
ShadowCam: Real-Time Detection Of Moving
Obstacles Behind A Corner For Autonomous Vehicles

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Naser, Felix et al. " ShadowCam: Real-Time Detection Of Moving
Obstacles Behind A Corner For Autonomous Vehicles." 21st IEEE
International Conference on Intelligent Transportation Systems, 4-7
November, 2018, Maui, Hawaii, United States, IEEE, 2018.

As Published https://its.papercept.net/conferences/conferences/ITSC18/program/
ITSC18_ContentListWeb_2.html

Publisher IEEE

Version Author's final manuscript

Citable link http://hdl.handle.net/1721.1/119439

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/119439
http://creativecommons.org/licenses/by-nc-sa/4.0/

ShadowCam: Real-Time Detection Of Moving Obstacles

Behind A Corner For Autonomous Vehicles

Felix Naser1, Igor Gilitschenski1, Guy Rosman2, Alexander Amini1,

Fredo Durand1, Antonio Torralba1, Gregory W. Wornell1,

William T. Freeman1, Sertac Karaman3, and Daniela Rus1

Abstract— Moving obstacles occluded by corners are a poten-
tial source for collisions in mobile robotics applications such as
autonomous vehicles. In this paper, we address the problem
of anticipating such collisions by proposing a vision-based
detection algorithm for obstacles which are outside of a vehicle’s
direct line of sight. Our method detects shadows of obstacles
hidden around corners and automatically classifies these unseen
obstacles as “dynamic” or “static”. We evaluate our proposed
detection algorithm on real-world corners and a large variety
of simulated environments to assess generalizability in different
challenging surface and lighting conditions. The mean classifi-
cation accuracy on simulated data is around 80% and on real-
world corners approximately 70%. Additionally, we integrate
our detection system on a full-scale autonomous wheelchair and
demonstrate its feasibility as an additional safety mechanism
through real-world experiments. We release our real-time-
capable implementation of the proposed ShadowCam algorithm
and the dataset containing simulated and real-world data under
an open-source license.

I. INTRODUCTION

Safety is a key challenge and promise of future mobility

solutions, specifically of autonomous cars. Advanced driver

assistance systems and autonomous driving research have

come a long way to make driving safer. We believe in

addition to improvements to existing methods both on the

hardware and the algorithmic side, we need to explore new

ways of how perception, planning, and control can contribute

to a safer driving future. This paper proposes a novel method

for using shadows as features to avoid collisions with unseen

moving obstacles.

In certain situations, human drivers and operators can

perceive obstacles even when they are occluded. This, in

turn, allows operators to anticipate collisions. One technique

used by humans for detecting hidden dynamic obstacles is

observing changes in illuminance which provides the ability

to infer the approaching of a person, a vehicle around a

corner, or when a car is backing out of a driveway.

1Felix Naser, Igor Gilitschenski, Alexander Amini, Fredo Durand,
Antonio Torralba, Gregory W. Wornell, William T. Freeman and Daniela Rus
are with the Massachusetts Institute for Technology, Computer Science and
Artificial Intelligence Lab (CSAIL), Cambridge, MA, USA. {fnaser,
igilitschenski, amini, fredo, torralba, gww,
billf}@mit.edu and rus@csail.mit.edu

2Guy Rosman is with the Toyota Research Institute, Cambridge, MA,
USA. rosman@csail.mit.edu

3Sertac Karaman is with the Massachusetts Institute for Technology,
Laboratory for Information and Decision Systems (LIDS), Cambridge, MA,
USA. sertac@mit.edu

Fig. 1: The proposed ShadowCam algorithm detects moving ob-
stacles behind a corner which cast a shadow in the marked green
area. This makes driving with the autonomous wheelchair safer by
avoiding dangerous potential collision situations.

A pronounced and easily observable cue is the night-time

illumination change generated by car-lights, which is used by

humans to anticipate an approaching vehicle. Inferring mo-

tion around corners becomes considerably more challenging

during daytime or while operating a mobile robotic platform

in a well-lit indoor environment. In these scenarios, shadows

can be used as a cue, providing information on whether

a potential obstacle behind a corner is in motion (Fig. 1).

However, use of shadows in obstacle detection systems is

particularly challenging as it requires motion detection given

a poor signal-to-noise ratio (SNR) due to a sometimes barely

visible shadow.

