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Abstract In practical situations, fuzzy sets with time-

varying membership degrees are frequently encountered. In

this paper, we interpret dynamic fuzzy sets by means of

shadowed sets. We provide an analytic solution to com-

puting the pair of thresholds by searching for a balance of

uncertainty in the framework of shadowed sets. Subse-

quently, we construct errors-based three-way approxima-

tions of shadowed sets and present an alternative decision-

theoretic formulation for calculating the pair of thresholds.

Finally, we employ several examples to illustrate how to

calculate thresholds for making a decision by means of

dynamic loss functions.

Keywords Fuzzy set � Shadowed set � Decision-theoretic
rough sets � Three-way decision

1 Introduction

Fuzzy set theory, proposed by Zadeh (1965) in 1965, is a

powerful mathematical tool to describe uncertainty infor-

mation. The concept of membership function, taking its

values in the unit interval, is a fundamental notion of fuzzy

set theory. However, according to (Pedrycz 1998), exces-

sive precision of fuzzy sets has been questioned due to the

conceptual shortcoming associated with precise numeric

values, and we need to distinguish objects by a lot of levels

of fuzziness, since human only process about seven plus or

minus two units of information in practice. Hence, a new

tread of fuzzy set theory is motivated by the approxima-

tions of fuzzy sets by less number of membership degrees.

Indeed, approximations of fuzzy sets by finite memship

grades have been extensively investigated in the literature

(Banerjee and Pal 1996; Chakrabarty et al. 1998; Chanas

2001; Dubois and Prade 1980; Grzegorzewski 2002, 2013;

Klir and Bo 1995; Liang et al. 2013; Nasibov and Peker

2008; Zadeh 2008). Shadowed sets, amongst others, repre-

sent one of the related theories and has gained a growing

interests in recent years (Cattaneo andCiucci 2003a, b, 2008;

Mitra and Kundu 2011; Pedrycz 1999, 2004, 2005, 2009;

Pedrycz et al. 2009; Wang and Wang 2012; Zhou et al.

2011). In Pedrycz’s model (Pedrycz 1998), an element with

membership degree close to 1 will be evaluated to 1, we

handle the element as well as 1; an element withmembership

grade close to 0will be reduced to 0,we handle the element as

well as 0; and the other elements would be put into a shad-

owed region. In practical situations, membership grade of

fuzzy sets varies with time. Such a type of fuzzy sets is

always called dynamic fuzzy sets (Wang et al. 1988; Solana-

Cipres et al. 2009; Lopes et al. 2013). For example, a

20-year-old man was viewed as an old man in the primitive

society, a 20-year-oldmanwas viewed as amiddle-agedman
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in feudal society, and a 20-year-old man was viewed as a

young man now. Therefore, dynamic fuzzy sets are much

more expressive than static fuzzy set, and it is thus of great

significance to express shadowed sets by means of dynamic

fuzzy sets.

Much research work has focused on three-way decision

theory (Feng and Mi 2016; Liu et al. 2016; Ma et al. 2014;

Lang and Yang 2015; Min and Xu 2016; Sang et al. 2016;

Skowron et al. 2016; Zhang and Min 2016; Yao

2003, 2008, 2010, 2011a, b;Hu 2014;Hu et al. 2016; Li et al.

2016; Yu et al. 2016) and shadowed sets (Deng and Yao

2014) by loss functions. For example, Li and Zhou 2011

evaluated the cost and benefit of assigning an instance to a

specific subcategory and defined a general loss function for

supervised learning. Liang and Liu (Liang et al. 2013; Liang

and Liu 2014) presented triangular fuzzy decision-theoretic

rough sets and systematic studies on three-way decisions

with interval-valued decision-theoretic rough sets. Liu et al.

(2011, 2012, 2013) proposed stochastic decision-theoretic

rough sets, interval-valued decision-theoretic rough sets,

fuzzy decision-theoretic rough sets, and dynamic decision-

theoretic rough sets. Deng and Yao (2013, 2014) presented

decision-theoretic three-way approximations of fuzzy sets

on the basis of decision-theoretic rough sets. More specifi-

cally, they computed a pair of thresholds for three-way

approximations of fuzzy sets by loss functions, and classified

a set of objects into three regions by the pair of thresholds. In

other words, one of the following three decisions can be

made for each object: elevate the membership grade to 1,

reduce the membership grade to 0, and change the mem-

bership grade to a third intermediate value. In practical sit-

uations, dynamic loss functions are of interest, because such

functions are frequently encountered; moreover, relevant

studies on shadowed sets by dynamic loss functions have not

been conducted so far. Therefore, it is urgent to further study

dynamic loss functions for making a decision by three-way

decision.

The purpose of this paper is to further investigate

shadowed sets. Section 2 recalls the basic principles of

shadowed sets. Section 3 introduces shadowed sets of

dynamic fuzzy sets. Section 4 provides errors-based inter-

pretation of shadowed sets. Section 5 shows how to com-

pute the thresholds based on decision-theoretic rough sets.

This paper is completed with some concluding remarks in

Sect. 6.

2 Preliminaries

In this section, we review some concepts of shadowed sets.

Definition 2.1 Pedrycz (1998) Let A be a fuzzy set, the

shadowed set SlA of A is defined as

SlAðxÞ ¼
1; lAðxÞ� a;
0; lAðxÞ� b;
0; 1½ �; b\lAðxÞ\a:

8
<

:
ð1Þ

In Pedrycz’s model, an optimal pair of thresholds is

computed by the objective function as

Elevated areaða;bÞðlAÞ þ Reduced areaða;bÞðlAÞ
¼ Shadowed areaða;bÞðlAÞ: ð2Þ

The objective function is constructed on elevated area,

reduced area, and shadowed area, which is shown in Fig. 1.

