
ShadowDraw: Real-Time User Guidance for Freehand Drawing

Yong Jae Lee

University of Texas at Austin

C. Lawrence Zitnick

Microsoft Research

Michael F. Cohen

Microsoft Research

Figure 1: Results of the user study: (top) Freehand drawings of objects without using ShadowDraw, (bottom) freehand drawings of objects
using ShadowDraw. Notice the improved spacing and proportions while maintaining the subjects’ own unique styles.

Abstract

We present ShadowDraw, a system for guiding the freeform draw-
ing of objects. As the user draws, ShadowDraw dynamically up-
dates a shadow image underlying the user’s strokes. The shadows
are suggestive of object contours that guide the user as they con-
tinue drawing. This paradigm is similar to tracing, with two major
differences. First, we do not provide a single image from which the
user can trace; rather ShadowDraw automatically blends relevant
images from a large database to construct the shadows. Second,
the system dynamically adapts to the user’s drawings in real-time
and produces suggestions accordingly. ShadowDraw works by effi-
ciently matching local edge patches between the query, constructed
from the current drawing, and a database of images. A hashing
technique enforces both local and global similarity and provides
sufficient speed for interactive feedback. Shadows are created by
aggregating the edge maps from the best database matches, spa-
tially weighted by their match scores. We test our approach with
human subjects and show comparisons between the drawings that
were produced with and without the system. The results show that
our system produces more realistically proportioned line drawings.

CR Categories: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications;

Keywords: large scale image retrieval, shape matching, interactive
drawing

Links:

1 Introduction

If asked to draw a face, the result for most of us (those with little
practice in drawing) might look like one of those in the upper row
of Figure 1, created by subjects in our user study using a standard
drawing interface. Similarly, if asked to draw a bicycle, most of
us would have a difficult time depicting how the frame and wheels
relate to each other. One solution is to search for an image of the
thing we want to draw, and to either trace it or to use it in some other
way as a reference. However, aside from the difficulty of finding a
photo of what we want to draw, simply tracing object edges elimi-
nates much of the essence of drawing, i.e., there is very little free-
dom in tracing strokes. Conversely, drawing on a blank paper with
only the image in the mind’s eye gives the drawer a lot of freedom,
but freehand drawing can be frustrating without significant training.
To address this, we present ShadowDraw, a drawing interface that
automatically infers what you are drawing and then dynamically
depicts relevant shadows (Figures 5 and 6) underneath the drawing.
These shadows may be either used or ignored by the drawer.

ShadowDraw preserves the essence of drawing, i.e., freedom and
expressiveness, and at the same time uses visual references, shad-
ows, to guide the drawer. Furthermore, shadows from real images
can enlighten the artist with the gist of many images simultane-
ously. The creation becomes a mix of both human intuition and
computer intelligence. The computer, in essence, is a partner in the
drawing process, providing guidance like a teacher, instead of ac-
tually producing the final artwork. The drawings in the bottom row
of Figure 1 were drawn by the same subjects, this time using Shad-
owDraw. Notice how the users’ own creative styles remain consis-
tent between the drawings, while the overall shapes and spacing are
more realistic.

ShadowDraw consists of two main computational steps plus the
user interface. The first offline step consists of building a database
from a collection of 30,000 images collected from the Web. Each
image is converted to an edge drawing using the long edge detector
technique developed by [Bhat et al. 2009] and stored. Overlap-
ping windows in each edge image are analyzed, coded, and stored.
Each window is converted to edge descriptors, and further coded
as sketches with distinct hash keys using min-hash [Chum et al.
2008]. In the second online step, as the user draws, ShadowDraw



analyzes the strokes using a similar encoding to determine hash
keys for overlapping windows for fast matching with the database
of images. The top 100 matching database edge images are further
aligned to the drawing. A set of spatially varying weights blend the
edge images into a shadow image. In the user interface, the strokes
are overlaid on top of an evolving shadow image that provides guid-
ance for future strokes.

Our main contribution is an interactive drawing system that dynam-
ically adapts to the user’s drawing and provides real-time feedback.
A number of technical contributions make ShadowDraw unique.
Although portions of ShadowDraw follow the basic framework
of content based image retrieval, the technique of partial spatial
matching that ShadowDraw employs is novel, in that it allows for
multiple matching images based on different sub-regions of the im-
age. In addition, the verification stage and methods for determining
the blending weights are unique to this work. While there have
been previous works that helps users draw basic shapes [Igarashi
et al. 1999; Arvo and Novins 2000; Igarashi and Hughes 2001],
to our knowledge, we are the first to develop an interactive user
interface to assist freeform drawing. We test our approach with
human subjects and show comparisons between the drawings that
were produced with and without the system. The results show that
our system produces more realistically proportioned line drawings,
particularly for those who possess some skill but lack expertise. We
purposely avoid in this paper, making any claims that the system
helps produce more skilled drawers or more artistic drawings.

2 Related Work

The huge volume of image and video data available on the Web,
scientific databases, and newspaper archives, along with recent
advances in efficient (approximate) nearest neighbor matching
schemes have opened the door for a number of large scale match-
ing applications. The general field of content based image retrieval
(CBIR) uses many different inputs modalities to search for similar
images in a database (see [Datta et al. 2008] for a general survey of
this field). Here, we briefly review related work in large scale image
retrieval techniques, especially those that use line drawings for the
query and/or are aimed at constructing new images and drawings.