In this paper, we consider the problem of anticipating

daytime collisions with moving obstacles that are occluded

behind a corner. Our method performs a dynamic threshold

on color-amplified images allowing the detection of even

weakly visible shadows. It classifies an image sequence

as either “dynamic” or “static”, enabling the autonomous

vehicle to react and avoid a potential collision by slowing

down or stopping. An indoor dataset was created for the

evaluation of the proposed method using different corner

configurations during different times of day and motion

regimes. Furthermore, a synthetically-generated dataset was

created, which allows us to evaluate our algorithm under a

broader variety of corners and lighting conditions, including

difficult edge cases. Finally, the method was deployed on

an autonomous wheelchair to validate its capabilities in

challenging real-world experiments.

VehicleImages from Camera

• Cyclic Buffer

Registration and ROI

• AprilTag Detection

• Image Rectification

• ROI Selection

• Resizing

• Mean Image

• Color Amplification

• Dynamic Threshold

• Classify pixels

• Action

Pre-Processing ShadowCam

• Excecution

Fig. 2: Overview of the ShadowCam Algorithm: We run a cyclic buffer over the frames of the camera mounted on top of the autonomous
vehicle. After the pre-processing steps we classify sequences and ensure that the vehicle avoids collisions with unseen obstacles.

Overall, the contributions of this work can be summarized

as follows:

• A novel method for shadow-based motion detection of

dynamic obstacles occluded behind corners.

• Extensive evaluations on synthetic data and recordings

of real-world corners.

• Implementation of our algorithm as an open-source

Robotic Operating System (ROS)1 package2, as well

as publication of a comprehensive dataset of evaluation

scenes3.

• Integration of all code to a run in real-time on a full-

scale autonomous wheelchair4.

The remainder of the paper is structured as follows. We

discuss the related work in Sec. II. Subsequently, we present

and explain our detection algorithm in Sec. III. In Sec. IV,

we go into more detail about our experimental setup and

present the results of the experiments in Sec. V. The work

is concluded in Sec. VI.

II. RELATED WORK

There have been several works on perception for mobile

robotics in non-line-of-sight (NLoS) scenarios. Most research

in that context considers ultra-wideband (UWB) systems

for localization, as e.g. in [21], and ranges up to using

WiFi signals for NLoS perception [1]. A first approach for

explicitly seeing around corners for mobile robotics was

presented in [25] using a drone which can be launched from a

car as an additional source of information. The present work

uses a vision-based approach and does not require hardware

infrastructure, assumptions about the occluding material, or

deployment of drones.

Handling object occlusion: Consideration of occlusion

for intelligent transportation systems mostly focused on

improved tracking by improving detectors of other vehi-

cles [16], [7] and pedestrians [18] while assuming partial

1http://www.ros.org/
2Open-source ROS package ShadowCam before acceptance here https:

//goo.gl/RpTT1m upon acceptance here https://github.mit.

edu/fnaser/shadow_cam.
3The dataset (both synthetic and real-world) is available here https:

//goo.gl/k5ixRd.
4Video of autonomous wheelchair with ShadowCam https://youtu.

be/rHqwBFEslu4

visibility or a merely a temporary occlusion. In [5], explicit

modelling of occlusions was also used for broader scene

understanding. In contrast to these approaches, we do not

assume even partial visibility of the potential obstacle but

use, when available, its shadow instead.

Shadow Processing: Shadow processing typically focuses

on its removal [11], [20], [6]. For mobile robotics, this is par-

ticularly relevant for improving visual localization, because

it enables generating a more weather invariant representation

of the environment [4], [14]. In contrast to these works,

we explicitly use shadows as cues in our system. While

in [13] shadows are also used in motion detection, that work

assumes a different scenario involving a static camera and

also considers visibility of the tracked object.

Hidden Scene Recovery: Computer vision approaches

which infer about hidden scenery usually rely on Time-of-

flight cameras [19], [22], [23], [12], [10], [8] which are prone

to interference from other unpredictable lighting sources and

therefore mostly rely on carefully controlled environments.

It was recently shown that lighting from behind the corner

and the created faint penumbra on the ground can be used

for creation of a 1D video [2] from a static camera. Drawing

inspiration from this work, our proposed approach considers

shadows and uses them for motion detection from a moving

platform. This is in contrast to most perception systems

which explicitly consider shadows so far, since they mostly

focus on its removal.

