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Abstract: In recent, various metaheuristic algorithms have shown significant results in control
engineering problems; moreover, fuzzy sets (FSs) and theories were frequently used for dynamic
parameter adaption in metaheuristic algorithms. The primary reason for this is that fuzzy inference
system (FISs) can be designed using human knowledge, allowing for intelligent dynamic adaptations
of metaheuristic parameters. To accomplish these tasks, we proposed shadowed type-2 fuzzy
inference systems (ST2FISs) for two metaheuristic algorithms, namely cuckoo search (CS) and flower
pollination (FP). Furthermore, with the advent of shadowed type-2 fuzzy logic, the abilities of
uncertainty handling offer an appealing improved performance for dynamic parameter adaptation
in metaheuristic methods; moreover, the use of ST2FISs has been shown in recent works to provide
better results than type-1 fuzzy inference systems (T1FISs). As a result, ST2FISs are proposed for
adjusting the Lèvy flight (P) and switching probability (P′) parameters in the original cuckoo search
(CS) and flower pollination (FP) algorithms, respectively. Our approach investigated trapezoidal
types of membership functions (MFs), such as ST2FSs. The proposed method was used to optimize
the precursors and implications of a two-tank non-interacting conical frustum tank level (TTNCFTL)
process using an interval type-2 fuzzy controller (IT2FLC). To ensure that the implementation is
efficient compared with the original CS and FP algorithms, simulation results were obtained without
and then with uncertainty in the main actuator (CV1) and system component (leak) at the bottom
of frustum tank two of the TTNCFLT process. In addition, the statistical z-test and non-parametric
Friedman test are performed to analyze and deliver the findings for the best metaheuristic algorithm.
The reported findings highlight the benefits of employing this approach over traditional general
type-2 fuzzy inference systems since we get superior performance in the majority of cases while using
minimal computational resources.

Keywords: cuckoo search algorithm; shadowed type-2 fuzzy logic systems; flower pollination
algorithm; fault-tolerant controller; conical frustum tank; fuzzy logic control

1. Introduction

Optimization is a branch of study that uses mathematical modeling in a variety of
subjects, including science, engineering, economics, and others [1–4]. In general, the goal is
to find an amicable alternative to an objective function defined across a search space [5].
There are two types of optimization algorithms: deterministic and stochastic. Deterministic
techniques usually struggle to solve optimization problems since they only provide a hypo-
thetical guarantee of finding a local minimum for the objective function [6–8]. On the other
hand, stochastic techniques are frequently faster at discovering a global optimum [3,7,8].
Moreover, with the exception of deterministic approaches, they are easily adaptable to
black-box formulations and severely ill-behaved functions, whereas deterministic meth-
ods usually depend heavily on at least some theoretical assumptions about the problem
formulation and its analytical properties (such as Lipschitz continuity) [9].
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Fuzzy controllers are now optimized using metaheuristics, and these controllers must
be optimized because they frequently fail to achieve the optimal performance required for
practical systems. These controllers are known as type-1 fuzzy logic controllers (T1FLCs)
since they use the literal definition of fuzzy sets (FSs) [10]. Lotfi Zadeh described fuzzy
logic for the very first time in ref. [11], in which he tried to introduce the concepts of fuzzy
sets and fuzzy logic. In this scenario, the members of a set are assigned a numerical value
as metrics of the uncertainty in the so-called membership functions (MFs), which define
the linguistic variables of a fuzzy set’s membership functions. In addition to the original
fuzzy logic (type-1), type-2 fuzzy logic was later developed with the objective of dealing
with more difficult issues, that is, problems with a higher level of uncertainty, than type-1
fuzzy logic can solve [12–14].

Zadeh also invented type-2 fuzzy sets, which are an extension of traditional fuzzy sets
(type-1). A type-2 fuzzy collection’s membership degrees are also fuzzy. In this context, a
type-1 fuzzy set is a subset of a type-2 fuzzy set because its secondary membership function
is a single-element subset [15].