There are a number of systems that produce photographic-like re-
sults by compositing portions of retrieved images. The Sketch-to-
Collage system [Gavilan et al. 2007] produces a single composite
collage by matching user provided color strokes to a database of
images, segmenting out regions and interactively blending the re-
trieved segments. The Sketch2Photo system [Chen et al. 2009] pro-
duces a composite image from the user’s sketch of a scene with text
label annotated objects. Candidate image regions for each object
are found on the Web and those that produce the best agreement
are put together to form the final composition. PhotoSketch [Eitz
et al. 2009] progressively creates images through a sketching and
compositing interface. The user interacts with the system to seg-
ment and blend the images retrieved from a database of 1.5 million
images. Rather than starting from a blank page, the Scene Com-
pletion algorithm [Hays and Efros 2007] performs a global scene
match using a query image, which has “holes”. The system finds
the best images for completing the scene with objects that could
have been in the missing regions. To improve retrieval accuracy of
these sketch-based systems, researchers have also designed descrip-
tors that provide better matches between human drawn sketches and
natural images [Chalechale et al. 2005; Hu et al. 2010].

More general CBIR efforts include the early SIGGRAPH work,
Fast Multiresolution Image Querying [Jacobs et al. 1995], that
matches user paint strokes to underlying wavelet signatures of im-
ages in the database. The “Blobworld” approach [Carson et al.

2002] queries image regions rather than the entire image, to allow
the user to specify which objects in the image are more relevant to
the query. In [Nister and Stewenius 2006], a vocabulary tree is cre-
ated to efficiently retrieve images from a large database. The tree
defines a hierarchical quantization of the local image features and
provides a multi-level scheme to score matching images. In [Chum
et al. 2007], the idea of “query expansion” in text retrieval is ap-
plied to the image domain, where the highest ranked images from
the original query are re-queried to generate additional relevant im-
ages.

A 3D photorealistic virtual space is created in [Sivic et al. 2008] to
allow users to tour themes, such as city streets or skylines. Sim-
ilar images are matched and stitched from a large (few hundred
thousand) image collection downloaded from Flickr. Most recently,
MindFinder [Cao et al. 2010] aims to improve image retrieval by
allowing the user to input a text tag, a sketch, and a color as a
query. The system is able to retrieve images that better match the
image in the user’s mind. Finally, in [Chaudhuri and Koltun 2010],
data-driven suggestions are made for 3D modeling. The system
presents suggestions by matching and retrieving relevant shapes in
the database to the initial basic model.

ShadowDraw also leverages the idea of matching to a large database
of images. Unlike previous methods, our end goal is to help the
user draw rather than to perform an image composition, completion,
retrieval, or 3D modeling. Furthermore, ShadowDraw uses only a
partial and evolving drawing for the query rather than other images
and/or textual descriptions. Our system requires the retrieval to run
in real time. We have seen no other system that leverages image
retrieval for the same kind of application or with partial drawings
as the input.

There are interactive drawing interfaces such as Teddy [Igarashi
et al. 1999], Fluid Sketches [Arvo and Novins 2000], and the 3D
drawing system of [Igarashi and Hughes 2001] that strive to pro-
duce better drawings for the user. These methods provide low-level
information feedback in the form of basic polygonal shapes, lines,
and curves. More recently, the iCanDraw interface [Dixon et al.
2010] provides step-by-step instructions and corrective feedback to
guide a user to draw a human face from a reference image. While
similar in motivation, our approach provides guidance for drawing
arbitrary high-level objects using only example images.

Recently, in [Cole et al. 2008], the authors studied artists’ line
drawings of 3D shapes to analyze which line segments were being
emphasized, and to compute correlations between those segments
and the contours produced using existing computer generated line
drawing techniques and contour feature extractors. While our work
aims to help users in freeform drawing, the outputs of our system
can be a useful resource for this line of work, i.e., the user drawings
produced with ShadowDraw can be used for analyzing the contours
of more general objects occurring in natural images.

3 Approach

ShadowDraw includes three main components: (1) the construc-
tion of an inverted file structure [Witten et al. 1999] that indexes a
database of images and their edge maps; (2) a query method that,
given user strokes, dynamically retrieves matching images, aligns
them to the evolving drawing and weights them based on a match-
ing score; and (3) the user interface, which displays a shadow of
weighted edge maps beneath the user’s drawing to help guide the
drawing process.



(a) (b) (c)

(d) (e) (f)

Figure 2: Example database images and their corresponding edge
images.

3.1 Database Creation

The images in the database should be selected so that the objects de-
picted, as well as their appearance and pose, are likely to be similar
to those drawn by the user. Ideally, a large database of hand drawn
images would be used, but such a database is exceedingly hard to
construct. Instead, we use a set of approximately 30,000 natural
images collected from the internet via approximately 40 categori-
cal queries such as “t-shirt”, “bicycle”, “car”, etc. Although such
images have many extraneous backgrounds, objects, framing lines,
etc., the expectation is that, on average, they will contain edges a
user may want to draw. We scale the images to fit a 300x300 pixel
resolution, i.e., the long side is scaled to 300 pixels. We then pro-
cess each image in three stages and add them to an inverted file
structure. First, edges are extracted from the image. Next, local
edge descriptors are computed. Finally, sets of concatenated hashes
called sketches are computed from the edge descriptors and added
to the database. We store the database as an inverted file, in other
words, indexed by sketch value, which in turn points to the original
image and its edges.