In other words, the shadowed area is the sum of the ele-

vated area and reduced area, and it is difficult to compute a

pair of thresholds satisfying this condition in practical sit-

uations. Instead, Pedrycz (1998) proposed another

approach to computing the pair of thresholds when the

universe U is finite by minimizing the absolute difference

as

Vða;bÞðlAÞ
¼ jElevated areaða;bÞðlAÞ þ Reduced areaða;bÞðlAÞ
� Shadowed areaða;bÞðlAÞj

¼ j
X

lAðxÞ� a

ð1� lAðxÞÞ þ
X

lAðxÞ� b

ðlAðxÞÞ

� Cardðfx 2 U j b\lAðxÞ\agÞj; ð3Þ

where cardð�Þ denotes the cardinality of a set �, and an

optimal pair of thresholds a and b can be derived by

minimizing the objective function Vða;bÞðlAÞ. Similarly, it

is also difficult to compute the pair of thresholds a and b
since minimizing Vða;bÞðlAÞ involves two parameters a and

b. For convenience, by aþ b ¼ 1, the objective function is

simplified as

Fig. 1 Shadowed sets
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Vða;1�aÞðlAÞ
¼ jElevated areaða;1�aÞðlAÞ þ Reduced areaða;1�aÞðlAÞ
� Shadowed areaða;1�aÞðlAÞj

¼ j
X

lAðxÞ� a

ð1� lAðxÞÞ þ
X

lAðxÞ� 1�a

ðlAðxÞÞ

� Cardðfx 2 U j 1� að\lAðxÞ\agÞj: ð4Þ

Subsequently, Deng and Yao (2014) expressed the objective

function to further investigate shadowed sets in terms of the

errors. In their approach, for an object x with membership

grade lAðxÞ, the elevation operation changes the member-

ship grade from lAðxÞ to 1, and the reduction operation

changes the membership grade from lAðxÞ to 0. The errors

induced by elevation and reduction operations are shown as

EeðlAðxÞÞ ¼ 1� lAðxÞ;ErðlAðxÞÞ ¼ lAðxÞ � 0 ¼ lAðxÞ:
ð5Þ

The errors EeðlAÞ and ErðlAÞ induced by the elevation and

reduction operations for a fuzzy set A of the universe U,

respectively, are shown as

EeðlAÞ ¼
X

lAðxÞ� a

ð1� lAðxÞÞ;ErðlAÞ ¼
X

lAðxÞ�b

ðlAðxÞÞ:

ð6Þ

The error for the shadowed area is not clear because of the

unit interval [0, 1] as the membership grade when

b\lðxÞ\a. By computing the difference between lðxÞ
and the maximum 1 and the minimum value 0 and sum-

marizing them up, we express the error induced by shad-

owed area as

EsðlAÞ ¼
X

b\lAðxÞ\a

ð1� lAðxÞÞ

þ
X

b\lAðxÞ\a

ðlAðxÞÞ ¼ Cardfxjb\lAðxÞ\ag;

ð7Þ

where Cardfxjb\lAðxÞ\ag denotes the cardinality of

fxjb\lAðxÞ\ag.
The objective function by the error-based interpretation

of the three areas is expressed as

Vða;bÞðlAÞ ¼ jEeðlAÞ þ ErðlAÞ � EsðlAÞj
¼ j

X

lAðxÞ� a

ð1� lAðxÞÞ þ
X

lAðxÞ� b

ðlAðxÞÞ

�
X

b\lAðxÞ\a

ð1� lAðxÞÞ �
X

b\lAðxÞ\a

ðlAðxÞÞj:

ð8Þ

The objective function is constructed on elevated area,

reduced area, and shadowed area, as shown in Fig. 2. In other

words, the objective function is a kind of tradeoff of errors

producedby three regions.Ononehand,EsðlAÞ consists of the
errors of elevation and reduction operations, and it is impos-

sible to elevate lAðxÞ to 1 and reduce lAðxÞ to 0 simultane-

ously. On the other hand, we are not able to allocate any

numeric membership grade to the elements in the shadowed

area. That is, any numeric value of the unit interval [0, 1] could

be permitted to reflect the uncertainty. Therefore, it is neces-

sary to investigate that which numeric value is representative

of the membership grade of elements in the shadowed area.

In fuzzy sets, 0.5 is a semantically meaningful value to

represent the membership grades of objects in the boundary

region, and a three-way approximation of a fuzzy set is

shown by replacing the unit interval [0, 1] with 0.5 as

TlAðxÞ ¼
1; lðxÞ� a;

0; lðxÞ� b;

0:5; b\lðxÞ\a:

8
><

>:
ð9Þ

By analyzing TlAðxÞ, we see that the correspondences

between areas of elevation and reduction and errors of

elevation and reduction operations remain to be the same.

