Wanger 1992] and the positions of light sources.

Generating shadows is a classic computer graphics problem, and consid-
erable research effort has been devoted to it [Crow 1977; Woo et al. 1990].
In this paper we focus on the simplest case: hard-edged umbral shadows
cast by point sources. Given a fast umbral shadow algorithm, soft shadows
can be approximated by summing the contributions of several such sources.
However, there are severe limitations in existing algorithms for interactive
generation of even hard-edged shadows using the current generation of
hardware.

1.1 Taxonomy and Tradeoffs

Existing hard shadow algorithms can be divided into four broad categories:
ray casting, projection, shadow volumes, and shadow maps. Of these, only
the last three are (currently) applicable to real-time rendering. There are
also several hybrid algorithms that combine features from different catego-
ries.

A distinction can also be drawn between object-precision and image-
precision algorithms. Object-precision algorithms result in more precise
shadows, but require access to a polygonal representation of the scene.

Polygonal representations are not available in systems that use “alterna-
tive” modeling and rendering techniques such as selective raycasting of
objects, run-based rendering of enumerated volumes, layered depth images,
depth buffer implementation of CSG [Rossignac and Requicha 1986; Wie-
gand 1996]; distance-volume primitives [Westermann et al. 1999]; direct
rasterization of biquadratic patches, depth shaders, adaptive isocontour
tracing of parametric patches [Elber and Cohen 1996], etc.

Image-precision algorithms are less accurate, but also place fewer con-
straints on the scene representation. In practice, even if the scene is
represented with polygons, they can be easier to use and more flexible. For
instance, many applications use polygonal primitives but may generate
them on-the-fly from other representations, and do not maintain a polygo-
nal database. Even if polygonal primitives are used and can be intercepted
in a noninvasive way (for example, via OpenGL feedback [Kilgard 1997]),
adjacency information (required for an important optimization in shadow
volumes, for instance) may not be available. Fortunately, for many applica-
tions shadows do not have to be very accurate to be useful, and image-
precision algorithms can be used.

In the following sections the three classes of shadowing algorithms
applicable to real-time rendering are surveyed and compared. Our new
technique is a hybrid of the shadow volume technique and the shadow map
technique.

1.2 Projection Algorithms

Projection techniques project primitives away from the light source onto
the surface of other primitives. Blinn’s “fake shadows” algorithm [Blinn
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1988] squashes all polygons in the object casting a shadow down onto the
plane of another polygon, where they can be drawn in black or composited
over previously rendered pixels to approximate a shadow of the object onto
that plane. This technique is simple, and is suitable for hardware acceler-
ation, but does not scale or generalize well.

More general object-precision projection algorithms clip polygons into
shadowed and unshadowed parts [Atherton et al. 1978; Weiler and Ather-
ton 1977] in a prepass. Since they use polygon clipping, these algorithms
require access to a polygonal representation of the scene.

Data structures such as BSP trees may be used to accelerate the
polygon-clipping process [Chin and Feiner 1989] and manage the selective
reclipping of polygons when objects are moved [Chrysanthou and Slater
1995]. The splitting planes of the BSP trees in these algorithms are given
by the scene polygons and the shadow volume boundary, so these tech-
niques are in fact hybrids of the shadow volume and projection approaches.

The projection approach can be applied to volumetric primitives by
projecting semitransparent slices onto each other recursively [Behrens and
Ratering 1998]. Projection techniques also exist for area light sources and
soft shadows, in both exact object-precision [Dretakkis and Fiume 1994;
Stewart and Ghali 1994] and approximate image-precision [Soler and
Sillion 1998] forms.

1.3 Shadow Volumes

The classical shadow volume algorithm [Bergeron 1985; 1986; Crow 1977]
requires a representation of the scene as a polygonal database, and
represents the boundary between illuminated and shadowed space with
object-precision polygons. The intersection between the boundary of the
shadow volume and the scene can be computed at image precision using
per-pixel depth comparison and counting operations.

A shadow volume boundary polygon, or shadow polygon for short, is
constructed for each edge of every object polygon in the scene. Each shadow
polygon is a semi-infinite quadrilateral with two finite vertices correspond-
ing to each pair of edge endpoints and two infinite vertices. The infinite
vertices are placed at the limit of rays emanating from the light source and
passing through each finite vertex. A clipper operating with homogeneous
coordinates will reduce this semi-infinite quadrilateral to a finite size when
it is clipped against the viewing frustum.

The shadow polygons together with their generating object polygon
enclose a semi-infinite volume of space that is shadowed by that particular
object polygon. The union of all the shadow volumes generated by all object
polygons is the shadow volume for the scene.

Computing the union of the per-polygon shadow volumes can be done by
counting “in” and “out” events along rays from the eye. Orientation of
shadow polygons must be maintained so that the front faces of the shadow
polygons point towards illuminated space. This is necessary so “in” events
can be distinguished from “out” events. If the eye is in fully illuminated
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space, a ray from the eye to a point on a surface will pierce an equal
number of front-facing and back-facing shadow polygons if and only if the
surface point at the ray terminus is not inside the union of the shadow
volumes, i.e., is illuminated.

In an important optimization, shadow polygons originating in nonsilhou-
ette shared object polygon edges can be removed, with the silhouette
defined relative to each light source. A flatland example of a shadow
volume after such editing is given in Figure 1(a).

Shared-edge shadow polygons can be removed because the orientations of
such polygons generated from shared edges between adjacent nonsilhouette
polygons will be opposed and will cancel. If both open and closed (nonmani-
fold) objects can appear in the scene, weights must be added to the shadow
volume boundary polygons. Nonmanifold, unshared edges should always
generate shadow polygons with a weight of 1. Shadow polygons generated
from shared silhouette edges should be assigned a weight of 2 [Bergeron
1986].