III. APPROACH

It is hard to come up with a general solution for the

described NLoS problem. At some corners moving objects

are physically not able to cast a shadow and when they do

the shadow is mostly a low SNR signal that highly depends

on various factors — these include size of the object, speed

of the movement, lighting, reflection properties of the floor,

color of the floor, ego motion and speed, among others.

Despite these difficulties (as shown in [2]) it is possible to

create a signal of a moving obstacle behind a corner from

a static camera. But to actually make use of the signal in

a practical way, e.g. as a safety feature for autonomous

vehicles, it needs to work on a moving platform. This

requirement adds even more noise to the system and makes

it harder to achieve high detection accuracy.

http://www.ros.org/
https://goo.gl/RpTT1m
https://goo.gl/RpTT1m
https://github.mit.edu/fnaser/shadow_cam
https://github.mit.edu/fnaser/shadow_cam
https://goo.gl/k5ixRd
https://goo.gl/k5ixRd
https://youtu.be/rHqwBFEslu4
https://youtu.be/rHqwBFEslu4

We are providing a motion detection algorithm based on

shadows as features from a moving vehicle. We look at

corners where moving objects are physically able to cast

a shadow. Since we want to focus our efforts on this new

idea, we assume we can rely on an image registration

method and know the Region of Interest (ROI) of each

frame. The ROI could be determined using the map that

the autonomous wheelchair uses to localize itself, other

place recognition algorithms [24], or a deep-learning-based

detector, but determining the ROI is not the focus of this

paper. Instead we use AprilTags [17], [26] to provide extra

features for sequence stabilization and for cropping the ROI

where we expect to see a shadow. We take the furthest tag

and crop a dynamic rectangle using the size of that tag, which

results in a rectangle that is larger the closer we are to the

corner.

Fig. 2 shows how we embedded the ShadowCam in the

perception, planning and control cycle of the autonomous

vehicle, which is in our case a wheelchair. First, we observe

the corner and then we provide the frames as inputs for the

ShadowCam, which outputs a decision on whether or not it

is safe to continue along the path.

Algorithms 1 and 2 sketch out how we implemented the

ShadowCam. For the actual C++ code we refer to the open-

source ROS package. Algorithm 1 first gives an overview

of the main loop. The classification procedure, Algorithm 2,

shows how we determine “dynamic” or “static” which is our

core algorithmic contribution.

Algorithm 1 ShadowCam Algorithm

1: list← global var

2: while true do

3: f ← getFrame()

4: d← getAprilTagDetections(f)

5: if checkDetections(d) then

6: s← createSequence(f, list)

7: c← classifySequence(s)

8: vehicleInterface(c)

Our system uses a cyclic frame buffer approach to achieve

real-time performance. This means we can output a detection

result whenever a new image fulfills the requirements to

get appended to the sequence, e.g. we require a maximum

number of detected AprilTags above a defined quality level.

Once a new image gets appended to the sequence we

identify corresponding tags to compute a homography h for

each frame to get projected to the viewpoint of the first frame

in the sequence. In other words we apply image registration

to all frames i in the current sequence j according to

fj,i(x, y) = f ′

j,i(h(x), h(y)) . (1)

After the image registration step we crop according to the

tags the ROI. To reduce noise, we down-sample each cropped

and registered image using bilinear interpolation to a 100×
100 patch,

fj,i = resize(fj,i, (w, h)) . (2)

Algorithm 2 Classify Sequence

1: procedure CLASSIFYSEQUENCE(S)

2: f̄ ← mean(S)
3: c← 0
4: for all f ∈ S do

5: f ← colorAmplification(f̄ , f)
6: f ← temporalF ilter(f)
7: f ← dynamicThreshold(f)
8: f ← morphologicalF ilter(f)
9: sum← sum+ sumPixels(f)

10: if sum >= camThreshold then:

11: c← 1
12: return c.