Since type-2 fuzzy logic systems are made up of type-1 fuzzy logic systems, their
capacity to interact with uncertainty is enhanced. In refs. [16–23], the authors describe
the use of type-2 fuzzy systems to solve a wide variety of control problems with excellent
results. The hypothetical developments of interval type-2 fuzzy logic controllers (IT2FLCs),
as well as what needs to be done in this field, are presented in Ref. [24]. The dichotomy
between a type-1 and a type-2 fuzzy controller, on the other hand, is properly explained in
ref. [25,26]. Furthermore, the limitations of type-1 fuzzy controllers (T1FLCs) in dealing
with situations with escalating levels of uncertainty were addressed, as were the advantages
of interval type-2 fuzzy controllers (IT2FLCs).

Metaheuristics have previously been used to optimize both type-1 and type-2 fuzzy sys-
tems; for example, the optimization of type-1 fuzzy controllers is discussed in refs. [27,28],
which use the firefly method to optimize the fuzzy controllers of autonomous mobile robots.
In Ref. [29], the flower pollination algorithm (FPA) and genetic algorithm (GA) were also
used to optimize a fuzzy controller for an autonomous robot by following a trajectory, and
the dynamic adaptation of its most critical parameters for the galactic swarm optimization
(GSO) algorithm’s operation is described. In Ref. [29], the GSO algorithm was also used to
optimize the coupled-water-tank fuzzy controller.

Some studies optimized fuzzy controllers using alternative metaheuristics. The genetic
algorithm, for example, is used in Ref. [30] to transform the architecture of a type-2 fuzzy
controller in real-world autonomous mobile robots. Other authors, as described in Ref. [31],
have used fuzzy controllers to control autonomous robots following a trajectory. There
are even more fuzzy controller applications because of their performance and efficiency,
as demonstrated by refs. [32–34], which also compare type-1 and type-2 fuzzy controllers,
and Ref. [35], which uses two fuzzy controllers to control the liquid-level process in a
tank. Furthermore, the GA and FP algorithms have been used in the optimization of the
water tank fuzzy controller in Ref. [36]. Furthermore, in recent years, fuzzy conformable
fractional differential equations with highly generalized differentiability have been used in
Refs. [37–41], which suggest a solution for the non-linear system. In [42] author uses the
Grasshopper Optimization Algorithm (GOA) for the optimization of the interval type-2
fuzzy logic system and fuzzy system applied to the Australian national electricity market
data for the forecasting of electricity loads and prices.

There are numerous examples where the different metaheuristic algorithms were used
to optimize the non-linear equations or systems widely used in the engineering and science
fields, and such examples are briefly discussed in Refs. [43–46]. In Ref. [45], an improved
cuckoo search (ICS) algorithm was applied to cyber-physical systems (CPS), and 34 common
non-linear equations that fit the nature of cyber security models are adopted to show the
efficiency of the ICS algorithm. The proportional–integral–derivative (PID)-based controller
parameters tuned with four different metaheuristics (i.e., particle swarm optimization
(PSO), genetic algorithm (GA), ant colony optimization (ACO), and cuckoo search (CS)
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algorithms) for non-linear six-degrees-of-freedom (DOF) medium-scale rotorcraft systems
found that the GA gives the optimum PID parameters to fit the fitness function [47].
In Ref. [48], the author proposed a new probability-based stochastic fractal search (SFS)
optimization algorithm for a photo voltaic (PV) system to optimize the conventional
maximum power point tracking (MPPT) method; in addition, the author compared the
proposed method results with results of other existing optimization algorithms. The wind
speed prediction for a wind turbine within a short time span used a feedforward (FF)
neural network (NN), and its optimization was proposed by using the improved flower
pollination algorithm in Ref. [49].

In [50] Linguistic Pythagorean Fuzzy Numbers (LPFNs) are used for developing
decision-making approaches, in [51] author use q-rung orthopair hesitant fuzzy stochastic
method based on regret theory to capture the psychological behavior of decision makers
(DMs) in decision making. Recently, reinforcement learning (RL) has been very popu-
lar to optimize fuzzy controllers or fuzzy rule base. In [52], authors proposed a fuzzy
reinforcement learning (FRL)-based controller that generates a stable control action by
Lyapunov constraining fuzzy linguistic rules for benchmark Inverted Pendulum (IP) and
Rotational/Translational Proof-Mass Actuator (RTAC) control problems (with and without
disturbances). In [53], authors propose a Lyapunov theory-based linguistic RL frame-
work for stable tracking control of robotic manipulators and employ Lyapunov theory
to constrain fuzzy rule consequents for ensuring the stability of the designed controller.
Furthermore, Kumar and Sharma presented fuzzy Q-learning-based control, Lyapunov
Markov game-based controller, and Linguistic Lyapunov RL controller for the non-linear
system, such as a robotic manipulator (i.e., two-link arm manipulator, SCARA robot arm),
and authors found that deterministic Fuzzy Q-Learning is not an efficient approach, es-
pecially in dealing with highly coupled non-linear systems, such as robotic manipulators
and, hence, in [54,55] authors proposed the solutions for non-linear control problems (i.e.,
two-link robotic arm/manipulator, SCARA arm, Inverted Pendulum) and suggested meta-
heuristic algorithm based fuzzy Q-learning based control approach to give stable controller.
As a result, we show the fuzzy logic system that was used to implement the metaheuristic
algorithm’s dynamic parameter adaptation and obtain an optimal fuzzy fault-tolerant
controller for non-linear level control systems with uncertainties.