Shadow volumes can be rendered in conjunction with scanline [Bergeron
1985; 1986; Bouknight and Kelly 1970; Crow 1977]; and with depth-buffer
and BSP hidden-surface algorithms [Chrysanthou and Slater 1995]. Jansen
and van der Zalm [1991] show how to derive shadow volumes for objects
constructed with CSG set operators from the shadow volumes of their
arguments.

To render shadows with hardware acceleration, a shadow count needs to
be maintained per pixel by the hardware. After the eye view of the scene
has been rasterized to initialize the depth buffer, the shadow polygons are
rasterized. Shadow polygon rasterization fragments do not modify the color
or depth buffer. However, if a shadow polygon fragment passes the depth
test, the corresponding shadow count is incremented by the weight of the
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Fig. 1. (a) The shadow volume technique; (b) the shadow map technique.
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front-facing shadow polygons and decremented by the weight of the back-
facing shadow polygons. Pixels with a shadow count of 0 at the end of this
process are illuminated; the rest are in shadow.

The Pixel Planes architecture [Fuchs et al. 1985] includes support for
shadow volumes. One interesting feature of this architecture is that poly-
gon size does not affect performance. This is fortunate, since shadow
polygons tend to be large. In most architectures larger polygons take longer
to rasterize. If the fill rate is high relative to the vertex transformation
rate, this dependency may not be significant.

Under OpenGL the (fixed-precision) buffer for maintaining the shadow
count is called a stencil buffer.

The shadow count for an illuminated surface, 0, is only one out of 2s

possible counts in an s-bit stencil buffer. If modular arithmetic is used, it is
possible that parts of the scene could be falsely illuminated, although
improbable: a nonzero shadow count would have to alias to 0 mod 2s.

However, the OpenGL stencil buffer clamps at both 0 and its maximum
value, 2s21. To avoid underflow, at least two passes over the shadow
volume are needed: the front-facing (positive count) shadow polygons must
be rendered first, followed by back-facing shadow polygons. More passes
are necessary if weights are used. If overflow occurs during rendering of the
front faces, illuminated parts of the scene would be rendered correctly,
since the magnitude of the negative count will be equal to the positive
count, and therefore larger than 2s21. However, some parts of shadow may
be falsely illuminated, as some portion of the positive count might be lost.

1.4 Shadow Maps

The shadow map technique uses a depth map generated from the point of
view of the light source. As each pixel is rendered in the eye view, its
three-dimensional location is transformed back into the lighting coordinate
system with a projective transformation. The depth of this transformed
point in the light source coordinate system is compared with the stored
depth. If the stored depth is smaller, there is an occluder between the point
being rendered and the light source, and the point is in shadow.

To avoid false self-shadowing of surfaces and “surface acne,” small biases
are added to the depth comparisons. The shadow depths may also be
dithered and a soft transition to shadow may be used [Reeves et al. 1987] to
simulate penumbra.

A version of this algorithm has been implemented in hardware [Segal et
al. 1992]. The result of the depth comparison sets an alpha value in each
pixel that can then be used to composite illuminated and unilluminated
renderings. On standard hardware, a similar technique can be imple-
mented using the alpha test and projective texturing [Heidrich 1999].

Unfortunately, the precision of values stored in texture maps is usually
low. To be generally useful, the shadow map approach requires not only
texture map support but also a high precision depth representation sup-
ported by the texture mapping hardware. (However, Mark Kilgard recently
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demonstrated extended-precision shadow map comparisons under
OpenGL.) Texture mapping datapaths are generally designed for process-
ing color, each component of which needs at most 12 bits; color can be
adequately represented for most purposes using only 8 bits. In contrast, the
precision of a hardware depth buffer is generally between 16 and 32 bits.

Depth precision is especially important for shadows; the shadow volume
boundary naturally grazes the surfaces in the scene. If the depth values are
imprecise, a large bias must be used to avoid surface acne, and this can
cause serious inaccuracies elsewhere. For instance, with a large bias,
shadows cast on ground planes by objects sitting on these planes can
become detached from the objects casting the shadows. An “adaptive bias”
can be used to correct this problem, for instance by storing in the depth
map the depth halfway between the frontmost and the secondmost depth
from the lightsource, but this complicates the acquisition of the shadow
map.

A flatland example of the shadow map algorithm is given in Figure 1(b),
using linear interpolation of depth values. Bias is not shown, but would in
general be needed to avoid surface self-shadowing in the presence of
quantization error.

Conservative variants of shadow maps have been used in ray-tracing
acceleration [Haines and Greenberg 1986; Woo 1993] for direct shadows. In
interactive applications, the shadow maps can be incrementally re-
projected, as can the eye view, to increase the frame rate [Chen and
Williams 1993].

1.5 Shadow Volume Reconstruction

The shadow volume reconstruction algorithm is a hybrid of the shadow map
and shadow volume algorithms that does not require a polygonal represen-
tation of the scene. Like the shadow map algorithm, it requires a depth
map rendered from the point of view of the light source instead. This
light-view depth map information is used to reconstruct a polygonal
shadow volume boundary that can be combined with an eye-view depth
map using only a one-bit stencil buffer.

The shadow volume reconstruction algorithm imposes no limitations on
the use of the hardware during the rendering of the light-view depth map
or the eye-view and its depth map; hence, it can be used with any
hardware-assisted rendering algorithm that generates a correct depth map.

The reconstruction of the shadow volume is based on computer vision
techniques. We detect silhouette edges and build a polygonal mesh repre-
senting the important shadow volume boundaries.