However, the errors of the shadowed region are revised as

Es0:5ðlAÞ ¼
X

0:5\lAðxÞ\a

ð1� lAðxÞÞ þ
X

b\lAðxÞ\0:5

ðlAðxÞÞ:

ð10Þ

By EeðlAÞ;ErðlAÞ, and Es0:5ðlAÞ, we have

Eða;bÞðlAÞ ¼ jEeðlAÞ þ ErðlAÞ � Es0:5ðlAÞj
¼ j

X

lAðxÞ� a

ð1� lAðxÞÞ þ
X

lAðxÞ�b

ðlAðxÞÞ

�
X

0:5\lAðxÞ\a

ðlAðxÞ � 0:5Þ

�
X

b\lAðxÞ\0:5

ð0:5� lAðxÞÞj: ð11Þ

O x

μA(x)

β

α

0.5

1 ↑ Elevation operation

↓ Reduction operation

Elevated Area

Reduced Area

Shadowed Area

Fig. 2 Errors-based shadowed sets
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The total errors of the three areas are minimized instead of

searching for a tradeoff between different areas. Corre-

spondingly, the total errors as the summation of errors of

all objects are expressed as

Eða;bÞðlAÞ ¼
X

x2U
Eða;bÞðlAðxÞÞ; ð12Þ

where

Eða;bÞðlAðxÞÞ ¼

1� lðxÞ; lðxÞ� a;

0:5� lðxÞ; b\lðxÞ� 0:5;

lðxÞ � 0:5; 0:5\lðxÞ\a;

lðxÞ � 0; lðxÞ� b:

8
>>><

>>>:

ð13Þ

The total error is minimized by minimizing the error of

each individual object, and we search for a pair of

thresholds a and b, such that Eða;bÞðlAðxÞÞ is minimized for

each object. We consider the following actions and asso-

ciated errors for minimizing the error of each object:

Elevate to 1 :1� lAðxÞ;
Reduce to 0 :lAðxÞ � 0;

Reduce or elevate to 0:5 :jlAðxÞ � 0:5j:

That is, the absolute differences between lAðxÞ and three

values 1, 0.5, and 0, respectively, are the associated errors.

By considering various costs of the actions of elevation

and reduction, Deng and Yao (2014) presented an analytic

solution of computing the pair of thresholds a andb, inwhich
one of the three actions for an object with a membership

grade can be taken as follows: elevate the membership grade

to 1, reduce the membership grade to 0, and change the

membership grade to 0.5. More specially, there are two sit-

uations for the third case: reduce themembership grade to 0.5

if a[ lAðxÞ� 0:5 and elevate themembership grade to 0.5 if

b\lAðxÞ\0:5. Each action will incur error, and the costs of

different actions are not necessarily the same.

In Table 1, the set of actions fae; ar; as# ; as"g describes

four possible actions on changing the membership grade.

For simplicity, we use fe; r; s#; s"g to denote the four

actions, where the elevation action ae elevate the mem-

bership grade of x from lAðxÞ to 1, the reduction action ar
reduce the membership grade of x from lAðxÞ to 0, the

elevation as" elevate the membership grade of x from lAðxÞ
to 0.5 if lAðxÞ\0:5, and the reduction as# reduce the

membership grade of x from lAðxÞ to 0.5 if lAðxÞ[ 0:5.

The fuzzy membership grade lAðxÞ represents the state of

object in the second column, and the errors of different

actions are given in the fourth column, and the losses of

different actions are given in the fifth column.

Suppose ke [ 0; kr [ 0; ks# [ 0; ks" [ 0; ks# � kr, and

ks" � ke, RaðxÞ ¼ kaEaðlAðxÞÞ denotes the loss for taking

actions fe; r; s#; s"g, and the losses of four actions for an

object can be computed as

ReðxÞ ¼ keEeðlAðxÞÞ
RrðxÞ ¼ krErðlAðxÞÞ
Rs# ðxÞ ¼ ks#Es# ðlAðxÞÞ
Rs" ðxÞ ¼ ks"Es" ðlAðxÞÞ

ð14Þ

According to the minimum losses of actions, Deng and Yao

(2014) immediately have three rules as

ðEÞ If lAðxÞ� a; then TlAðxÞ ¼ 1;

ðRÞ If lAðxÞ� b; then TlAðxÞ ¼ 0;

ðSÞ If b\lAðxÞ\a; then TlAðxÞ ¼ 0:5;

where

a ¼
2ke þ ks#
2ðke þ ks# Þ

and b ¼
ks"

2ðkr þ ks" Þ
:

3 Shadowed sets of dynamic fuzzy sets

In Pedrycz (1998), Pedrycz interpreted and determined the

required pair of thresholds by a framework of shadowed

sets, which solves the issue with Zadeh’s proposal. In

practice, the membership function of a fuzzy set varies

with time, referred as dynamic fuzzy set, and it is necessary

to study shadowed sets of dynamic fuzzy sets.

Definition 3.1 Wang et al. (1988) Let U be a universe,

Rþ ¼ ½0;þ1Þ, T � Rþ, and A 2 FðUÞ, where FðUÞ is the
set of all fuzzy sets of U, and the membership function lA
is defined as follows:

lA : U � T �! ½0; 1� : ðx; tÞ �! lAðx; tÞ; ð15Þ

where x 2 U and t 2 T . Then, fAðtÞjt 2 Tg is called a

dynamic fuzzy set.

The classical membership function l	A of a fuzzy set A is

static, such as l	A : U �! ½0; 1� : x �! l	AðxÞ; which is

only the function of the object. Furthermore, for a dynamic

fuzzy set, lAðx; tÞ is the membership degree of x to A at the

time t 2 T , which is more complex than the membership

function of fuzzy set. Intuitively, an object with a full

Table 1 Loss function

Action Fuzzy set

membership

grade

Three-way

membership

grade

Error Loss

ae lAðxÞ� a 1 1� lAðxÞ ke
ar lAðxÞ� b 0 lAðxÞ kr
as# 0:5� lAðxÞ\a 0.5 lAðxÞ � 0:5 ks#
as" b\lAðxÞ\0:5 0.5 0:5� lAðxÞ ks"
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membership grade 1 is a typical instance of the concept at

the time t, an object with a membership grade 0 is viewed

as a non-instance of the concept at the time t, and a higher

membership grade implies that an object belongs more to

the concept at the time t.