The main objective of this study is to provide an optimization technique that employs
a fuzzy metaheuristic algorithm to achieve optimal performance in the control of a coupled
frustum tank level control system with actuator and system component uncertainty. Be-
cause it has been demonstrated that using parameter adjustment in fuzzy metaheuristic
algorithms for the optimization of non-linear control problems produces competitive re-
sults, we propose in this work that we use fuzzy logic to perform the dynamic adjustment
of algorithm parameters and measure their performance in the optimization of the fuzzy
controller of the coupled frustum tank level control.

The primary contributions are the proposed optimization methodology and identify-
ing the optimal parameters for the optimization of an interval type-2 fuzzy controller. In
this scenario, the control behavior of a non-linear level control system is studied, which
attempts to follow a specific reference level with as little margin of error as possible, es-
timated using a predetermined metric. There is also a comparison of the optimization
efficiency of two metaheuristic algorithms, the Cuckoo Search (CS) and Flower Pollination
(FP) algorithms. Because CS and FP have previously been demonstrated to have high
performance when they are applied to optimization problems in different engineering
applications.

The following is the structure of this paper: the basics of the generalized and shadowed
fuzzy sets are described in Section 2. The motivation and equations required by the CS
and FP algorithms to execute their search and optimization are detailed in Section 3. The
case study non-linear level control process with the mathematical model is described in
Section 4. The proposed method for optimizing the interval type-2 fuzzy controller of the
non-linear coupled frustum tank level process is provided in Section 5. The results of the
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trials developed with the proposed approach for the frustum level control plant are shown
in Section 6. Statistical discussion of the acquired results is offered in Section 7. Finally,
conclusions and future work are described in Section 8.

2. General Type-2 Fuzzy Sets and Shadowed Sets

A 3D membership function (µÃ(x, u)) represents a general type-2 fuzzy sets GT2 FS,
which is described by a primary and secondary membership function and is represented
in (1) [56,57].

Ã = {((x, u), µÃ(x, u)) | ∀u ⊆ [0, 1]} (1)

The set (2), which is constrained by a lower and upper membership function described
in (3) and (4), respectively, defines the Footprint of Uncertainty (FOU) of Ã.

FOU
(

Ã
)
= {(x, u) ∈ {X× [0, 1]} | µÃ(x, u) > 0} (2)

µ̄Ã(x) = sup{u | u ∈ [0, 1], µÃ(x, u) > 0} (3)

µ
Ã
(x) = in f {u | u ∈ [0, 1], µÃ(x, u) > 0} (4)

The primary membership function can be defined in (5), where u = Jx ∈
[
µ̄Ã(x), µ

Ã
(x)
]
.

The secondary membership function of Ã is indicated by (6), which is a vertical slice of
µÃ(x, u), wherein the second membership function is a T1 FS on a specific value of x; hence,
for every value of x ∈ X, there exists an embedded T1 membership function.