Then we compute the mean image over all down-sampled

images, i.e.,

f̄j =
1

n

n
∑

i=1

fj,i . (3)

We subtract the mean image from each frame in the current

sequence and apply a Gaussian blur before we amplify the

difference to the mean. That is, we compute

dj,i = |G
(

(fj,i − f̄j), k, σ
)

| · α (4)

where G is a linear blur filter of size k using isotropic

Gaussian kernels with covariance matrix diag(σ2, σ2). We

chose σ depending on k according to σ = 0.3 · ((k − 1) ·
0.5−1)+0.8 as in [3]. We call α the amplification parameter

since it amplifies the difference to the mean image. (Based

on empirical observations, k has been set to 3 and α has

been set to 5 for all experiments.) This process serves as

color amplification and helps to improve the detectability of

a shadow (sometimes even if the original signal is invisible

to the human eye). In other words, this process increases the

signal-to-noise ratio. Fig. 3 depicts an example of an image

before and after the color-amplification process. After the

frame is color amplified we run a temporal low-pass filter

tj,i = dj,i · t+ dj,i−1 · (1− t) (5)

where tj,i is the filtered result of the difference images

dj,i. To become more robust against different corners and

light conditions, we take inspiration from [9] and apply

a “dynamic” threshold. We take the difference from the

mean of each channel of the filtered frame as a criterion

to determine motion with respect to the standard deviation

of the filtered image,

cj,i =

{

0, ∀|tj,i − t̄j,i| ≤ w · σ(tj,i)
1, ∀|tj,i − t̄j,i| > w · σ(tj,i)

(6)

where w is a tune-able parameter that depends on the noise

distribution. We set w = 2 for all our experiments. The

underlying assumption here is that dynamic pixels are further

away from the mean, since they change more drastically. A

combination of dilation and erosion is used to first connect

pixels which got classified as motion and then erosion is

used to reduce noise. We are applying morphological ellipse

elements with two different kernel sizes [3], i.e.,

cj,i = dilate(cj,i, 1) , cj,i = erode(cj,i, 3) .

At the end, we sum up all pixels under the intuitive assump-

tion that more movement in between frames will result in a

higher sum

sj =

n
∑

i=1

cj,i(x, y) . (7)

To classify the whole sequence as either “dynamic” or

“static” we then apply a camera-specific threshold. We show

in Sec. V how the threshold can be determined. The data

appears to prove what sounds intuitively correct: A less noisy

image results in fewer mis-qualified pixels which results in

a lower threshold. This implies that a better camera (frame

rate and resolution) and a better image registration quality

lead to a smaller threshold.

Fig. 3: Color Amplification: On the left side is an original Canon
camera frame and on the right side the corresponding color-
amplified frame.

Fig. 4: Ego-view: The autonomous wheelchair approaches a corner
without direct sight of what is going on behind the corner.

Fig. 5: Left: The cropped, re-sized and registered image. Middle:
Example of a frame which contains no moving obstacle behind the
corner. Right: Example of a frame which contains movement. The
white areas correspond to a shadow signal.

On the vehicle interface side, we run a temporal filter

on the detection results to further smooth the signal. Once

the ShadowCam detects an obstacle behind the corner the

autonomous vehicle stops until it is safe to continue.

IV. EXPERIMENTAL SETUP

To evaluate our algorithm in different scenarios and an-

alyze its performance statistically, we collected data in a

motion-capture room (referred to as the Holodeck), created

synthetic corners with different properties in a Blender simu-

lation, and collected real-world data using different cameras.

We composed the entire dataset to cover a broad range of

the mentioned nuisance factors, such as size of the object,

speed of the movement, lighting, reflection properties of the

floor, and color of the floor.

The experiments in the Holodeck and in simulation allow

us to analyze the spatial performance of the algorithm, since

we know the exact position of the moving obstacle behind

the corner. Additionally, we can label each sequence based

on the ground truth. In real-world experiments, we label

whole videos as “dynamic” or “static” depending on whether

or not a person was moving behind the corner. This leads

to potentially mislabeled sequences in the videos, since the

person behind a corner does not move at all times.

Holodeck: The controlled test setup in the Motion Capture

environment enables labeling of each sequence automati-

cally. There, we collected data with a stationary Canon EOS

70D camera using a EFS 17 − 58 mm lens. The frame-

rate was set to 30 fps, using codec H.264 at a resolution of

1920× 1080. The motion capture system tracks the moving

object behind the corner at around 100 Hz. We synchronize

the video stream with the motion-capture data and label a

sequence as “dynamic” when more than half of the frames

contain a moving person behind the corner, otherwise it is

labeled as “static”.

In the Holodeck we were also able to vary a few scene

parameters, such as the size of the person behind the corner,

the light conditions produced by switching on and off differ-

ent ceiling lights and the material of the ground on which the

ShadowCam tries to detect shadows. Intuitively, we would

expect a better signal when the moving object is closer to

the corner, which is confirmed by our spatial analysis of the

signal in the Holodeck test setup shown in Fig. 7.