Edge extraction Given a natural image, we want to find the
edges most likely to be drawn by a user while ignoring others. Per-
ceptual studies show that long coherent edges are salient to humans
even if faint [Beaudot and Mullen 2003; Elder and Goldberg 2001].
Inspired by these works, we use the long edge detector described
in [Bhat et al. 2009]. The method locally normalizes the mag-
nitudes of the edges, and then sums the normalized magnitudes,
weighted by local curvature, along the length of the edge. The re-
sult is an edge response that is related to the length of the edge and
its degree of curvature, rather than the magnitude of the intensity
gradients. We store the edge images, E, using run length encoding.
On average, each compressed edge image requires 5.3KB. Exam-
ples are shown in Figure 2 (d-f).

Patch descriptors For each edge image, we determine the edge
positions by finding maxima in the responses perpendicular to the
edge direction, similar to Canny edge detection [Canny 1986].
Given an image I in the database with corresponding edges E and
orientations θ, we compute a set of edge descriptors di ∈ D. Since
the goal is to match an edge image E to incomplete and evolving

drawings, we compute the descriptors locally over 60x60 patches.
The patches used to compute neighboring descriptors overlap by
50%, resulting in 81 descriptors over the 9×9 fixed grid of patches.

We encode each patch using the BiCE descriptor [Zitnick 2010],
which is designed to encode the histogram of edge positions and
orientations. Since the edges drawn by a user are typically less
dense than in natural images, we use a low dimensional version
of BiCE. We define a three dimensional histogram, with 4 discrete
edge orientations, 18 positions perpendicular to the edge, and 6 po-
sitions tangent to the edge. Using the notation of [Zitnick 2010],
we set nx′ = 18, ny′ = 6, nθ = 4, and nl = 1. The buckets of the
histogram are binarized by setting the top 20% to one and the rest
to zero. The final descriptor, di, has 432 binary bits.

Other image patch descriptors, such as SIFT [Lowe 2004] and
Daisy [Winder et al. 2009], rely on relative strength of the edge
magnitudes to provide discriminability, and are shown to have re-
duced matching performance compared to BiCE in [Zitnick 2010].
They are also not applicable to our scenario, since the relative edge
magnitudes on which these descriptors rely are not known for the
user’s drawing.

Min-hash A key feature of the BiCE descriptor is its binary en-
coding: it can be viewed as a set representation where the ones in-
dicate edge presence. This makes it amenable to min-hash, which
is an effective hashing technique for retrieval and clustering [Chum
et al. 2008; Lee et al. 2010; Zitnick 2010]. Min-hash has the prop-
erty that the probability of two sets having the same hash value (i.e.,
“colliding”) is equal to their Jaccard similarity. The Jaccard simi-
larity sim(di, dj) between two sets, di and dj , is the cardinality of
their intersection divided by the cardinality of their union:

sim(di, dj) =
#(di ∩ dj)

#(di ∪ dj)
. (1)

A min-hash function randomly permutes the set indices (i.e., the
ones and zeros). All sets (BiCE descriptors) are permuted using the
same min-hash function. The min-hash value for a given permuted
set is its smallest index containing a value of one after the permu-
tation. A single min-hash can be non-discriminative and introduce
many false positive retrievals, especially if the descriptor is non-
sparse. To increase precision, we compute k independent random
min-hash functions, and apply them to all BiCE descriptors. We
concatenate the resulting k min-hash values for each descriptor into
k-tuples called sketches. The probability of two sketches colliding
is thus reduced exponentially to sim(di, dj)

k. To increase recall,
this process is repeated n times using n different sets of k min-
hash functions, resulting in n sketches per descriptor. To maintain
high recall while reducing false positives, tradeoffs must be made
between the number of sketches stored for each descriptor and the
size of the sketch, k. In our experiments, we store n = 20 sketches
of size k = 3 for each descriptor.

We store an inverted file structure for each of the n min-hash
sketches. We allocate each unique sketch as a new entry in the
structure. We record the image index and patch location of the de-
scriptor instance that produced the sketch.

3.2 Image Matching

Our hashing scheme allows for efficient image queries, since only
images with matching sketches need to be considered. In this sec-
tion, we describe the real-time matching pipeline between the edge
images in the database and the user’s drawing, as shown in Fig-
ure 3. Initially, we use the inverted file structure to obtain a set
of candidate matches. Next, each candidate match is aligned with



Figure 3: An outline of the online processing pipeline. Given a user’s strokes, sketches are computed for each sub-window, and matching
votes are accumulated in a histogram. The top 100 matching images are aligned, scored, and weighted to generate the final shadow image.

the user’s drawing and scored. This two step matching procedure
is necessary for computational efficiency, since only a small subset
of the database images need to be finely aligned and weighted. We
use the scores from the alignment step to compute a set of spatially
varying weights for each edge image. The output is a shadow image
resulting from the weighted average of the edge images. Finally, we
display the shadow image to the user as described in Section 4.