The next section presents the basics of the hybrid algorithm. Section 3
discusses the important optimization of silhouette edge detection, and
Section 4 presents details on how the polygon mesh for the shadow volume
boundary is constructed. In Sections 5 and 6 the practical problems of
dealing with multiple shadow maps, edge effects, and eye-view near plane
clipping are covered. In Section 7 several shadow rendering modes are
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discussed. Section 8 discusses some useful extensions resulting from the
hybrid nature of the algorithm, and presents some preliminary results from
a vectorizing reconstruction process. Finally, in Section 9 per-phase tim-
ings are given.

2. HYBRID ALGORITHM

Observe that the z@x, y# depth samples in the shadow map, in conjunction
with their pixel coordinates, describe points ~x, y, z! in the scene relative
to the light source in an orthogonal device coordinate system. We can join
these points into a polygonal mesh and transform them into world space,
using the inverse of the shadow map projection. The surface thus con-
structed defines the boundary between shadow and light in the scene; it is
the boundary of the shadow volume.

Unlike Crow’s algorithm, a shadow volume boundary generated this way
consists of a single star-shaped surface, with no nesting or overlapping. In
this case, there is no need to implement a full CSG union operation,
summing front-facing polygons and subtracting back-facing polygons. We
just need to keep track of the parity of the number of shadow polygons that
are in front of the surface at each pixel.

If there are an odd number of shadow volume boundary intersections
along a ray from the eye to the first surface point at a pixel, then that
surface point is in shadow. Otherwise, it is illuminated. To keep track of
shadow parity, a single bit stencil buffer is needed. The stencil bit for a
pixel is simply toggled whenever a shadow polygon fragment is drawn on
top of it. Practically speaking, this simplification is a major advantage for
hardware implementations. The extra frame buffer storage required is
minimal and finite. It is impossible to overflow the shadow depth count, as
is possible with Crow’s algorithm.

The details of the hybrid algorithm are as follows:

(1) Render the shadow map. The scene is rendered from the point of
view of the light source and the depth buffer is read back. Multiple
shadow maps may be required for omnidirectional illumination and
shadowing.

(2) Render the eye view. The scene should be rendered as usual from the
point of view of the eye.

(3) Reconfigure the frame buffer. Clear the stencil buffer. Disable
writing to the color and depth buffers, but enable the depth test and set
the stencil to toggle when a shadow polygon fragment passes the depth
test.

(4) Render the shadow volume. Reconstruct the shadow volume from
the z@x, y# coordinates in the shadow map, transform it back into world
space, project it through the same viewing transformation as the rest of
the scene, and rasterize it. Both front and back faces can be rendered
simultaneously; ordering or distinguishing them is not necessary.
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(5) Cap the shadow volume. Whenever the shadow volume boundary is
clipped by the near plane, cap polygons need to be generated to ensure
that the shadow volume is properly enclosed.

(6) Darken the shadowed pixels. The pixels where the stencil bit is set
to 1 are in shadow. Render the shadow using one of the techniques in
Section 7.

Since the texture-mapping hardware is not busy rendering shadows (as
in Segal et al. [1992] or with Kilgard’s technique), the scene can contain
textured polygons without an extra rendering pass. All other hardware
facilities are also available during rendering of the eye view and of the
shadow map, including the stencil planes. The advantages of the shadow
map algorithm are inherited: In particular, since the shadows depend only
on the values left in the depth buffer by the scene renderer, it is nonintru-
sive. Adding shadows to a scene will not typically require access to or
modification of the base renderer.

Another advantage of the hybrid approach is that shadow polygons are
minimal in size. They extend to the shadowed surface from the shadowing
surface, but extend no further. A practical problem with Crow’s algorithm
is the size of the shadow polygons. All shadow polygons extend outwards to
the edge of the viewing frustum after clipping, since intersection with the
surfaces being shadowed is not checked. If the speed of the rasterization
engine depends on the image-space size of polygons, this can degrade
performance.

The hybrid method also inherits some of the disadvantages of the shadow
map approach. The quantization of light buffer coordinates, particularly x
and y, causes aliasing of detail in the shadow volume. The problem is
literally magnified when the shadow is projected. Precision in depth is
usually adequate, but appropriate bias translations need to be added to
both the light-relative z values and, in our experience, the depth values
from the eye-view [Reeves et al. 1987].

The other disadvantage is that in this most basic variant of the hybrid
algorithm, as in the basic version of Crow’s algorithm, a large number of
shadow polygons are generated. In the following section we show how this
deficiency can be partially overcome through silhouette edge detection.

3. EDGE DETECTION

The shadow volume only needs to contain polygons originating in the
silhouette edges of objects as seen from the light source. However, if all the
points defined by the shadow map are used, many shadow polygons will be
rendered that lie on the surface of objects. These shadow polygons will be
culled by the depth test, so transforming and rasterizing them is a source of
inefficiency that should be eliminated.

To generate only the shadow polygons corresponding to the silhouette
edges, an edge-detection process can be used. Edge detectors for computer
vision are generally designed to be robust in the face of noisy, low-precision
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sensor data [Canny 1986; Marr and Hildreth 1980]. However, the depth
values in the shadow map are available at relatively high precision and the
only noise is quantization error. If necessary, we can even modify the
shadow map rendering process to produce more information about edges,
such as an object ID channel.

Our edge-detection process can also afford to be conservative. If we
accidentally generate a shadow polygon that does not correspond to a
silhouette edge (false positive), it will be culled by the depth test and will
not affect the final image. Unfortunately, a missed edge (false negative)
will leave a gap in the shadow volume boundary and result in a visible
error. These considerations imply that we should choose the simplest and
fastest edge detector available, but should strive to avoid false negatives.