Simulation in Blender: We created a synthetic dataset

with Blender5, to test the algorithm under a greater variety

of lighting conditions, textures, person sizes, and material

properties. With a Python script we access Blender’s API to

change the scene parameters dynamically and get ground-

truth data for image registration and object motion. We use

Blender’s “Cycles Renderer” with only 10 samples to create

one frame of size 960 × 540. This results in more noisy

images making it harder for the algorithm to detect a shadow

and thus providing more realistic data. The chosen area light

casts shadows with soft edges based on ray tracing.

We change the textures of the scenes randomly. Floor

and walls are changed independently which results in more

combinations. We chose from 30 texture images (Fig. 8) to

5https://www.blender.org/

Fig. 6: The left image shows how we varied the size of the moving
object behind the corner: Wearing a winter jacket, sitting on a chair
with rollers and walking normally. The right image shows the corner
wall and a person walking from the top view.

3 m

1.5 m

2.5 m

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Holodeck Performance Heatmap

0.2

0.4

0.6

0.8

1

NaN

Fig. 7: The left plot shows the region in which the person behind
the corner walked randomly from the top-view. The right plot shows
the spatial performance of the algorithm (with regard to the mean
position of the moving person in the blue area) to correctly classify
a sequence as “dynamic” or “static”. The darker the blue, the higher
the classification accuracy for both classes.

create 30 different corners. We render for each corner 1, 000
frames for both classes (“dynamic” and “static”) which sums

up to 50, 000 synthetic images and around 6.2 GB.

In addition to the change of the texture, we change the

material properties such as surface quality (e.g. roughness)

and reflection strength (e.g. mirror or carpet) randomly. The

position and color of the light, the path of the moving

platform with the camera, and the scale and texture of the

person behind the corner are randomly modified within cer-

tain boundaries. E.g. the height of the occluded person ranges

from 0.75m to 2.2m (see Fig. 9 and Fig. 10). For both camera

and person the speed of motion changes independently for

each corner randomly within the range 1− 3 m/s.

Fig. 8: Examples of the 30 textures we use to create different scenes
with Blender. We chose various textures ranging from dark to bright
colors.

Real-World Corners: Besides the controlled environ-

ments in the Holodeck and Blender we evaluated how the

algorithm performs “in the wild”. We created a real-world

dataset with 3 different cameras and 15 corners. In total,

we collected 85, 000 images of around 1 hour of data and

7.4 GB. To not only cover different types of corners, but

also different image qualities, we chose the following three

cameras:

ROI

3 m

2 m

8 m

16 m

8 m

2,5 m 2 m

Fig. 9: Blender Scene: In addition to material changes (such as
texture or reflection properties) we change the position of the light
and the path of the camera. The person walks randomly at different
speeds within the blue box.

• Canon EOS 70D and the EFS 17−58 mm lens (single-

lens reflect (SLR) camera): The frame-rate was set to

30 fps, with codec H.264 and image dimensions 1920×
1080.

• Webcam Logitech HD Webcam C525 (low-end web-

cam): The frame rate was set to 24 fps, with codec

VP8 and image dimensions 1280× 720.

• Webcam Logitech HD Webcam C925-e (high-end we-

bcam): The frame rate was set to 20 fps, with codec

VP8 and image dimensions 1280× 720.

AprilTags were used in order to focus on the detection

problem. We placed 13 AprilTags on the same plane at which

we expect to detect a shadow. In theory one tag would

be sufficient, but most of the time only a subset of the

AprilTags gets accurately detected and by adding more tags

we increase numerical stability. AprilTag is a visual fiducial

system. It’s targets can be created from an ordinary printer,

and the AprilTag detection software computes the precise 3D

position, orientation, and identity of the tags relative to the

camera. Real-time capable implementations are available6.

We chose mainly corners where it is physically possible

for a moving object behind a corner to cast a shadow. This

implies for these corners that humans, if they pay close

attention, might be able to see a shadow of an approaching

person on the ground. We collected data ranging from high

reflection floors and stone to dark carpet (see Fig. 11). In

all real-world videos, we label each video as a whole as

“dynamic” or “static” depending on whether or not a person

was asked to walk behind the corners. The camera is moving

in a range of 1 to 3 meters back and forth, whereas the person

behind the corner moves randomly in a similar range.