Candidate matches We represent the user’s drawing as a set of

vectorized multi-segment strokes. We create an edge image Ẽ from
these strokes by drawing lines with a width of one pixel between the
stroke points. The rendered lines have the same style as the edges
extracted from the natural images in the database, i.e., the edge

image Ẽ used for matching does not use the stylized strokes that are
seen by the user described in Section 4. Next, we compute BiCE
descriptors and their corresponding sketches in the same manner as
described in Section 3.1, this time using a higher resolution grid of
18 × 18 = 324 patches with 75% overlap between neighboring
patches. We use a higher resolution grid to increase the accuracy of
the predicted position, and to increase invariance to translations in
the drawing. In our implementation, the user’s drawing occupies an
area of 480×480 pixels, resulting in 96×96 pixel patches with 24
pixel offsets between neighboring patches. We compute descriptors
and sketches for each of the 324 patches.

Using the inverse lookup table, we match each sketch from the
user’s drawing to the sketches stored in the database. A match-
ing sketch casts one vote for the corresponding database image and
patch offset pair. We aggregate the matches in a histogram H stor-
ing the number of matching sketches for each image at each grid
offset. To reduce the size of H , votes are only stored if the database
patch offset is within four patch grid points of the patch being con-
sidered in the user’s drawing. This corresponds to relative shifts of
less than 96 pixels between the user’s drawing and the database im-
ages. The resulting histogram has size m × 9 × 9, where m is the
number of images in the database. After adding all the matches for
each sketch to the histogram, we find the best matching offset for
each image, and add the top 100 images to the candidate set C. As
discussed in Section 3.1, we compute n = 20 sketches for each de-
scriptor, resulting in a maximum possible 20 votes per sketch in the
histogram. To reduce the bias from any single descriptor, we limit
the contribution of each descriptor to four votes in the histogram.

Given a large database, computing the candidate set as described
above can be computationally expensive. We take advantage of the
fact that the user’s strokes change gradually over time to increase
performance. At each time step, only votes resulting from sketches
derived from patches that have changed are updated. We accom-
plish this by subtracting the votes added from the previous sketches
from H , followed by adding in the votes from the new sketches. At
each time frame, we also include in the candidate set any database

Figure 4: Illustration of spatial weights: (a) user’s view, (b)
shadow image, (c, d) top two matches and corresponding spatial
weights (top right).

image that contributed to the shadow image in the previous time
frame.

Image alignment The candidate image set C contains a set of im-
ages with approximate offsets dx and dy defined by the best match-
ing offset as described above. The approximation arises from the
discretization of the offsets in the grid of patches. We refine these
offsets using a 1D variation of the Generalized Hough transform
[Ballard 1981]. Using the standard Generalized Hough transform
for 2D translations, we create a 2D histogram T over possible off-
sets x and y using:

T (x, y) =
∑

p

Ẽ(px, py)E(px + dx + x, py + dy + y), (2)

where Ẽ(px, py) is the value of Ẽ at pixel p in location (px, py),
and similarly for the edge image E. We determine the best offset by
finding the maximum value of T (x, y). This approach is computa-
tionally expensive since we need to sum over the image for every
possible combination of x and y offsets. Instead we compute the x
and y dimensions separately using two histograms:

Tx(x) =
∑

p

sin(θ̃(px, py))Ẽ(px, py) (3)

sin(θ(px + dx + x, py + dy))E(px + dx + x, py + dy),

and similarly for Ty using the cosine of the angles. The sine of the
edge angles provides higher weights to the more informative ver-
tical edges when determining the horizontal offsets, and similarly
for Ty and cosine with horizontal edges. We empirically found this
approach to produce good results. Once the histograms Tx and Ty

are created, they are slightly blurred with σh = 2. We determine



Figure 5: Rendering pipeline for user interface: (a) user’s rendered strokes, (b) weighting based on pen position, (c) shadow image, and (d)
final rendering.

the final sub-pixel offsets d′x and d′y by adding a quadratic interpo-
lation of the resulting peak response in Tx and Ty to dx and dy . For
additional accuracy, two iterations are run. To reduce computation,
we limit the search range of x and y to twice the distance between
the grid points. In addition, we compute Equation (3) on reduced
resolution images of size 160 × 160. We notate the aligned edge
image as E′

i. To refine the scale, an additional 1D histogram Ts

may be similarly computed across scales and the peak found.

Image weighting We now have a set of candidate images, C, and
their aligned edge images E′

i, aligned using offsets d′i. Our goal is
to blend these aligned edge images into a shadow image, S, that
will help guide the user as they draw:

S =
∑

i

WiE
′

i, (4)

where Wi is the blending weight image, which we define below.
The blending weight should be high for pixels where there is a
good match between the drawing and the candidate’s aligned edges
and low for pixels where there is not. We construct the weight im-
age from two terms, a global match term vi and a spatially varying
match term, Vi, which are normalized over all images in the candi-
date set:

Wi = α
viVi

∑

j
vjVj

. (5)

The weight α is used to reduce the visibility of noisy shadows pro-
duced when the drawing has just started and all the match scores
are low. An illustration of the spatial weighting is shown in Figure
4. The use of a spatial weighting results in shadows that are a com-
posite of multiple distinct edge images, creating the appearance of
an object that does not exist in a single database image.