Example 3.2 Let U ¼ fx1; x2; x3; x4; x5g; and A ¼ x1
1�1

t

þ x2
1�1

t

þ x3
1� 1

2t

þ x4
1� 1

2t

þ x5
1� 1

3t

: By Definition 3.1, we have that

lAðx1; tÞ ¼ 1� 1
t
, lAðx2; tÞ ¼ 1� 1

t
, lAðx3; tÞ ¼ 1� 1

2t
,

lAðx4; tÞ ¼ 1� 1
2t
, and lAðx5; tÞ ¼ 1� 1

3t
.

Definition 3.3 Let A be a dynamic fuzzy set, the shad-

owed set SlA of A is defined as

SlAðx; tÞ ¼
1; lðx; tÞ� aðtÞ;
0; lðx; tÞ� bðtÞ;
0; 1½ �; bðtÞ\lðx; tÞ\aðtÞ:

8
><

>:
ð16Þ

In terms of three-way decisions, the shadowed set of a

dynamic fuzzy set can be conveniently interpreted as three

regions: the positive region defined by membership grade

1, the negative region defined by membership grade 0, and

the boundary region defined by membership grade [0,1].

Moreover, dynamic shadowed sets give a new interpreta-

tion of approximations of dynamic fuzzy sets, and the

membership function of a dynamic shadowed set is viewed

as a modification of a membership function of a shadowed

set. For example, for an object x at the time t, we elevate

the membership grade from lðx; tÞ to 1 if lðx; tÞ� aðtÞ; we
reduce the membership grade from lðx; tÞ to 0 if

lðx; tÞ� bðtÞ, and we change the membership grade from

lðx; tÞ to [0,1] if bðtÞ\lðx; tÞ\aðtÞ.
The pair of thresholds aðtÞ and bðtÞ are important for

computing three-way approximations of dynamic fuzzy

sets. In what follows, we introduce a systematic way to

compute the pair of thresholds aðtÞ and bðtÞ by minimizing

an objective function that characterizes the uncertainty of a

dynamic shadowed set. Consider a dynamic shadowed set,

as shown in Fig. 3. By comparing membership functions of

a dynamic shadowed set, we identify three dynamic

regions, as shown in Fig. 1: the dynamic elevated area, the

dynamic reduced area, and the dynamic shadowed area.

According to Pedrycz’s model, we provide an optimal

pair of thresholds based on the three areas as

Elevated areaðaðtÞ;bðtÞÞðlAÞ þ Reduced areaðaðtÞ;bðtÞÞðlAÞ
¼ Shadowed areaðaðtÞ;bðtÞÞðlAÞ: ð17Þ

The objective function is constructed on dynamic ele-

vated area, dynamic reduced area, and dynamic shadowed

area, which are shown in Fig. 3. In other words, the dynamic

shadowed area is the sum of the dynamic elevated area and

dynamic reduced area. As Pedrycz’s model, it is difficult to

compute a pair of thresholds which satisfying this condition

in practical situations. Instead, we propose an approach to

computing the thresholds when the universe U is finite by

minimizing the following absolute difference as

VðaðtÞ;bðtÞÞðlAÞ
¼ jElevated areaðaðtÞ;bðtÞÞðlAÞ þ Reduced areaðaðtÞ;bðtÞÞðlAÞ
� Shadowed areaðaðtÞ;bðtÞÞðlAÞj

¼ j
X

lAðx;tÞ� aðtÞ
ð1� lAðx; tÞÞ þ

X

lAðx;tÞ�bðtÞ
ðlAðx; tÞÞ

� Cardðfx 2 UjbðtÞ\lAðx; tÞ\aðtÞgÞj; ð18Þ

where cardð�Þ denotes the cardinality of a set �, and an

optimal pair of thresholds aðtÞ and bðtÞ can be derived by

minimizing the objective function VðaðtÞ;bðtÞÞðlAÞ. Similarly,

minimizing VðaðtÞ;bðtÞÞðlAÞ involves two parameters aðtÞ and
bðtÞ. For convenience, by assuming that aðtÞ þ bðtÞ ¼ 1,

the objective function is simplified into

VðaðtÞ;1�aðtÞÞðlAÞ
¼ jElevatedAreaðaðtÞ;1�aðtÞÞðlAÞ
þ Reduced areaðaðtÞ;1�aðtÞÞðlAÞ
� Shadowed areaðaðtÞ;1�aðtÞÞðlAÞj

¼ j
X

lAðx;tÞ� aðtÞ
ð1� lAðx; tÞÞ þ

X

lAðx;tÞ� 1�aðtÞ
ðlAðx; tÞÞ

� Cardðfx 2 Uj1� aðtÞ\lAðx; tÞ\aðtÞgÞj: ð19Þ

4 Errors-based interpretation of dynamic
shadowed sets

In this section, we present a detailed analysis of a objective

function for shadowed sets in terms of errors of approxi-

mations. We also provide a new objective function by the

O x

μA(x, t)

β(t)

α(t)