Autonomous Vehicle: The algorithm was also tested on

an autonomous wheelchair (see Fig. 12) which has been

designed as an indoor counterpart to the autonomous car

presented in [15]. Therefore, the wheelchair has a very

similar sensor configuration and a software stack based

on ROS. This enables us to run (besides vehicle specific

6https://april.eecs.umich.edu/software/apriltag/

https://april.eecs.umich.edu/software/apriltag/

Fig. 10: Simulation example corners.

Fig. 11: Real-world example corners.

software parts, such as the low-level control) the same

software packages on different vehicle types. This setup

enables easily deploying a similar functionality to the real

car. For the experiments, we added a Logitech HD Webcam

C925-e on top of the Wheelchair’s top laser scanner to

increase the look-ahead distance and improve the angle at

which the camera perceives the tags on the ground. Once

the ShadowCam detects movement behind the corner we

adjusted the control algorithm of the wheelchair so that it

stops as long as movement is detected. As soon as the way

is clear again the wheelchair resumes the forward motion.

2D LiDAR

IMU

Encoder
2D LiDAR

Touch Screen

Fig. 12: Autonomous wheelchair and the main sensors. We mounted
the webcam for the ShadowCam on top of the top LiDAR. Only
the webcam is required for the ShadowCam algorithm.

V. RESULTS

We quantitatively analyze the classification accuracy, real-

time capability of the algorithm and demonstrate the Shad-

owCam integrated into an autonomous wheelchair. Our re-

sults show that it is possible to detect moving obstacles based

on shadows out of the line of sight from a moving platform

at indoor corners given that the object can physically cast a

shadow, we have access to reliable image registration, and

the region of interest is known a priori (e.g. through a specific

detector or a map). Our algorithm is easy to deploy (it has

only a few tune-able parameters) and generalizes to different

corner settings. Importantly, we analyzed performance on

different floors, light conditions and object sizes.

Histograms over sequences are used to visualize the

performance of the algorithm on the respective datasets in

Fig. 15. The ShadowCam algorithm computes one value for

each sequence which represents the sum over all “dynamic”-

classified pixels. The better the distributions of this value

(for the cases with and without a moving obstacle) can be

separated, the higher the classification accuracy can be when

the threshold is set to the optimal point. For example in a

static sequence with 1% as dynamic misclassified pixels, the

method would yield a value of 255, 000 (100 px× 100 px×
10 images× 1%× 255 pixel value).

In order to determine the threshold value upon which we

classify a sequence as “dynamic” or “static”, we examine

the histograms over all corners of a specific recording setup

(e.g. simulation or real-world) and found the noise of the

camera to be correlated with the choice of the threshold.

This conforms to the intuition that higher noise levels lead

to higher misclassification rates. Table I gives an overview of

the final thresholds we chose to create the mean classification

accuracy plots in Fig. 13 and Fig. 14.

For evaluation on the wheelchair, we implemented the

algorithm in C++, using the AprilTag 2 detector and a cyclic

frame buffer. This enabled us to compute a classification

output at 30 Hz for a sequence of 10 frames. But since

the camera we use on the wheelchair only runs at 20 Hz

and only in around 1/3 of the images enough AprilTags get

detected, the rate on the real system is around 7 Hz. The

low rate of AprilTag detection is mostly due to motion blur.

However, for the speed of the wheelchair 7 Hz is fast enough,

TABLE I: Dataset Overview

Camera Type Threshold Percent of Pixel Number of Corners

Holodeck 200000 ≈ 1% 1
Blender 220000 ≈ 1% 30
Canon 500000 ≈ 2% 11
Webcam 650000 ≈ 2.5% 3

and the performance could be easily increased by switching

to a better camera with a higher frame rate and/or image

registration method. Our experiments with the autonomous

wheelchair show that even with consumer grade cameras

(such as the Logitech Webcam) the signal can be detected

reliably.

Because our system is designed as an additional safety fea-

ture, we aim for a low rate of false “dynamic” classifications

to provide a driving experience (Fig. 13) without unnecessary

interruptions. That is, when the algorithm detects movement

then it is very likely someone is actually moving behind

the corner. Thus, the majority of sequences gets classified

as “static” even if they sometimes contain a moving obsta-

cle. It requires a strong movement behind the corner for

the sequence to get classified as “dynamic”. Currently the

classification accuracy is based on videos which got labeled

as a whole. We are expecting better results with the same

algorithm if the labels were more accurate, since “dynamic”

labeled videos contain also “static” sequences.