We begin by defining the spatially varying match term Vi followed
by the global match term vi and α. Our goal is for a candidate
image’s weights to increase when its edges agree in position and
orientation with the user’s strokes. To compute Vi, we first de-
compose each candidate edge image into eight oriented images, ϑt,

and similarly, the drawing image into eight oriented images, ϑ̃t, for
t = 1, . . . , 8. Each image captures only strokes parallel to one of
eight evenly spaced orientations; i.e., ϑ1 depicts horizontal edges,
ϑ5 depicts vertical edges, and the remaining six each capture one
other orientation at 22.5◦ intervals. If an edge’s orientation falls
in between two orientations, its contribution is linearly divided be-
tween the two oriented edge images.

To provide some invariance to position, we blur the oriented edge
images with a Gaussian kernel G(σs) with a standard deviation
σs = 1.25ϕ, where ϕ is the relative distance between the grid
points. It is also desirable that images that contain multiple edges
near a stroke receive the same score contribution as those with a
single edge. This is accomplished by limiting the magnitude of the

response from the blurred edges to the maximum response that may
result from a single edge in isolation.

We then compute positive and negative edge correlation images, ϑ+

and ϑ−, to determine where the edge image agrees and disagrees
with the user’s strokes. We define positive correlation using the
product of the edge images with the same orientations, and define
negative correlation using the product of orthogonally oriented edge
images:

ϑ
+ =

∑

t=1,8

ϑt ∗ ϑ̃t (6)

ϑ
− =

∑

t=1,8

ϑt ∗ ϑ̃(t+4)%8 (7)

Our spatially varying match term Vi is simply a Gaussian blurred
version of ϑ+,

Vi = G(ϑ+
i , 4ϕ) (8)

We add a small offset to Vi to ensure non-zero values. To reduce
computation, we compute the image scores and weights on reduced
resolution images of 40× 40 pixels.

Next, we define the global match term vi in Equation (5) that is
used to compute the edge image’s blending weights Wi. To aid in
the computation of vi, we compute a global match score hi for each
image using the difference between ϑ+ and ϑ−,

hi =
∑

p

ϑ
+
i (p)− ϑ

−

i (p) (9)

Equation (9) has a high positive value when the user’s strokes and
the image’s edges agree in position and orientation. However, if
a majority of the user’s strokes are perpendicular to the image’s
edges, hi may be negative.

Finally, we compute vi using a nonlinear function of hi and the
average h∗ of the five highest scores from the candidate set,

vi = max

(

0,

(

hi − γh∗

h∗ − γh∗

)κ)

. (10)

We assign a value of 0.5 to γ, which means the value of vi is greater
than zero only if the score is greater than half the average of the five
highest scores. A value of κ = 2 favors images with higher scores
and sets the rate of weight decay as quadratic. In Equation (5), we
set α to

α =

∑

i
vi

ǫ+
∑

i
vi

(11)

where ǫ to corresponds to the score that would result from draw-
ing a single stroke of approximately 250 pixels. Using Equation
(11), α increases as the user draws more stokes, resulting in greater
visibility of the shadows.



Figure 6: Video frames from four example drawing sessions: (top) final rendering visible to user, (bottom) shadow image. The last row
demonstrates the shadow’s robustness to clutter.

To summarize, we compute a shadow image in real time by compar-
ing the user drawn strokes to the candidate images extracted from
the database. We compute global and spatially varying weights to
blend the corresponding edge images to create the shadow image
used in the drawing interface. We determine these weights by com-
paring local orientations of edges between the developing drawing
and the database edge images.

4 User Interface

The ShadowDraw user interface appears at first like a standard
drawing system on a blank paper-like surface. We used a WACOM
Cintiq 21ux screen/tablet. The user can draw or erase strokes using
a stylus. The user sees their own drawing formed with pen strokes
superimposed on a continuously updated shadow S, see Figure 5.
The drawing area is 480× 480 pixels, and the line strokes are ren-
dered using a dark blue marker style, as shown in Figure 5(a). To
provide some color contrast, we render the shadow in a sepia tone.

To further make the shadow visible to the user, while not distract-
ing from the user’s actual drawing, we filter the shadow image to
remove noisy and faint edges,

S̃ = S ∗ (G(S, σr)− ε) (12)

where σr = 16. Multiplying by a blurred shadow image strength-
ens edges that agree in position and weakens others. ε = 1 is used
to additionally suppress faint edges. In addition, we apply a small
amount of blur with a standard deviation of 1.25 to soften the shad-
ows, see Figure 5(c). Finally, we weight the shadow S′ to have
higher contrast near the user’s cursor position pc:

S
′(p) = λS̃(p) + (1− λ)ωS̃(p) (13)

where ω is a Gaussian weighted distance between p and pc with
a standard deviation of 120 pixels. λ may be set by the user and
controls the contrast of the shadows. We render the final image on
a paper textured background as shown in Figure 5(d).

5 Results

All our experiments are run using a database of approximately
30,000 images. We collected 28,000 images by crawling image web
searches such as “bear”, “bike white background”, and “motorcycle
honda”. We removed duplicates and adjusted the resolution of the
images such that intra-category objects have similar scales. We col-
lected 435 face images from the Caltech 101 dataset [Fei-Fei et al.
2004]. Since the face images are of uniform scale, and users tend
to draw faces at different scales, (full face vs. head and shoulders)
we added randomly scaled images to the dataset for a total of 2,000
face images.