1 ↑ Elevation operation

↓ Reduction operation

Elevated Area

Reduced Area

Shadowed Area

Fig. 3 Dynamic shadowed sets
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total error of approximations for determining the thresholds

aðtÞ and bðtÞ.
To further study shadowed sets, we express the objective

function in terms of the errors introduced by a shadowed

set approximation. For an object x with membership grade

lAðx; tÞ at the time t, the elevation operation changes the

membership grade from lAðx; tÞ to 1, the reduction oper-

ation changes the membership grade from lAðx; tÞ to 0, and

the errors induced by elevation and reduction are shown as

EeðlAðx; tÞÞ ¼ 1� lAðx; tÞ;ErðlAðx; tÞÞ
¼ lAðx; tÞ � 0 ¼ lAðx; tÞ: ð20Þ

The errors EeðlAÞ and ErðlAÞ induced by the elevation and

reduction operations for a dynamic shadowed set A of the

universe U, respectively, are shown as

EeðlAÞ ¼
X

lAðx;tÞ� aðtÞ
ð1� lAðx; tÞÞ;ErðlAÞ

¼
X

lAðx;tÞ� bðtÞ
ðlAðx; tÞÞ: ð21Þ

The error for the dynamic shadowed area is not clear

because of the unit interval [0, 1] as the membership grade

when bðtÞ\lðx; tÞ\aðtÞ. By computing the difference

between lðx; tÞ and the maximum 1 and the minimum

value 0 and summarizing them up, we have

EsðlAÞ ¼
X

bðtÞ\lAðx;tÞ\aðtÞ
ð1� lAðx; tÞÞ

þ
X

bðtÞ\lAðx;tÞ\aðtÞ
ðlAðx; tÞÞ: ð22Þ

Subsequently, we express the objective function in terms of

errors by the error-based interpretation of the three areas as

VðaðtÞ;bðtÞÞðlAÞ ¼ jEeðlAÞ þ ErðlAÞ � EsðlAÞj
¼ j

X

lAðx;tÞ� aðtÞ
ð1� lAðx; tÞÞ

þ
X

lAðx;tÞ� bðtÞ
ðlAðx; tÞÞ

�
X

bðtÞ\lAðx;tÞ\aðtÞ
ð1� lAðx; tÞÞ

�
X

bðtÞ\lAðx;tÞ\aðtÞ
ðlAðx; tÞÞj: ð23Þ

The objective function is constructed on dynamic elevated

area, dynamic reduced area, and dynamic shadowed area,

which is shown inFig. 4. Inotherwords, the objective function

is a kind of tradeoff of errors produced by three regions.

However, the rationale for such a tradeoff is not entirely clear.

On one hand, EsðlAÞ consists of the errors of elevation and

reduction operations, and it is impossible to elevate lAðx; tÞ to
1 and reduce lAðx; tÞ to 0 if bðtÞ\lAðx; tÞ\aðtÞ simultane-

ously. On the other hand, we are not able to allocate any

numeric membership grade for the elements in the dynamic

shadowed area. In other words, any numeric value of the unit

interval [0,1] could be permitted to reflect the uncertainty.

Therefore, it is necessary to investigate that which numeric

value is meaningful to the membership grade of elements in

the dynamic shadowed area.

In fuzzy sets, 0.5 is a semantically meaningful value to

represent the membership grades of objects in the boundary

region. Therefore, we define a three-way approximation of

a dynamic shadowed set by replacing the unit interval [0,1]

with 0.5, that is

TlAðx; tÞ ¼
1; lðx; tÞ� aðtÞ;
0; lðx; tÞ� bðtÞ;
0:5; bðtÞ\lðx; tÞ\aðtÞ:

8
><

>:
ð24Þ

By analyzing TlAðx; tÞ, we see that the correspondences

between areas of elevation and reduction and errors of ele-

vation and reduction remain to be the same. However, we

need to revise the errors of the dynamic shadowed region as

Es0:5ðlAÞ ¼
X

0:5\lAðx;tÞ\aðtÞ
ð1� lAðx; tÞÞ

þ
X

bðtÞ\lAðx;tÞ\0:5

ðlAðx; tÞÞ: ð25Þ

By EeðlAÞ;ErðlAÞ and Es0:5ðlAÞ, we have

EðaðtÞ;bðtÞÞðlAÞ ¼ EeðlAÞ þ ErðlAÞ � Es0:5ðlAÞ
¼

X

lAðx;tÞ� aðtÞ
ð1� lAðx; tÞÞ

þ
X

lAðx;tÞ� bðtÞ
ðlAðx; tÞÞ

�
X

0:5\lAðx;tÞ\aðtÞ
ðlAðx; tÞ � 0:5Þ

�
X

bðtÞ\lAðx;tÞ\0:5

ð0:5� lAðx; tÞÞ: ð26Þ

O x

μA(x, t)

β(t)

α(t)

0.5

1 ↑ Elevation operation

↓ Reduction operation

Elevated Area

Reduced Area

Shadowed Area

Fig. 4 Errors-based dynamic shadowed sets
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The total errors of the three areas are minimized instead of

searching for a tradeoff between different areas. Corre-

spondingly, we express the total error as the summation of

errors of all objects as

EðaðtÞ;bðtÞÞðlAÞ ¼
X

x2U
EðaðtÞ;bðtÞÞðlAðx; tÞÞ; ð27Þ

where

EðaðtÞ;bðtÞÞðlAðx; tÞÞ ¼

1� lðx; tÞ; lðx; tÞ� aðtÞ;
0:5� lðx; tÞ; bðtÞ\lðx; tÞ� 0:5;

lðx; tÞ � 0:5; 0:5\lðx; tÞ\aðtÞ;
lðx; tÞ � 0; lðx; tÞ� bðtÞ:

8
>>><

>>>:

ð28Þ

The total error will be minimized by minimizing the error of

each individual object, and we can search for a pair of

thresholds aðtÞ and bðtÞ, such that EðaðtÞ;bðtÞÞðlAðx; tÞÞ is

minimized for each object. We consider the following actions

and associated errors for minimizing the error of each object:

Elevate to 1 : 1� lAðx; tÞ; Reduce to 0 : lAðx; tÞ
� 0;Reduce or elevate to 0:5 : jlAðx; tÞ � 0:5j: ð29Þ

That is, the absolute differences between lAðx; tÞ and three

values 1, 0.5, and 0, respectively, are the associated errors.