Fig. 13: As the distributions of the histogram suggest, we observe
a low number of false positives. The classification accuracy for
“static” sequences is high, whereas it is harder to detect movement
based on shadows. Overall is the mean performance of the algorithm
on both real-world data acquisition methods around 70%.

VI. DISCUSSIONS AND CONCLUSIONS

From a high-level point of view we look at a low SNR

signal and reduced the SNR even further by adding cam-

era movement. By making two assumptions (given image

registration and ROI) we reduce our problem to the core

research problem of motion detection based on shadows. We

developed a real-time capable motion detection algorithm

which is robust against noise, but still able to detect a low

SNR signal. To the best of our knowledge we present the

first autonomous wheelchair which is able to detect and react

Blender Canon Webcam
0

20

40

60

80

100

M
e
a
n
 C

la
s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y
 [
%

]

Overall Performance

Fig. 14: Looking more closely into the overall performance for
both classes “dynamic” and “static”, we can observe our algorithm
performs apart from one outlier corner with a very weak shadow
signal ((P (s)+P (d))/2 ≈ (100%+0%)/2 = 50%) strictly better
than random. The outlier is caused by a corner where the shadow
isn’t casted within the ROI.

to out of the line of sight moving obstacles based on their

shadows.

We were able to show that a shadow cast by a moving

obstacle out of the line of sight shouldn’t only be treated as

unwanted noise in an image but can actually provide safety

relevant features. We hope this will inspire others to treat

shadows more like an additional signal than as unwanted

noise. The new dataset can be used for further research and

in classes related to signal processing and computer vision.

We are excited to further explore new application areas

for our motion detection algorithm and ways to improve the

accuracy. We are also planning to collect more data and test

the algorithm at higher speeds with a camera at higher frame

rates. This will pave the way to bring the ShadowCam to

autonomous cars.

ACKNOWLEDGMENTS

Toyota Research Institute (TRI) provided funds to assist

the authors with their research, but this article solely reflects

the opinions and conclusions of its authors and not TRI

or any other Toyota entity. We acknowledge the generous

research support from Amazon. We want to thank our

colleagues: Christina Liao for her help with the dataset, plots

and videos, Prafull Sharma for the help with simulation,

Steve Proulx for the camera mount, Thomas Balch for the

help with the wheelchair, Vickie Ye, Adam Yedidia, and

Manel Baradad for discussions and feedback.

REFERENCES

[1] F. Adib and D. Katabi. See Through Walls with WiFi! In Proceedings

of the ACM SIGCOMM Conference, 2013.
[2] K. L. Bouman, V. Ye, A. B. Yedidia, F. Durand, G. W. Wornell, A. Tor-

ralba, and W. T. Freeman. Turning Corners Into Cameras: Principles
and Methods. In Proceedings of the Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.
[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer vision with

the OpenCV library. O’Reilly Media, Inc., 2008.

(a) All 30 simulated Blender corners combined in one histogram.

(b) One example corner where we collected the data with the Canon.

(c) One example corner where we collected the data with a webcam.

Fig. 15: Histograms of detector values for different examples. (a)
Since the distributions of “dynamic” and “static” sequences are
quite distinct the mean classification accuracy of around 80% is
expected when the threshold is set to 220.000 as the black vertical
line indicates.

[4] P. Corke, R. Paul, W. Churchill, and P. Newman. Dealing with
Shadows: Capturing Intrinsic Scene Appearance for Image-Based
Outdoor Localisation. In Proceedings of the International Conference

on Intelligent Robots and Systems (IROS), 2013.
[5] V. Dhiman, Q.-H. Tran, J. J. Corso, and M. Chandraker. A Continuous

Occlusion Model for Road Scene Understanding. In Proceedings of

the Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

[6] G. D. Finlayson, M. S. Drew, and C. Lu. Entropy Minimization
for Shadow Removal. International Journal of Computer Vision,
85(1):35–57, 2009.

[7] T. Frank, M. Haag, H. Kollnig, and H.-H. Nagel. Tracking of Occluded
Vehicles in Traffic Scenes. In Proceedings of the European Conference

on Computer Vision (ECCV), 1996.
[8] G. Gariepy, F. Tonolini, R. Henderson, J. Leach, and D. Faccio.