3.1 Difference Magnitude Edges

The simplest discontinuity detector is a thresholded magnitude of the first
derivative. The simplest estimate of a derivative is a difference. Using
horizontal and vertical first differences, we detect edges in both the
horizontal and vertical directions and set flags between neighboring pixels.
u is an array of Boolean flags for vertical edges, while the v array flags
horizontal edges (see Figure 2). Together we call these flags the edge map.
Let u be a threshold value and define the forward differences Dxz@x, y# 5

v[0,3]

z[2,0]z[1,0]u[0,0] u[1,0]

z[0,1]

z[0,2]

v[0,0]

z[2,3]z[1,3]

z[1,4] z[2,4]u[0,4] u[1,4]

v[1,3] v[2,3]

v[2,2]v[1,2]

u[1,3]u[0,3] z[4,3]z[3,3]

z[3,4] z[4,4]u[2,4] u[3,4]

v[3,3] v[4,3]

v[4,2]v[3,2]

u[3,3]u[2,3]

z[4,1]z[3,1]

z[3,2] z[4,2]u[2,2] u[3,2]

v[3,1] v[4,1]

v[4,0]v[3,0]

u[3,1]u[2,1]z[2,1]z[1,1]

z[1,2] z[2,2]u[0,2] u[1,2]

v[1,1] v[2,1]

v[2,0]v[1,0]

u[1,1]u[0,1]

v[0,1]

v[0,2]

z[4,0]z[0,0]

z[0,4]

z[0,3]

z[3,0]u[2,0] u[3,0]

Fig. 2. Two edge flag arrays are interdigitated with the shadow depth map.
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z@x 1 1, y# 2 z@x, y# and Dyz@x, y# 5 z@x, y 1 1# 2 z@x, y#. Then the
edge flags are set by the following computation:

u@x, y# 5 ~?Dxz@x, y#? . u!,

v@x, y# 5 ~?Dyz@x, y#? . u!.

We do not filter the depth values before applying the differences. Doing so
would only blur the edges, and possibly modify their apparent positions
(i.e., by rounding corners), and in the absence of significant noise is
pointless.

The threshold u should be chosen conservatively; a value that marks
O~n! of the O~n2! potential edges should be approximately correct. If
automatic adaptation is required, a histogram of difference magnitudes can
be used, but a constant threshold is adequate if the near and far planes
used to render the shadow map are set tightly.

The first difference has a simple geometric interpretation as the distance
between surfaces. This simple threshold detector therefore guarantees that
a shadow polygon will be generated whenever the distance between sur-
faces (in the projectively transformed light-relative device coordinate sys-
tem) exceeds u. With a little more work we can transform the z values back
into world space before applying the threshold. Quantization error, how-
ever, will not be constant in world space.

3.2 Reducing False Negatives

False positives merely decrease efficiency. False negatives, however, will
cause image artifacts. There are two serious sources of false negatives:
aliasing and abutment.

If the shadow map resolution is too low, the rendering of the depth map
will be aliased. Certain aliasing artifacts can be guarded against. If small
objects are disappearing, an edge rendering can be combined with a
standard nonoverlapping polygon fill rendering. In the worst case, edge
detection can be disabled altogether to avoid incorrect responses to false
structure artifacts such as Moiré patterns. The necessity of such a measure
can be estimated from the fraction of potential edge flags that are set with
a particular threshold. This fraction will give a measure of scene complex-
ity.

Edge flags can also be omitted at the ends of a silhouette edge defined
when two objects abut (as when an object sits on a ground plane), intersect,
or where “folds” end in a concave object. The depth contrast in these
regions may be too low for differences to exceed the threshold.

By lowering edge-detection thresholds in the vicinity of a dangling edge,
we can deal with abutment problems conservatively, but without introduc-
ing too many new shadow volume polygons.

Call the square spaces between four adjacent depth samples cells. In
practice, we store edge flags redundantly in the cells using a packed
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representation. Every cell contains a 4-bit code that characterizes the
configuration of edge flags around it. Under this encoding, dangling edges
are easy to identify: they correspond to cells with the edge codes 0001,
0010, 0100, or 1000.

As a last resort, we can generate other information during the rendering
of the shadow map to help determine the location of silhouette edges.
Suppose we render different objects in the scene using different constant
colors (IDs). We can then read back the color channel, and if adjacent pixels
are different colors, set the edge flag between them. If only convex objects
are used in the scene, or if all concave objects are split into convex parts,
then objects cannot self-shadow and the depth-based edge detector is not
needed. If objects can be concave, the results of the ID test and the depth
test can be ORed. This need only be done in the vicinity of a dangling edge.

The usefulness of an ID test will depend on how efficiently frame buffer
contents can be read back and scanned, whether disabling writing to the
color buffers actually decreases the rendering time on a particular set of
graphics hardware, how complex the scene is, and how stringent the image
quality requirements are.

3.3 Reducing False Positives

Our basic edge detector thresholds the magnitude of the first difference.
Assume that we have run this detector using a relatively low threshold uL

to obtain a set of candidate edge flags.
A low threshold can result in blocks of false positives over steeply sloped

surfaces that are nearly edge-on in the light view. To eliminate these false
positives, we can use a second derivative test: If the second derivative does
not have a strong zero-crossing of the correct sign across a candidate edge
flag, indicating a local minima or maxima in the first derivative, then the
candidate edge flag can be cleared. The second derivative can be estimated
using a second difference.

The second derivative test thins “thick edges.” This can lead to false
negatives when, for instance, two silhouette edges at different depths align
to within one pixel. The second derivative test should therefore be com-
bined with a second threshold test relative to uH . uL to identify “sure”
edges:

u@x, y# 5 5 ?Dxz@x, y#? . uL 3 5
?Dxz@x, y#? . uH 3 1

Dxz@x, y# . 0 and
Dx

2z@x 2 1, y# . uS and
Dx

2z@x, y# , uS 3 1

Dxz@x, y# , 0 and
Dx

2z@x 2 1, y# , uS and
Dx

2z@x, y# . uS 3 1

otherwise 3 0

otherwise 3 0
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and likewise for v@x, y#.
Additional ideas from computer vision, such as threshold hysteresis

[Canny 1986], can also be used to improve the detection of edges in
low-contrast situations.