A minimized difference is obtained if lAðx; tÞ is changed

into a value that is closest to lAðx; tÞ.

Example 4.1 (Continued from Example 3.2) By taking

aðtÞ ¼ 1� 1
3t
and bðtÞ ¼ 1� 1

t
, we have lAðx1; tÞ� 1� 1

t
;

1� 1
t
� lAðx2; tÞ� 1� 1

3t
; 1� 1

t
� lAðx3; tÞ� 1� 1

3t
; lA

ðx4; tÞ� 1� 1
3t

and lAðx5; tÞ� 1� 1
3t
. Consequently, we

have

EðaðtÞ;bðtÞÞðlAðx1; tÞÞ ¼ lðx1; tÞ ¼ 1� 1

t
;

EðaðtÞ;bðtÞÞðlAðx2; tÞÞ ¼ lðx2; tÞ � 0:5 ¼ 1� 1

t
� 0:5 ¼ 0:5� 1

t
;

EðaðtÞ;bðtÞÞðlAðx3; tÞÞ ¼ lðx3; tÞ � 0:5 ¼ 1� 1

2t
� 0:5 ¼ 0:5� 1

2t
;

EðaðtÞ;bðtÞÞðlAðx4; tÞÞ ¼ 1� lðx4; tÞ ¼ 1� ð1� 1

2t
Þ ¼ 1

2t
;

EðaðtÞ;bðtÞÞðlAðx5; tÞÞ ¼ 1� lðx5; tÞ ¼ 1� ð1� 1

3t
Þ ¼ 1

3t
:

ð30Þ

5 Three-way approximations of dynamic
shadowed sets

In this section, we introduce a framework for three-way

approximations of dynamic shadowed sets.

5.1 Three-way approximations of dynamic

shadowed sets based on costs

In Sect. 4, we investigate dynamic shadowed sets by three

membership grades of 0, 0.5, and 1. We take one of the

following three actions for an object with a dynamic

membership grade: elevate the membership grade to 1,

reduce the membership grade to 0, and change the mem-

bership grade to 0.5. More specifically, there are two sit-

uations for the third case: reduce the membership grade to

0.5 if lAðx; tÞ� 0:5 and elevate the membership grade to

0.5 if lAðx; tÞ\0:5. Each action will incur error, and the

costs of different actions are not necessarily the same.

Table 2 summarizes information about three-way

approximations of a dynamic shadowed set. The second

column represents the membership grade, the fourth col-

umn represents the errors of different actions, and the fifth

column represents the losses of different actions.

The set of actions faeðtÞ; arðtÞ; as# ðtÞ; as" ðtÞg or

fe; r; s#; s"g denotes four actions on the variations of the

membership grade. The symbol aeðtÞ means elevating the

membership grade of x from lAðx; tÞ to 1, the symbol arðtÞ
means reducing the membership grade of x from lAðx; tÞ to
0, the symbol as" ðtÞ means elevating the membership grade

of x from lAðx; tÞ to 0.5 if lAðx; tÞ\0:5, and the symbol

as# ðtÞ means reducing the membership grade of x from

lAðx; tÞ to 0.5 if lAðx; tÞ[ 0:5.

Each of the four losses keðtÞ; krðtÞ; ks# ðtÞ and ks" ðtÞ
provides the unit cost, and the actual cost of each action is

weighted by the magnitude of its error. Suppose Raðx; tÞ ¼
kaðtÞEaðlAðx; tÞÞ denote the loss for taking actions

fe; r; s#; s"g, the losses of four actions for an object can be

computed as

Reðx; tÞ ¼ keðtÞEeðlAðx; tÞÞ
Rrðx; tÞ ¼ krðtÞErðlAðx; tÞÞ
Rs# ðx; tÞ ¼ ks# ðtÞEs# ðlAðx; tÞÞ
Rs" ðx; tÞ ¼ ks" ðtÞEs" ðlAðx; tÞÞ

ð31Þ

Table 2 Dynamic loss function

Action Dynamic

membership

grade

Three-way

membership

grade

Error Loss

aeðtÞ lAðx; tÞ� aðtÞ 1 1� lAðx; tÞ keðtÞ
arðtÞ lAðx; tÞ� bðtÞ 0 lAðx; tÞ krðtÞ
as# ðtÞ 0:5� lAðx; tÞ\aðtÞ 0.5 lAðx; tÞ � 0:5 ks# ðtÞ
as" ðtÞ bðtÞ\lAðx; tÞ\0:5 0.5 0:5� lAðx; tÞ ks" ðtÞ
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Since only an action is taken for each object, the total loss

of the approximation is computed by

RðtÞ ¼
X

x2U
Raðx; tÞ ¼

X

x2U
kaðtÞEaðlAðx; tÞÞ: ð32Þ

To minimize the total loss R(t)

argminaðtÞ2actionRaðtÞðx; tÞ; ð33Þ

where aðtÞ 2 feðtÞ; rðtÞ; s#ðtÞ; s"ðtÞg.
According to the value lAðx; tÞ of an object x, we have

two groups of decision rules for obtaining three-way

approximations of a dynamic shadowed set as follows:

1. When lAðx; tÞ� 0:5, (E1) If RðaejxÞ�RðarjxÞ and

RðaejxÞ�Rðas# jxÞ, then take action ae; (R1) If

RðarjxÞ�RðaejxÞ and RðarjxÞ�Rðas# jxÞ, then take

action ar; (S1) If Rðas# jxÞ�RðaejxÞ and Rðas# jxÞ
�RðarjxÞ, then take action as# .