Jx = {u ∈ [0, 1] | µÃ(x, u) > 0} (5)

µÃ : X× [0, 1]→ [0, 1]∀x ∈ X (6)

General Type-2 Fuzzy Sets with Shadowed Sets

Nowadays, traditional type fuzzy sets have evolved to GT2 FS that allows not only a
vagueness model but also an uncertainty modeling approach to be used. The mathematical
expression of the GT2 FS is denoted in Equation (7):

Ã =
{(

(x, u), µÃ(x)

)
| ∀x ∈ X, ∀u ∈ Ju

x ⊆ [0, 1]
}

(7)

There are several modeling options for the GT2 FS that have practical applications,
including the vertical slices or z-slices portrayal [58], the geometric approximation [58], and
the horizontal slices or α-planes representation [59]. Pedrycz [60] provided a developed
approach for the application of a shadowing set as an approximation of a fuzzy set µA. We
construct a shadow set from a fuzzy set described in 0 ≤ β ≤ α for a pair of threshold (α, β)
using 0 ≤ β ≤ α presented in Equation (10). These α-planes are expressed by Equation (8)
and can be computed as an IT2 FIS [59]. The GT2 FS is then modeled using the union of
every α-plane, as shown in Equation (9):

Ãα = {((x, u), α) | ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (8)

˜̃A =
⋃

Ãα (9)

SµA(x) =


1, i f µA ≥ α
0, i f µA ≤ α

[0, 1], i f α ≤ µA(x) ≥ β)
(10)

A shadowed set can be interpreted in three different ways, according to the three-way
decisions. They are the positive region, characterized by the membership degree of 1, the
negative zone, defined by the membership degree of 0, and the shadow zone [25]. We used
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a shadowed set to mimic a fuzzy set, as illustrated in Figure 1. Each of the three regions
represents a change in the membership function. As a result, Pedrycz [60] proposed that
the ideal pair of thresholds must meet this theory.

EA(α,β)(µA) + RA(α,β)(µA) = SA(α,β)(µA) (11)

EA is the elevation area, RA is the reduction area, and SA is the shadowing area.

Figure 1. Characterization of shadowed set [25].

A shadowed set S in universe U is defined as a mapping from U to the set 0, [0, 1], 1.
That is, S : U → 0, [0, 1], 1. The elements with a membership degree of 1 shape the core
and the elements with a membership degree between 0 and 1 represent the shadow of S.
For the application of a shadowed set as an approximation of a fuzzy set, a constructive
method has been proposed by Pedrycz [60–62]. For a pair of threshold values (α, β) with
0 ≤ β ≤ α, we can design a shadowed set from a fuzzy set µA, which is defined in (10).

According to the three-way decision, a shadowed set can be interpreted by three regions:
the positive region defined by the membership degree of 1, the negative region defined
by the membership degree of 0 and the shadow region. We considered a shadowed set to
approximate a fuzzy set that is illustrated in Figure 2. The three regions represent a change in
the membership function. Based on this theory, Pedrycz [60–62] suggested that the optimal
pair of the threshold values must satisfy the following expression (Equation (11)).

Linda and Manica proposed the use of shadowed sets in the secondary axis of the GT2 FIS
in 2013 [60,63]. In this way, the optimized values of α and β are found and then these values are
used as α-planes. Hence, the computational cost is reduced, and thereafter, the implementation
of GT2 FIS for dynamic parameter adaption in metaheuristic algorithms is allowed.

The basic idea is to optimize a function V(α, β) that is defined in Equation (12) [25].
We take the optimized value for the α = 0.73 and β = 0.27, which gives optimal value of
trapezoidal membership function parameters.

The optimized values of the shadowed GT2 FS parameters α = 0.73 and β = 0.27 are
taken. Using GT2 FIS we proposed two fuzzy metaheuristic algorithms (cuckoo Search
and flower pollination). We optimized type-2 fuzzy controller for two-tank non-interacting
conical frustum tank level system, and found that the ST2 FS can outperform the ability
of IT2 FS to model and system uncertainty with a better precision. Nevertheless, the
computational cost of the GT2 FS is reduced by using ST2 FSs representation [64].

V(α, β) =

∣∣∣∣∫x∈Ar
µA(x)dx +

∫
x∈Ae

µA(x)dx−
∫

x∈S
dx
∣∣∣∣ (12)