These techniques can be implemented to operate only on the O~n!
candidate edge flags generated by the O~n2! initial uL thresholding pass.

3.4 Hardware Edge Detection

The graphics hardware can be used to implement the first difference
thresholding edge detector, and can also be used to generate a hierarchical
representation of the edge map to avoid the initial O~n2! data traversal
cost.1

The idea is sketched in Figure 3. After the eye view is rendered, writing
to the depth buffer is disabled. The contents of the depth buffer are shifted
down in x and y by one sample and biased by 6u, then copied back into the
existing depth buffer, with depth testing enabled. When the samples are
biased by 2u the depth test should be ., when they are biased by 1u the
depth test should be ,. The combined set of operations is

z@x 1 1, y# 1 u , z@x, y#,

z@x 1 1, y# 2 u . z@x, y#,

1This cost can be significant. In our implementation, run-length encoding the output of the
edge detector so the reconstruction algorithm in Section 4 only had to scan O~n! cells resulted
in an order of magnitude improvement in the performance of the reconstruction algorithm.

Fig. 3. Difference thresholded edge detection can be performed in the depth buffer hardware.
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z@x, y 1 1# 1 u , z@x, y#,

z@x, y 1 1# 2 u . z@x, y#;

this is equivalent to

z@x, y# 2 z@x 1 1, y# . u,

z@x 1 1, y# 2 z@x, y# . u,

z@x, y# 2 z@x, y 1 1# . u,

z@x, y 1 1# 2 z@x, y# . u,

which is in turn equivalent to

?Dxz@x, y#? . u,

?Dyz@x, y#? . u,

as desired.
The stencil and/or the color buffers can be used to accumulate the results

of the depth comparisons, and the color buffer can be used to generate a
hierarchical map of nonzero cells using hardware zooming and compositing.
All of these operations can be performed entirely in hardware, using the
existing OpenGL API (i.e., glCopyPixels and glPixelZoom ). In fact,
using certain proposed extensions, histograms can be computed in hard-
ware to assist with threshold selection.

Unfortunately, we have found that with many current OpenGL imple-
mentations, depth buffer operations can be slow and are often not imple-
mented correctly, i.e., the copied pixels are not passed through all fragment
tests as specified in the standard, or the depth buffer is not read back
correctly when the depth test is enabled. We hope future generations of
graphics hardware will resolve these issues.

4. SURFACE RECONSTRUCTION

Once the edge flags are set, we can reconstruct the shadow polygons. The
simplest approach generates only the parts of a fixed mesh that abut at
least one marked edge; see Figure 4. Alternatively, we can generate specific
clusters of polygons for each possible combination of edge flags, using table
lookup on the 4-bit combined edge code for each cell, as in Figure 5.

When we need to reconstruct a quadrilateral, we need to choose how it
will be split into triangles. A poor split results in rough-edged shadows. The
usual approach of comparing the deviation of normals does not work well.
Instead, the diagonal differences in depth across each cell should be
computed and the quadrilateral split to cut across the diagonal difference of
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the greatest magnitude. This will produce shadows with 45° jaggies rather
than 90° jaggies.

We can divide the triangle configurations into two categories based upon
which way the quadrilateral is split. This information must be stored
because it is necessary for capping, as described in Section 6.2.

5. MULTIPLE MAPS

Since a single shadow map is limited in its field of view, multiple shadow
maps are needed to cast shadows omnidirectionally from a point light
source. Each shadow map addresses a partition of space. The multiple
shadow volume boundaries must be generated and fitted together carefully
so cracks do not appear. Since the reconstructed surfaces are all part of a
single star-shaped surface, they can all be rendered together in one pass of
Step 2 of the algorithm in Section 2.

When rendering the shadow maps in the hybrid algorithm, the viewing
frustum should be adjusted to render extra depth samples around the
edges. This is visualized in Figure 6. This will permit the edge-detection
and reconstruction process to respond correctly and consistently right up to
the geometric edge of the shadow volume partition. The number of extra
samples required will depend on the edge detector used.

6. CLIPPING AND CAPPING

The scene is clipped when it is rendered both from the point of view of the
light source and from the eye. This can lead to several serious practical
problems.

Fig. 4. A fixed quadrilateral mesh is edited to only contain elements that overlap a marked
edge.
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6.1 Light-View Clipping

In order to maximize depth precision in the shadow map, the near and far
distances in the light view must be set as tightly as possible around the
scene. If the near distance is too small, precision close to the far plane will
suffer.

Objects closer to the light source than the near distance will be clipped
during rendering, and so will either fail to cast a shadow or will cast a
reduced shadow. If backface culling is used during rendering of the light
view, it will appear as if holes have appeared in the occluder. Complete
near-plane clipping is not critical, since it will appear that the light source
has passed through the object.

Light-view far plane clipping is not a serious problem either if light-
source attenuation is used. If a scene bounding volume is not available, the
far plane can be set at a distance at which the light from the source can be
neglected.

A bounding box around the viewing frustum in world space can be
intersected with the scene bounding box to select a tight light-view projec-
tion. In this case if the eye view changes, the shadow map will have to be
updated.

Fig. 5. Table lookup used to generate shadow mesh elements from the per-cell edge codes.
The table shown at the bottom is designed to extend dangling edges by one pixel.
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6.2 Eye-View Clipping

The eye-view far plane clipping plane can be interpreted as a full-screen
polygon, rendered in the background color at the maximum depth, which
culls shadow volume polygons in the usual way with a depth test.