Detection and Tracking of Moving Objects Hidden from View. Nature

Photonics, 10(1):23–26, 2016.
[9] W. Jing, D. Xin, Z. Yun-fang, and G. Wei-kang. Adaptive Fuzzy

Filter Algorithm for Real-Time Video Denoising. In Proceedings of

the International Conference on Signal Processing (ICSP), 2008.
[10] A. Kadambi, H. Zhao, B. Shi, and R. Raskar. Occluded Imaging with

Time-of-Flight Sensors. Transactions on Graphics (ToG), 35(2):15,
2016.

[11] S. H. Khan, M. Bennamoun, F. Sohel, and R. Togneri. Automatic
Shadow Detection and Removal from a Single Image. Transactions

on Pattern Analysis and Machine Intelligence, 38(3):431–446, 2016.
[12] M. Laurenzis, A. Velten, and J. Klein. Dual-mode Optical Sensing:

Three-Dimensional Imaging and Seeing Around a Corner. Optical

Engineering, 56(3), 2017.
[13] A. Leone and C. Distante. Shadow Detection for Moving Objects

based on Texture Analysis. Pattern Recognition, 40(4):1222–1233,
2007.

[14] W. Maddern, A. D. Stewart, and P. Newman. LAPS-II: 6-DoF day
and night visual localisation with prior 3D structure for autonomous
road vehicles. In Proceedings of the Intelligent Vehicles Symposium

(IV), 2014.
[15] F. Naser, D. Dorhout, S. Proulx, S. D. Pendleton, H. Andersen,

W. Schwarting, L. Paull, J. Alonso-Mora, M. H. Ang, S. Karaman,
R. Tedrake, J. Leonard, and D. Rus. A Parallel Autonomy Research
Platform. In Proceedings of the Intelligent Vehicles Symposium (IV),
2017.

[16] E. Ohn-Bar and M. M. Trivedi. Learning to Detect Vehicles by Clus-
tering Appearance Patterns. Transactions on Intelligent Transportation

Systems, 16(5):2511–2521, 2015.
[17] E. Olson. AprilTag: A Robust and Flexible Visual Fiducial System.

In Proceedings of the International Conference on Robotics and

Automation (ICRA), 2011.
[18] W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian

Detection with Occlusion Handling. In Proceedings of the Conference

on Computer Vision and Pattern Recognition (CVPR), 2012.
[19] R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M. Bawendi, and

R. Raskar. Estimating motion and size of moving non-line-of-sight
objects in cluttered environments. In CVPR, pages 265–272. IEEE
Computer Society, 2011.

[20] R. Ramakrishnan, J. Nieto, and S. Scheding. Shadow compensation
for outdoor perception. In Proceedings of the International Conference

on Robotics and Automation (ICRA), 2015.
[21] C. K. Seow and S. Y. Tan. Non-Line-of-Sight Localization in Multi-

path Environments. Transactions on Mobile Computing, 7(5):647–660,
2008.

[22] D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro. Photon-
Efficient Computational 3-D and Reflectivity Imaging with Single-
Photon Detectors. Transactions on Computational Imaging, 1(2):112–
125, 2015.

[23] D. Shin, F. Xu, D. Venkatraman, R. Lussana, F. Villa, F. Zappa, V. K.
Goyal, F. N. Wong, and J. H. Shapiro. Photon-efficient imaging with
a single-photon camera. Nature communications, 7, 2016.

[24] K. Van De Sande, T. Gevers, and C. Snoek. Evaluating color
descriptors for object and scene recognition. Transactions on Pattern

Analysis and Machine Intelligence, 32(9):1582–1596, 2010.
[25] A. Wallar, B. Araki, R. Chang, J. Alonso-Mora, and D. Rus. Foresight:

Remote Sensing for Autonomous Vehicles Using a Small Unmanned
Aerial Vehicle. In Proceedings of the Conference on Field and Service

Robotics (FSR), 2018.
[26] J. Wang and E. Olson. AprilTag 2: Efficient and Robust Fiducial De-

tection. In Proceedings of the International Conference on Intelligent

Robots and Systems (IROS), 2016.

	Introduction
	Related Work
	Approach
	Experimental Setup
	Results
	Discussions And Conclusions
	References