2. When lAðx; tÞ\0:5, (E2) If RðaejxÞ�RðarjxÞ and

RðaejxÞ�Rðas" jxÞ, then take action ae; (R2) If

RðarjxÞ�RðaejxÞ and RðarjxÞ�Rðas" jxÞ, then take

action ar; (S2) If Rðas" jxÞ�RðaejxÞ and Rðas" jxÞ
�RðarjxÞ, then take action as" .

5.2 Three-way approximations of dynamic

shadowed sets based on dynamic loss functions

In this subsection, we present an analytic solution to

computing three-way approximations of dynamic shad-

owed sets by considering dynamic loss functions satisfying

certain properties.

Suppose ðc1Þ : keðtÞ[ 0; krðtÞ[ 0; ks# ðtÞ[ 0; ks" ðtÞ[
0; ðc2Þ : ks# ðtÞ� krðtÞ; ðc3Þ : ks" ðtÞ� keðtÞ, Condition (c1)

means that all costs are nonnegative; Condition (c2) means

that the cost of reducing a membership grade lAðx; tÞ� 0:5

to 0.5 is smaller than the cost of reducing it to 0; and

Condition (c3) means that the cost of elevating a mem-

bership grade lAðx; tÞ\0:5 to 0.5 is smaller than the cost of

elevating it to 1. We propose the decision rules as follows:

(1) When lAðx; tÞ� 0:5, the rule (E1) is expressed as

RðaejxÞ�RðarjxÞ , ð1� lAðx; tÞÞkeðtÞ� ðlAðx; tÞ � 0ÞkrðtÞ

, lAðx; tÞ�
keðtÞ

keðtÞ þ krðtÞ
¼ cðtÞ;

RðaejxÞ�Rðas# jxÞ , ð1� lAðx; tÞÞkeðtÞ� ðlAðx; tÞ � 0:5Þks# ðtÞ

, lAðx; tÞ�
2keðtÞ þ ks# ðtÞ
2ðkeðtÞ þ ks# ðtÞÞ

¼ aðtÞ:

ð34Þ

The rule (R1) is shown as

RðarjxÞ�RðarjxÞ , lAðx; tÞ� cðtÞ;
RðarjxÞ�Rðas# jxÞ , lAðx; tÞkrðtÞ� ðlAðx; tÞ � 0:5Þks# ðtÞ

, lAðx; tÞ�
�ks# ðtÞ

2ðkrðtÞ � ks# ðtÞÞ
¼ c�ðtÞ:

ð35Þ

The rule (S1) is depicted by

Rðas# jxÞ�RðaejxÞ , lAðx; tÞ� aðtÞ;
Rðas# jxÞ�Rðas# jxÞ , lAðx; tÞ� c�ðtÞ:

ð36Þ

Since c�ðtÞ� 0 contradicts lAðx; tÞ� 0:5, rule (R1) cannot

be used. Thus, when lAðx; tÞ� 0:5, the rules are concisely

expressed as follows: (E1) If lAðx; tÞ� aðtÞ, then

TlAðx; tÞ ¼ 1; (S1) If 0:5� lAðx; tÞ\aðtÞ, then TlAðx; tÞ
¼ 0:5.

(2) When lAðx; tÞ\0:5, the rule (E2) is expressed as

RðaejxÞ�RðarjxÞ , ð1� lAðx; tÞÞkeðtÞ� ðlAðx; tÞ � 0ÞkrðtÞ

, lAðx; tÞ�
keðtÞ

keðtÞ þ krðtÞ
¼ cðtÞ;

RðaejxÞ�Rðas" jxÞ , ð1� lAðx; tÞÞkeðtÞ� ð0:5� lAðx; tÞÞks" ðtÞ

, lAðx; tÞ�
keðtÞ � 0:5ks" ðtÞ
keðtÞ � ks" ðtÞ

¼ cþðtÞ:

ð37Þ

The rule (R2) is shown as

RðarjxÞ�RðaejxÞ , lAðx; tÞ� cðtÞ;
RðarjxÞ�Rðas" jxÞ , lAðx; tÞkrðtÞ� ð0:5� lAðx; tÞÞks" ðtÞ

, lAðx; tÞ�
ks" ðtÞ

2ðkrðtÞ þ ks" ðtÞÞ
¼ bðtÞ:

ð38Þ

The rule (S2) is depicted by

Rðas" jxÞ�RðaejxÞ , lAðx; tÞ� cþðtÞ;
Rðas" jxÞ�Rðas" jxÞ , lAðx; tÞ� bðtÞ:

ð39Þ

Since cþðtÞ� 1 contradicts lAðx; tÞ\0:5, rule (E2) is

impossible to apply. Thus, when lAðx; tÞ\0:5, the

remaining rules are concisely expressed as follows: (R2) If

lAðx; tÞ� bðtÞ, then TlAðx; tÞ ¼ 0; (S2) If bðtÞ� lAðx; tÞ
\0:5, then TlAðx; tÞ ¼ 0:5.