Unfortunately, if shadow polygons are clipped away by the near plane of
the eye, parity information is lost. The standard “solution” of inverting the
parity globally (or incrementing the shadow count globally) if the eye is in
shadow [Bergeron 1985; Crow 1977] does not work, since the parity
should only be inverted where the interior of the shadow volume is visible.
This is demonstrated in Figure 7. The eye itself happens not to be in
shadow in either of these examples, but the visible part of the near plane
intersects the shadow volume boundary.

The near plane clip must be handled by capping the shadow volume
boundary at the near plane of the view volume. Since the shadow volume
boundary is not closed (due to the edge-detection elimination of redundant
shadow polygons), does not have hidden surface removal applied to it, and
may be hidden by parts of the existing scene depth values, we cannot
generate caps in the usual manner, i.e., by detecting visible back-facing
polygons, at least not on the same pass we use to set the shadow stencil
flags. An additional pass could be used, but would require the rendering of
all O~n2! shadow volume polygons and would overwrite the depth buffer.

Other hardware-accelerated approaches are possible, including using a
projection shadow algorithm to cast appropriate shadows onto the near
plane. However, we have found that when the shadow volume is regener-
ated from a shadow map, a simple and fast software capping algorithm is

View Volume Boundary

Light Source

Partition Boundary

Depth Sample

Fig. 6. Omnidirectional shadowing requires partitioned shadow maps that should overlap to
maintain continuity.
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feasible, since we can take advantage of the coherent structure of the
shadow volume polygons.

Our software solution involves the following steps:

(1) Transform the plane equation of the near clipping plane of the eye into
light device coordinates.

(2) Transform the rectangular near plane facet of the view frustum into
light device coordinates.

(3) Scan and convert the transformed near plane facet over the shadow
map and test all covered shadow map samples against the transformed
near plane equation.

(4) If all samples tested are on the eye side of the near plane, the parity
test should be inverted globally, but no cap polygons need to be drawn.

(5) If all samples tested are opposite the eye side of the near plane, or if the
near plane facet is not visible in the light view, no cap is needed.

(6) If there are samples on both sides of the near plane, cap polygons need
to be generated.

Using either of the simple reconstruction processes presented in Section
4, cap polygon vertices can be reconstructed without referring to the actual
silhouette polygons. There are 32 5 2 3 24 possible cases combining sam-
ple to near plane classification and the reconstruction split in each cell. We

Fig. 7. Clipping the shadow volume boundary at the near plane of the eye can reverse the
parity of the shadow test locally. This can happen with occluders behind the eye (top) or when
looking towards the light source (bottom). From left to right: side views with the shadow
volume drawn using visible polygons, views where the near plane facet of the viewing volume
intersects the shadow volume, the same view but with the shadows rendered without capping
(and with inversion artifacts), and finally the corrected images rendered with capping.
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can analyze each case and generate the appropriate cap polygons one cell at
a time.

Once generated, the cap polygons are simply rendered with the rest of
the shadow polygons to toggle the parity where needed.

A detail of a cap is shown in Figure 8. We do not currently attempt to
trace and tesselate the contours of the cap to improve coherence, although
this could be done. We do render runs with single polygons, after run-
length encoding the results of the capping test. If contour tracing is used,
holes in caps could simply be rendered as additional back-facing cap
polygons; this would toggle the parity correctly and would also work with
multiple shadow volumes (Section 8.2) using Crow’s algorithm. As shown
later, the computational and rendering cost of software capping is negligi-
ble.

Since the hardware is clipping the uncapped shadow volume boundary at
the near plane of the eye, we do not have to do it in software. However, the
implementation must avoid having the cap clipped away. We translate the
device coordinate system itself in z to avoid this problem and to avoid
having to shift the cap polygons away from their true positions.

Fig. 8. Detail of a cap generated using a very low resolution shadow map. Rows of depth
values with the same classification relative to the eye-view near plane are run-encoded and
rendered as single rectangles. Cells with mixed classifications are clipped against the shadow
volume reconstruction polygons to generate appropriate fragments to complete the cap.
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To avoid numerical problems with the intersection of rays from the light
source with the eye-view near plane facet, the intersection points (vertices
of the cap polygons) are computed in homogeneous coordinates, without an
explicit division. If the eye-view near plane facet is edge-on in the light
source view, the cap vertices will then be mapped towards infinity in the
eye view, as appropriate. The cap vertices need to be computed with
reasonably high accuracy to avoid doubling up of edge pixels where the cap
meets the clipped shadow volume. We have found this happens occasion-
ally, but these salt-and-pepper artifacts are nearly invisible and are cer-
tainly preferable to gross inversion.

7. SHADOW-RENDERING MODES

Once the stencil bit has been set correctly, shadows can be rendered in a
number of different modes:

Ambient shadows: If the scene renderer does not use the stencil
buffer, the scene can be rerendered using only
ambient illumination, masked to modify only pix-
els in shadow.

Black shadows: A single black polygon can be drawn over the
entire scene to blacken all pixels in shadow.

Composited shadows: A semitransparent black polygon can be drawn
over the entire scene to darken all pixels in
shadow.

However, with use of the composited shadow-rendering mode, incorrect
illumination, including highlights, will be present in the shadow. If the
ambient illumination does not match the color drawn in shadow, artifacts
can result along silhouette edges; look closely at Figure 9. If black shadows
are used, the ambient illumination should also be zero.

The basic hybrid shadow algorithm can only render one light source at a
time. Generally, multiple light sources should be rendered as follows:

(1) Render the eye view using only ambient illumination and load the
image into the accumulation buffer.