We implemented ShadowDraw on a modest system with a quad-
core Intel i5 CPU with 4GB RAM. The compressed edge images
from the database are stored in memory along with the inverse look-
up table requiring 850MB of RAM. We implemented ShadowDraw
using two threads to provide a smooth user interface. The fore-
ground thread handles user input and renders the user’s strokes. The
background thread accepts as input the user’s strokes and computes
a shadow image. On average, a new shadow image is computed ev-
ery 0.4 to 0.9 seconds depending on the number of new strokes. A
fast response is critical in creating a positive feedback loop in which
the user obtains suggestions while still in the process of drawing a
stroke.

We chose the parameters for the BiCE descriptor, sketch sizes,
number of sketches, and grid resolutions through quantitative tests
on several categories, such as faces, motorcycles, and butterflies.
We chose the parameters associated with fine alignment and spatial
weighing by qualitatively examining several results.

Figure 6 shows several example drawing sessions using Shadow-
Draw. Please refer to the accompanying video to see the sessions
in action and for more results. Note the drawing rate is accelerated
to fit in the video. As the user draws new strokes and erases others,
the shadows dynamically update to best match the user’s drawing.



Figure 7: Evaluation scores of drawings by users in the “poor”,
“average”, and “good” groups. ShadowDraw achieves signifi-
cantly better drawing results for the “average” group.

Using our large database, the user can receive guidance for a va-
riety of object categories, including specific types of objects such
as office chairs, folding chairs, or rocking chairs. The last row of
Figure 6 demonstrates the scoring function’s robustness to clutter.
Even when many spurious strokes are drawn, the correct images are
given high weight in the shadow image.

5.1 User Studies

We conducted a user study to assess the effectiveness of Shadow-
Draw on untrained drawers. In the first stage, subjects produced
quick 1-3 minute drawings with and without ShadowDraw. In a
second stage, a separate set of subjects evaluated the drawings.

Drawing We conducted the experiment with 16 subjects, eight
women and eight men. Each subject was asked to draw five ob-
jects, Shoe, Bicycle, Butterfly, Face, and Rabbit, with and without
ShadowDraw, for a total of 10 drawings. We randomly permuted
the sequence of objects presented to each user. The shadows ap-
peared on every other drawing; thus half the objects were drawn
first without shadows and the other half drawn first with shadows.
We used Rabbit as a control variable to ensure fairness of the ex-
periments: there were no rabbit images in our database. Please see
the supplementary video for example drawings by the subjects.

Before beginning the study, we explained the UI: the functionality
of the pen (drawing and erasing), the white canvas, and the “start”
and “next” button to proceed to the next object once the current
drawing was completed. We explained to the user that shadows
would appear on every other drawing, and that he/she was free to
use them for guidance or to completely ignore them. We also ex-
plained that the shadows could be removed by tapping on a region
outside of the canvas (and would reappear as the user started draw-
ing again). Warm-up exercises to acquaint them with the interface
included drawing a circle and a t-shirt.

Each user was given 30 minutes to complete all 10 drawings. We
recorded the sequence of keystrokes (both drawing and erasing),
and time spent on each drawing. On average, the users completed
the task in about 20 minutes, spending more time on objects which
require more detail such as Faces and less on those such as Shoes.
We also asked subjects to fill out a short questionnaire at the end of
the study.

Evaluation Eight additional subjects (who did not participate in
the drawing experiment) evaluated the drawings. We displayed

Figure 8: Per category evaluation scores of drawings by users in
the “average” group. ShadowDraw improves drawing results for
most categories.

each drawing pair (produced with and without ShadowDraw) side-
by-side. We asked each evaluator to choose what she perceived to
be the “better drawing”. If she could not decide, she was given the
option of choosing “tie”. This was repeated for all drawing pairs.
We randomized the order and placement of the drawings, so that the
drawings produced with ShadowDraw did not always appear left or
right.

To assess the user’s drawing abilities, we next asked each evaluator
to rate each user’s collection of drawings produced without Shad-
owDraw on a scale of 1 to 5, where 1 is poor, 3 is average, and 5
is excellent. We grouped the users into three groups (poor, average,
and good) based on their drawing ability score, by averaging the
eight evaluator ratings. It should be noted that none of the subjects
was rated as close to excellent, as all ratings averaged below 4.

Analysis and Remarks We first present our findings on the
drawing scores per group for all object categories. Figure 7 shows
the results. We compute an average score per group (i.e., by av-
eraging the individual user votes in the group). The “poor” group
has three users, with scores in [1, 2); the “average” group has seven
users, with scores in [2, 3); and the “good” group has six users, with
scores above 3.

Overall, ShadowDraw achieves significantly higher scored draw-
ing results for the “average” group, and inconclusive results in the
other two groups (see Figure 7). Figure 8 shows the per category
breakdown of scores for the “average” group. ShadowDraw was
particularly helpful for drawing structurally complex objects like
bicycles. We see noticeable improvement for faces and butterflies
as well. The rabbit category was used as a control variable, so the
“tie” result was expected. Shoes showed some decline with Shad-
owDraw perhaps because the variability in shoe appearance pro-
duced a higher amount of noise in the shadow image.