The ST2 FIS is based on the idea of Shadowed Fuzzy Sets and is an approximation of
General Type-2 Fuzzy Inference Systems (GT2 FIS). The fundamental rationale for utilising
ST2 FIS instead of GT2 FIS is that the computational cost of GT2 FIS is too high for this
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application [65]. Hence, the ST2 FIS is the best choice: maintain the good results and have
lesser computational burden. Recently, the authors have used ST2 FIS for different control
applications and obtained significant results [66,67]. In [66] the authors proposed uncertainty
handling capability for dynamic parameter adaption in Harmony Search (HS) and Differential
Evolution (DE) algorithms and tested on DC motor position control system with noise in
controller. The diagnosis problem in Artificial Neural Networks (ANNs), Support Vector
Machines (SVMs), Fuzzy Inference Systems (FISs), Decision Threes (DTs), and hybrids of one
or more these algorithms can be taken care by special approximation of the Type-2 Fuzzy
Inference System, i.e., Shadowed Type-2 Fuzzy Inference System (ST2 FIS), as demonstrated
in [67]. The other interesting and complex real-world problem like traffic management
was addressed in [68] and real time traffic delay optimization (waiting time of traffic at a
big junction/crossing) was done using ST2 FIS. The capability of the differential evolution
algorithm with the utilization of shadowed and general type-2 fuzzy systems was presented
in [69]. Comparative results were produced between shadowed and general type-2 fuzzy
systems to one of the prime parameter adaption dynamically. It can be concluded that the ST2
FIS is better option with lesser computational cost, as compared to GT2 FIS.

3. Background of Optimization Algorithm and Mathematical Formulation

In a review of the literature, some studies focused on optimising membership functions
with GSO, FA, FP, and GA were discovered, but none of these works used the experiments
configurations in the same domain of engineering fields as are made available here. Since
the combination of these metaheuristics is unusual in the literature, we will investigate the
performance results of these methods for this type of optimization problem. In addition,
correlative statistical results with analysis will be presented to assess the efficacy of the
proposed IT2 FLC optimization method. Furthermore, the fault-tolerant control application
for industrial processes using the proposed methodology is presented for the first time and
produce promising results. This section presents the applicable theories and concepts for
this research.

3.1. Cuckoo Search (CS) Algorithm

Cuckoo Search (CS), developed by Yang and Deb [70], is one of the most recent
nature-inspired algorithms. The concept of CS is based on the brood parasitism of some
cuckoo species. Furthermore, rather than simple isotropic random walks, this algorithm
is enhanced by the so-called Lèvy flights [70]. Recent research indicates that CS has the
potential to be far more efficient than Particle Swarm Optimization (PSO) and GA [71,72].

Cuckoo birds leave their eggs in the nests of other host birds (usually other species).
They have incredible abilities, such as trying to pick nests with newly laid eggs and
removing existing eggs to increase the hatchability of their own eggs. A few host birds
can counteract the cuckoos’ rapacious behavior by throwing out the identified alien eggs
or constructing a new nest in a different place. The cuckoo breeding analogy was used to
develop the CS algorithm, even though biological ecosystems are complex and most basic
computer algorithms cannot precisely model them. Natural systems must be streamlined
in order to be properly implemented in computer algorithms. Yang and Deb [72] simplified
the cuckoo reproduction process into three idealized rules.

1. An egg, kept in a nest, represents a solution. An artificial cuckoo can lay only one egg
at a time [70].

2. The cuckoo bird searches for the most suitable nest to lay its eggs in to maximize the
survival rate of its eggs (solution). Because of an exclusivist selection strategy, only
high-quality eggs (best solutions around the optimal value) that are more similar to
the host bird’s eggs have a chance to develop (next generation) and become mature
cuckoos [70].

3. The population (number of host nests) remains constant. The host bird can find the
alien egg with a probability of pa ∈ [0, 1] (worse solutions away from the optimal
value), and these eggs are thrown away or the nest is neglected and a new nest is
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established in a different location. Otherwise, the egg matures and lives to the next
generation. Lèvy flights around the best current solutions aid in the selection of new
eggs (solutions) laid by a cuckoo [70,72].

Using these three principles, the main steps of the Cuckoo Search (CS) can be repre-
sented as the pseudo-code provided in Algorithm 1.

Algorithm 1 Pseudo code for CS Algorithm [70,72]

Objective function f (x) = x = (x1, · · · , xd)
T

Generate initial population of n host nests xi = (i = 1, 2, · · · , n)
while (t < Max. Generation) or (Stop criterion) do

Get a cuckoo randomly by Lèvy flights
Evaluate the quality/fitness Fi
Choose a nest among n (say, j) randomly
if Fi > Fj then