Fig. 9. Shadow-rendering modes, left to right: consistent ambient shadows; consistent (zero
ambient illumination) black shadows; inconsistent composited shadows; and inconsistent
(nonzero ambient illumination) black shadows.
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(2) For each light source:
(a) Render the eye view illuminated with the current light source and a

zero ambient term.
(b) Disable writing to the color and depth buffers and set the depth test

to “,”.
(c) Clear the stencil buffer and render the current shadow volume,

inverting the stencil for each fragment.
(d) Enable drawing to the color buffer and turn off the depth test.
(e) Draw a black polygon where the stencil is set.
(f) Add the color buffer to the accumulation buffer.

(3) Recover the accumulation buffer without scaling it.

This algorithm works even if the base renderer uses the stencil buffer.
If the color precision is adequate, the stencil buffer is not used by the

base renderer, and the base renderer uses only standard hidden surface
removal, then compositing can be used instead of the accumulation buffer:

(1) Render the eye view using only ambient illumination.

(2) For each light source:
(a) Disable writing to the color and depth buffers and set the depth test

to “,”.
(b) Clear the stencil buffer and render the current shadow volume,

toggling the stencil.
(c) Set the depth test to “5” and enable compositing to the color buffer.

Set the source and destination compositing factors to one and one.
(d) Render the eye view illuminated with the current light source and a

zero ambient term only where the stencil is zero.

The “5” depth test ensures that only the frontmost surface’s illumination
will be composited. Use of this depth test assumes that changing the
lighting model does not change the depth of any pixel in the scene.

In either case, for N light sources N 1 1 eye-view renderings of the
scene are needed, in addition to at least N light-view shadow map render-
ings.

8. EXTENSIONS

The hybrid algorithm can be extended in a number of ways by reconstruct-
ing better shadow volumes and/or by combining shadow volumes with
Crow’s shadow volume union algorithm.

8.1 Vectorization

In theory, the geometric representation of the shadow volume means that a
more sophisticated reconstruction strategy could produce shadows that are
an improvement over the shadows produced by the shadow map algorithm;
currently our algorithm merely produces equivalent shadows.
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For instance, subpixel edge information can often be recovered by seg-
menting and vectorizing edge contours [Bloomenthal 1983]. We have exper-
imented with this; some preliminary results are shown in Figure 10.
Vectorization improves both quality and performance, since it permits
replacing the numerous small polygons that are generated by the simpler
reconstruction techniques with a smaller number of larger polygons, which
can be more efficiently rasterized and produce more coherent shadows. The
main difficulties are determining good shadow volume facets that are
consistent with the depth samples in the shadow map, dealing consistently
with nonvectorizable “blobs” and edge conditions, and implementing effi-
cient capping of the resulting shadow volume.

8.2 Multiple Shadow Volumes

Shadow volumes could be reconstructed from shadow maps on a per-object
basis, which would permit interactive manipulation of parts of the scene
without having to recompute global shadow maps. This could also be done
using, for instance, spatial decomposition or attachment hierarchies.

If object-space precision shadow volumes are available for some objects
but not others, render only the objects that cannot generate object-precision
shadow volumes into the light view. Then combine the shadow volume(s)
reconstructed from the light view depth buffer with the object-precision
shadow volumes using Crow’s algorithm.

Since per-object shadow volumes can overlap and nest, counting would be
needed in the stencil buffer, or the shadow volumes would have to be
rendered one at a time (blackening parts of the scene after each). If the
maximum amount of nesting is known for each per-object shadow volume,
the number of bits needed for the total nesting count can be computed and
the shadows “batched” to avoid overflow.

Certain algorithms may require the ability to incrementally extend
shadow volumes. For instance, in hardware-assisted global illumination
[Diefenbach and Balder 1997; Keller 1997], light may be reflected off a
mirror by creating a virtual light source. In this case, the shadow map of
the original light source is also reflected, but the reflected light may be
blocked by additional occluders.

Fig. 10. A vectorized shadow volume, and the resulting shadows, are shown on the left for a
low-resolution shadow map. On the right are the nonvectorized shadow volume and shadows
generated from the same shadow map.
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There are two ways to extend the reflected shadow map to account for
these extra occluders. At the level of depth maps, the extra occluders can be
rendered into a new depth map and merged with the reflected shadow map
and the shadow volume polygons regenerated from the merged shadow
map. Alternatively, a secondary shadow volume can be generated from a
light view containing only the occluders. This new shadow volume will
overlap the reflected shadow volume, and so the scene must be rendered
using Crow’s algorithm.

8.3 Shadow Edge Antialiasing

Shadow edges could be antialiased without any need to recapture the
shadow map by jittering (with a small shear transformation) the back-
projection of the already reconstructed shadow volume polygons. The
magnitude of the jitter would be on the same order as the bias and the xy
resolution error. An n-rooks sampling pattern for the jitter should be used
to get the maximum number of grey levels for displacements of the edges.

By using multiple stencil bits, the scene would not have to be rerendered
for each pass; only the shadow polygons themselves would have to be
rerendered. After n shadow volume rendering passes into n separate bits of
stencil, n renderings of a full-screen semitransparent polygon could be used
to replace the original color in the frame buffer with an appropriate amount
of black.

9. RESULTS AND TIMING

All values presented here were estimated using an average of the timings
for 1000 random rotations of the test scenes in Figure 11, whose triangle
counts are given in Table II. The ANSI C/OpenGL/GLUT test implementa-
tion was run on two machines: an SGI Octane with a 175MHz MIPS
R10000 processor and the SI graphics engine (without texture mapping
support), and an SGI O2 with a 225MHz MIPS R10000.

The objects shown above the ground planes in Figure 11 are reflected and
duplicated below the ground plane for the purposes of this test, so all views
have approximately the same visual complexity. Table II gives the total
number of triangles in each scene, and the average number of polygons in
the corresponding shadow volumes. Only a single-view shadow map was
used.

Depth precision on both machines was 24 bits. Two spatial resolutions
(256 3 256 and 512 3 512) of both the image and the shadow map were
tested, to determine scaling of the algorithm with resolution.