By combining the two sets of rules, we immediately

have three rules as (E) If lAðx; tÞ� aðtÞ, then TlAðx; tÞ ¼ 1;

(R) If lAðx; tÞ� bðtÞ, then TlAðx; tÞ ¼ 0; (S) If bðtÞ\
lAðx; tÞ\aðtÞ, then TlAðx; tÞ ¼ 0:5, where

aðtÞ ¼
2keðtÞ þ ks# ðtÞ
2ðkeðtÞ þ ks# ðtÞÞ

and bðtÞ ¼
ks" ðtÞ

2ðkrðtÞ þ ks" ðtÞÞ
:

ð40Þ
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We derive two models by considering two special dynamic

loss functions.

(1) Consider a dynamic loss function satisfying the

condition: keðtÞ ¼ krðtÞ ¼ ks" ðtÞ ¼ ks# ðtÞ ¼ kðtÞ; we
obtain a special model of three-way approximations

of dynamic fuzzy sets, and the pair of thresholds aðtÞ
and bðtÞ are given by

aðtÞ ¼
2keðtÞ þ ks# ðtÞ
2ðkeðtÞ þ ks# ðtÞÞ

¼ 3

4
and

bðtÞ ¼
ks" ðtÞ

2ðkrðtÞ þ ks" ðtÞÞ
¼ 1

4
: ð41Þ

(2) Consider a dynamic loss function satisfying the

condition:
ks# ðtÞ
keðtÞ ¼

ks" ðtÞ
krðtÞ ; by applying the condition

aðtÞ þ bðtÞ ¼ 1, we have that

aðtÞ þ bðtÞ ¼ 1 ,
2keðtÞ þ ks# ðtÞ
2ðkeðtÞ þ ks# ðtÞÞ

þ
ks" ðtÞ

2ðkrðtÞ þ ks" ðtÞÞ
¼ 1 ,

ks# ðtÞ
keðtÞ

¼
ks" ðtÞ
krðtÞ

:

ð42Þ

In practice, if the pair of thresholds is interpreted in terms

of a dynamic loss function, then the user can provide a

better estimation of the thresholds in time. Therefore, the

dynamic decision-theoretic model gives an interpretation

of the pair of thresholds, which is important to discuss

approximations of dynamic fuzzy sets.

5.3 An example of three-way approximations

of dynamic shadowed sets

In this subsection, we employ an example to illustrate the

main ideas of three-way approximations of dynamic

shadowed sets.

Suppose that a dynamic loss function is shown as

keðtÞ ¼ 3t þ 4; krðtÞ ¼ 4t þ 3; ks# ðtÞ ¼ t þ 1; ks" ðtÞ ¼ 2t þ 2:

ð43Þ

The dynamic loss function satisfies conditions (c1)–(c3).

According to Sect. 4, we compute an optimal pair of

thresholds as

aðtÞ ¼
2keðtÞ þ ks# ðtÞ
2ðkeðtÞ þ ks# ðtÞÞ

¼ 2ð3t þ 4Þ þ t þ 1

2ð3t þ 4þ t þ 1Þ ¼
7t þ 9

8t þ 10
;

bðtÞ ¼
ks" ðtÞ

2ðkrðtÞ þ ks" ðtÞÞ
¼ 2t þ 2

2ð4t þ 3þ t þ 1Þ ¼
t þ 1

5t þ 4
:

ð44Þ

In contrast to the original shadowed sets, one advantage of

three-way approximations of dynamic shadowed sets is that

the optimal pair of thresholds aðtÞ and bðtÞ is independent
on particular membership functions. To illustrate how to

make a three-way decision for an object, we employ a

dynamic shadowed set and the dynamic membership

function is a Gaussian membership function as

lAðx; tÞ ¼
1

rðtÞ
ffiffiffiffiffiffi
2p

p e
�ðx�dðtÞÞ2

2r2ðtÞ ; ð45Þ

where dðtÞ and variance r2ðtÞ are mathematical expecta-

tions and variance, respectively. If lAðx; tÞ ¼ tþ1
2tþ5

\0:5,

then the losses of taking actions ae; as" and ar of x are

RðaejxÞ ¼ keðtÞEeðlAðx; tÞÞ ¼ ð3t þ 4Þ 	 ð1� t þ 1

2t þ 5
Þ

¼ 3t2 þ 16t þ 16

2t þ 5
;

Rðas" jxÞ ¼ ks" ðtÞð0:5� Es" ðlAðx; tÞÞÞ ¼ ð2t þ 2Þ

	 ð1� t þ 1

2t þ 5
Þ ¼ 2t2 þ 10t þ 8

2t þ 5
;

RðarjxÞ ¼ keðtÞEeðlAðx; tÞÞ ¼ ð4t þ 3Þ 	 ð t þ 4

2t þ 5
Þ

¼ 4t2 þ 19t þ 12

2t þ 5
: ð46Þ

Therefore, the loss of reduction action as" has the minimum

cost by analyzing RðaejxÞ;Rðas" jxÞ, and RðarjxÞ.

6 Conclusions

In this paper, we first have presented shadowed sets of

dynamic fuzzy sets. Second, we have constructed three-

way approximations of dynamic shadowed sets. Thirdly,

we have computed the pair of thresholds for three-way

approximations of dynamic shadowed sets. Finally, we

have employed several examples to illustrate how to cal-

culate thresholds for making a decision by dynamic loss

functions.

There are still many interesting topics deserving further

investigations on shadowed sets. For example, there are

many types of fuzzy sets and dynamic loss functions, and it

is of interest to investigate dynamic loss functions-based

three-way approximations of dynamic shadowed sets. In

the future, we will further investigate dynamic shadowed

sets and discuss its application in knowledge discovery.
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