The lack of higher scores in the “good” group confirms our in-
tuition that people who can draw quite well will produce equally
good drawings with or without ShadowDraw. The interesting phe-
nomenon is the insignificant difference in the scores for the “poor”
group. Upon closer inspection of their drawings, we found that
these users were extremely poor drawers (i.e., the aspect ratios and
basic shapes of their drawings were far off from those of the objects
they were intending to draw) and thus the system had no chance to
properly match and retrieve relevant database images. This also ex-
plains why we achieve significant improvement over the baseline
for the “average” group. The users in this group are able to draw
the basic shapes and rough proportions of the objects correctly, but



Figure 9: Example face drawings produced without ShadowDraw and after training with ShadowDraw. Each pair was drawn by the same
subject.

have difficulty applying exact proportions and details essential for
producing compelling drawings, which is precisely where Shadow-
Draw can help.

There are several remedies to allow even the poorest drawer to ben-
efit from our system. The most obvious is to give them more prac-
tice to learn the capabilities of the system. To test this hypothesis,
we asked each user to draw another face after they completed the
previous task. We allowed the user to explore and suggested that
the user draw a more “oval” vs. “round” face outline to get more
relevant shadows. Figure 9 shows some examples of the users’
drawings of faces before and after such practice. There is a no-
ticeable change towards realistic proportions in the drawings for
those with poor skill (left) and good skill (right). Notice how the
subject’s personal style is maintained between drawings, and that
the more proficient drawers are not simply tracing the shadows. Al-
though most would agree the poorer results have been improved,
it becomes a matter of taste for the more skilled drawings whether
the new drawings are better. Truly assessing the overall aesthetic
improvement in the results is beyond the scope of this paper.

Figure 1 shows some more examples of the users’ drawings with
and without ShadowDraw. Each column shows the drawings pro-
duced by the same user. One can clearly notice a significant change
towards more realism in the drawings, especially in terms of the
proportions of the different parts of an object and including impor-
tant features such as the structure and layout of the object (see the
bicycles), and overall shape (see the butterflies).

User Satisfaction When asked in the questionnaire, “How
would you compare your drawing results with ShadowDraw vs.
those without ShadowDraw?,” on average, the users gave a score
of 4.0 in a range where 1 is “much worse”, 3 is “no difference”, and
5 is “much better”. When asked, “How would you rate your satis-
faction of drawing with ShadowDraw vs. without ShadowDraw?,”
on average, the users gave a score of 3.9. Some positive comments
from an open ended question included:

• “Fun and helpful, I became dependent on it very quickly.”

• “Helps in drawing faster than without ShadowDraw”

• “This is a great product and I already love it - got to have one.
Really helps me relax!!”

• “Having no background in art, ShadowDraw made drawing a
lot of fun when a shadow was provided.”

There were a couple of comments indicating that ShadowDraw was
sometimes distracting, such as “...I occasionally got confused about
my lines vs. shadow lines.” For this, we can create a button on the
UI labeled as “Shadow on/off”, so that the user can choose to view
or hide the shadows.

Overall, the users appeared to enjoy using ShadowDraw and pro-
duced better drawings (as self-rated) than they could achieve with-
out ShadowDraw. This is the essence of what defines ShadowDraw.
It does not produce the final artwork; rather, it guides the user when
the user wants the help. This makes the drawing experience fun,
and with that, the final drawing becomes visually pleasing to one’s
self.

6 Conclusion and Discussion

We have presented a system that guides a user to draw by dynam-
ically producing shadows derived from thousands of images. We
have demonstrated that our method can retrieve relevant images in
real time based on incomplete and evolving sketches by the user.

We reported on a user study that showed improved realism in many
users’ drawings, but more importantly, we learned a number of un-
expected things from the study. Perhaps the most interesting find-
ing was that ShadowDraw was most effective for those that had a
modicum of drawing skill. We can surmise that those with little
skill were unable to produce initial drawings sufficient for the re-
trieval of relevant images for the production of shadows. Those
already possessing drawing skill may have been distracted by the
shadows. There are a number of ways we hope to alleviate both
issues to address the needs of a wider range of users. For more
novice drawers, being able to specify the category class would trim
the database search and would likely lead to more relevant shadows
even when the initial drawing has little resemblance to the class.
For more expert users, an interface providing more control over
shadow strength can be easily added. Also, an ability to draw neg-
ative strokes to discourage shadows containing those strokes would
again provide finer control over the shadow guidance.

We also want to explore the trade-offs between image database size
and the shadows’ efficacy. We have shown the ability to handle
many thousands of images over a wide variety of categories. While
more flexibility would be attained by a larger database for experts,
the problems encountered by the novice drawers might be accentu-
ated. More work is required to understand these trade-offs.



There are also many more subtle issues such as the tension be-
tween guidance and freedom in how a drawing expresses an ob-
ject’s essence versus getting all the proportions right. This will
perhaps require exploring new scoring methods that allow for non-
rigid transformations in the matching and shadow generation steps.
We were encouraged to see that the users’ personal drawing styles
were maintained when using ShadowDraw. That said, more work
is required to make the system truly aid in improving the overall
aesthetic result. This will require a more nuanced understanding
of the relationship between aesthetics and realism in drawings. If
one could assemble a large database of artistic drawings, we may
be able to use some of the technology we report to begin to learn
such a relationship, but this is left for future work.