Edges were flagged with a modified Canny edge detector. The template-
based reconstruction scheme shown in Figure 5 was used, with the max-
diagonal cut splitting rule for quadrilaterals.

The test program is self-contained and may be downloaded from
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/
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9.1 Timings

Per-phase and overall timings are given in Table I. For the per-phase
timings given, ambient illumination was zero and black shadows were
rendered using a single black stenciled rectangle. Overall rates for ambient
shadows (which require an additional rendering of the scene lit only with
ambient illumination) and unshadowed scenes are also given for compari-
son. Note that the primary shadow-related computational costs are edge
detection and shadow volume rendering.

The edge-detection cost is primarily data access; increasing the complex-
ity of the edge detector does not change this timing significantly. Our
edge-detector implementation is entirely in software. The first pass of the
edge detector could theoretically be implemented in hardware via OpenGL,
but we did not have access to a machine for which our standard-compliant
OpenGL implementation both worked and was faster than a straightfor-
ward software implementation.

Note as well the long time for depth buffer read-back on the O2. This is
mysterious, as the O2 has a unified memory architecture; even with a
format conversion the readback should be no more costly than the edge
detection, but it is by a significant factor. The timings could probably be
improved significantly on the O2 by tuning the driver.

The shadow volume-rendering cost is primarily vertex-transformation
limited. Our preliminary results indicate that vectorization will decrease
the time to render the shadow volume by an order of magnitude, while only
slightly increasing reconstruction time. Capping, however, would be signif-
icantly more complex.

The shadowing cost is, as expected, relatively independent of scene
complexity, but is approximately linearly dependent on the resolution of
the shadow map. Doubling the shadow map resolution (quadrupling the
number of depth samples) less than doubles the number of shadow volume
polygons. Note as well that the primary rendering time for scene C was
much longer than any of the other scenes, but the total time spent
reconstructing and rendering the shadow volume was approximately equiv-
alent to scene B, and in fact slightly less. Therefore, this technique should
be especially effective for complex scenes containing curved surfaces. For
simple scenes, unfortunately, the resolution-dependent overhead swamps
the base rendering time of the scene itself.

Fig. 11. Test scenes A, B, C, and D, left to right.
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10. CONCLUSIONS

We have presented a hardware-assisted shadow algorithm that regenerates
a polygonal shadow volume from depth buffer information.

This algorithm requires a one-bit stencil buffer, but does not require
texture mapping or access to a polygonal representation of the scene. In
fact, the algorithm imposes no constraints on how the hardware is used to

Table I. Comparative Timings for Various Phases of the Algorithm (unless otherwise noted,
units are milliseconds; rates do not include swap synchronization latency)

Resolution 256 3 256

Machine Octane SI O2

Scene A B C D A B C D

Light view render 4.0 5.5 100.1 8.3 6.2 9.7 178.3 14.7
Depth read 1.4 1.4 1.5 1.4 57.0 57.2 57.2 57.1
Edge detect 17.3 18.9 19.2 17.5 15.4 16.0 16.4 15.3
Reconstruct 2.8 10.5 10.1 3.0 10.0 46.6 44.0 10.4
Eye view render 7.2 12.7 246.6 16.0 9.1 15.9 275.8 24.1
Volume render 34.4 96.3 78.0 35.5 10.3 35.0 33.0 11.1
Volume cap 0.38 0.42 0.55 0.46 0.33 0.53 0.82 0.49
Shadow render 0.8 0.8 0.8 0.8 1.2 1.1 1.1 1.1
Total time 68.3 146.5 456.9 83.0 109.5 182.0 606.6 134.3
Unshadowed (Hz) 138.9 78.7 4.1 62.5 110.0 62.9 3.6 41.5
Shadowed, Black (Hz 14.6 6.8 2.2 12.1 9.1 5.5 1.6 7.4
Shadowed, Ambient (Hz) 12.9 6.1 1.2 9.5 8.4 5.0 1.0 6.1

Resolution 512 3 512

Machine Octane SI O2

Scene A B C D A B C D

Light view render 6.1 7.9 101.7 10.0 9.2 12.3 184.8 18.1
Depth read 4.5 4.5 4.3 4.5 209.5 209.2 209.9 209.6
Edge detect 73.2 76.5 76.8 73.7 71.8 74.4 75.2 72.1
Reconstruct 5.5 22.8 20.9 6.2 18.4 108.7 98.4 21.3
Eye view render 10.9 16.2 248.3 18.9 11.2 17.4 280.2 26.8
Volume render 66.6 199.1 155.0 69.0 28.4 101.0 82.5 30.8
Volume cap 0.66 0.79 1.22 1.00 0.65 1.29 1.65 1.08
Shadow render 3.3 3.3 2.9 2.9 4.1 4.1 4.2 4.1
Total time 170.8 331.1 611.1 186.2 353.3 528.4 936.9 383.9
Unshadowed (Hz) 91.7 61.7 4.0 52.9 89.3 57.5 3.6 37.3
Shadowed, Black (Hz 5.9 3.0 1.6 5.4 2.8 1.9 1.1 2.6
Shadowed, Ambient (Hz) 5.6 2.9 0.98 4.8 2.8 1.9 0.78 2.5

Table II. Complexity of Test Scenes and Average Reconstructed Shadow Volumes in
Triangles (a shadow volume complexity ratio of 2 indicates linear growth)

Scene: A B C D

Scene Complexity 3,756 3,132 450,132 7,332
Average Shadow Volume Complexity ~256 3 256! 2,322 8,707 8,399 2,402
Average Shadow Volume Complexity ~512 3 512! 3,544 16,456 15,093 4,021
Ratios of Shadow Volume Complexities 1.53 1.89 1.80 1.67
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generate the image, other than the requirement that correct depth values
be generated.
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