In conclusion, we have found this area of investigation very exciting
and look forward to extending the work in many directions. We
hope this paper has expressed both the scope of the specific work
reported on, as well as the many possible related avenues for future
exploration.

Acknowledgements

The authors would like to thank Ce Liu for many insightful discus-
sions and help in shaping the work in this paper. We would also
like to thank the anonymous reviewers for their many helpful com-
ments. Finally, thanks to all the participants who were willing to
draw as part of the user studies. Hopefully ShadowDraw will make
them feel more comfortable picking up a pen to draw in the future.

References

ARVO, J., AND NOVINS, K. 2000. Fluid sketches: Continuous
recognition and morphing of simple hand-drawn shapes. ACM
UIST .

BALLARD, D. 1981. Generalizing the hough transform to detect
arbitray shapes. In Pattern Recognition, vol. 13, 111–122.

BEAUDOT, W., AND MULLEN, K. 2003. How long range is con-
tour integration in human color vision. In Visual Neuroscience,
vol. 15, 51–64.

BHAT, P., ZITNICK, C. L., COHEN, M., AND CURLESS, B. 2009.
Gradientshop: A gradient-domain optimization framework for
image and video filtering. TOG.

CANNY, J. 1986. A computational approach to edge detection. In
TPAMI, vol. 8, 679–698.

CAO, Y., WANG, H., WANG, C., LI, Z., ZHANG, L., AND

ZHANG, L. 2010. Mindfinder: Finding images by sketching.
In ACM Multimedia International Conference.

CARSON, C., BELONGIE, S., GREENSPAN, H., AND MALIK,
J. 2002. Blobworld: Image segmentation using expectation-
maximization and its application to image querying. In TPAMI,
vol. 24, 1026–1038.

CHALECHALE, A., NAGHDY, G., AND MERTINS, A. 2005.
Sketch-based image matching using angular partitioning. IEEE
Trans. Systems, Man, and Cybernetics.

CHAUDHURI, S., AND KOLTUN, V. 2010. Data-driven suggestions
for creativity support in 3d modeling. ACM SIGGRAPH ASIA.

CHEN, T., CHENG, M.-M., TAN, P., SHAMIR, A., AND HU, S.-
M. 2009. Sketch2photo: Internet image montage. ACM SIG-
GRAPH ASIA.

CHUM, O., PHILBIN, J., SIVIC, J., ISARD, M., AND ZISSER-
MAN, A. 2007. Total recall: Automatic query expansion with a
generative feature model for object retrieval. In CVPR.

CHUM, O., PHILBIN, J., AND ZISSERMAN, A. 2008. Near dupli-
cate image detection: min-hash and tf-idf weighting. In BMVC.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ,
S. 2008. Where do people draw lines? SIGGRAPH.

DATTA, R., JOSHI, D., LI, J., AND WANG, J. Z. 2008. Image
retrieval: Ideas, influences, and trends of the new age. In ACM
Computing Surveys, vol. 40, 1–60.

DIXON, D., PRASAD, M., AND HAMMOND, T. 2010. icandraw:
Using sketch recognition and corrective feedback to assist a user
in drawing human faces. ACM CHI.

EITZ, M., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA, M.
2009. Photosketch: A sketch based image query and composit-
ing system. ACM SIGGRAPH - Talk Program.

ELDER, J., AND GOLDBERG, R. 2001. Image editing in the con-
tour domain. In TPAMI, vol. 23, 291–296.

FEI-FEI, L., FERGUS, R., AND PERONA, P. 2004. Learning gener-
ative visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. In Workshop
on Generative-Model Based Vision, CVPR.

GAVILAN, D., SAITO, S., AND NAKAJIMA, M. 2007. Sketch-to-
collage. ACM SIGGRAPH - Posters.

HAYS, J., AND EFROS, A. A. 2007. Scene completion using
millions of photographs. ACM SIGGRAPH.

HU, R., BARNARD, M., AND COLLOMOSSE, J. 2010. Gradient
field descriptor for sketch based retrieval and localization. ICIP.

IGARASHI, T., AND HUGHES, J. F. 2001. A suggestive interface
for 3d drawing. ACM UIST .

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
A sketching interface for 3d freeform design. ACM SIGGRAPH.

JACOBS, C. E., FINKELSTEIN, A., AND SALESIN, D. H. 1995.
Fast multiresolution image querying. In SIGGRAPH.

LEE, D. C., KE, Q., AND ISARD, M. 2010. Partition min-hash for
partial duplicate image discovery. In ECCV.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. IJCV .

NISTER, D., AND STEWENIUS, H. 2006. Scalable recognition
with a vocabulary tree. In CVPR.

SIVIC, J., KANEVA, B., TORRALBA, A., AVIDAN, S., AND

FREEMAN, W. 2008. Creating and exploring a large photo-
realistic virtual space. In Workshop on Internet Vision, CVPR.

WINDER, S., HUA, G., AND BROWN, M. 2009. Picking the best
daisy. In CVPR.

WITTEN, I. H., MOFFAT, A., AND BELL, T. 1999. Managing
Gigabytes: Compressing and Indexing Documents and Images.
Morgan Kaufmann.

ZITNICK, C. L. 2010. Binary coherent edge descriptors. In ECCV.