Replace j by the new solution
end if
A fraction (pa) of worse nests are abandoned and new ones are built
Keep the best solutions (or nests with quality solutions)
Rank the solutions and find the current best

end while
Post-process results and visualization

When generating new solutions x(t+1) for, say, a cuckoo i, a Lèvy flight is performed

xt+1
t = x(t)t + α⊕ Lèvy(λ), (13)

where α > 0 signifies the step size that is connected to the measurements of the problem.
In most cases, α = 1 is sufficient. The above equation is the stochastic equation for the
random walk. A random walk is a Markov chain in which the next status/position is solely
determined by the current location (the first term in the above equation) and then changing
and evolving (the second term) [71]. The term ⊕ relates to multiplications of entries one by
one. This entry-wise product is similar to those used in PSO, but the random walk through
Lèvy flight traverses the search space more efficiently in the long run due to its significantly
longer step size. Although the random step length is drawn from an Lèvy distribution, the
Lèvy flight produces a random walk [72].

Lèvy ∼ u = t−λ, (1 < λ ≤ 3), (14)

It has an infinite mean and correspondingly infinite variance. The steps form a random
walk process with a long tail and a power-law step-length distribution. Lèvy walk around
the best solution acquired generates new solutions, speeding up the local search. A high
proportion of the new solutions are generated using far-field randomization, with locations
being sufficiently distant from the current best solution to prevent the system from being
stuck in a local optimum [70].

3.2. Flower Pollination

The flower pollination algorithm (FPA) is a ground-breaking heuristic algorithm based
on flower pollination behavior. In nature, pollination procedures for flowers are classified
into two types: cross-pollination and self-pollination [73–75]. Cross-pollination takes place
when certain birds act as global pollinators, transferring pollen between flowers on distant
plants. In self-pollination, pollen is transported by wind and only takes place between
neighborhood blooms on the same plant. As a result of transforming cross-pollination and
self-pollination into global and local pollination operators, respectively, the FPA is formed.
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Because of its simple concepts, few parameters, and ease of use, the FPA has received
attention [74–78].

In nature, flower pollination promotes ’the survival of the fittest’ and ’the optimum
breeding of flowering plants’. Pollination in blooming plants can take two forms: biotic
and abiotic [78,79]. Biological pollination is suitable for approximately 90% of flowering
plants. Pollen is transported by pollinators, such as bees, birds, insects, or animals. Abiotic
pollination, such as wind and water dispersal, accounts for approximately 10% of the
remaining pollination. Pollination of plants can be accomplished through self-pollination
or cross-pollination, as illustrated in Figure 2 [73,74]. The fertilization of one flower with
pollen from another flower on the same plant (autogamy) is referred to as self-pollination
(Geitonogamy). This takes place when a flower contains both male and female gametes.
Self-pollination frequently occurs over short distances when pollinators are not present. It
can be regarded as local pollination. Cross-pollination, also referred to as allogamy, occurs
when pollen grains from one plant enter into the bloom of another. The stimulation of
biotic or abiotic pollinators initiates the process. Biological cross-pollination can occur over
long distances with biotic pollinators. Pollination is observed on a global scale. Bees and
birds, as biotic pollinators, exhibit Lèvy flying behavior [77,78], with a leap or fly distance
steps following an Lèvy distribution. Algorithm 2 presents the pseudo-code that can be
used to synthesize Yang’s FPA algorithm [78,79].

Algorithm 2 Pseudo code for FP Algorithm [73,74]

Initialize an objective as minimization
Define the population for n flower
Find current best solution f ∗ in the initial population
Describe the switch probability p ∈ [0, 1]
while (t < Max. Iteration) do

for i = 1 : n do
if rand < p then

Define step size P which follows Lèvy distribution
Use Equation (15) to perform global pollination

else
Define ∈ for uniform distribution [0, 1]
Randomly select a j and k among all the solution
Perform local pollination by Equation (16)

end if
Calculate new solution
If the calculated solution is better, then update the population

end for
Get the optimal solution f ∗

end while

Figure 2. Flower pollination in nature [73,74].
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3.3. Mathematical Modeling of FPA

Pollinators follow the rules based on the above characteristics of the pollination
process [77]: when pollinators migrate pollen by conducting Lèvy flying with the process
of global pollination, it is biotic and cross-pollination. The two types of local pollination
are presumed to be abiotic and self-pollination. Pollinator consistency occurs when the
identical characteristics of two flowers are proportionate to the likelihood of breeding. The
transition probability p ∈ [0, 1] is used to control the process of local and global pollination.
The fundamental process of pollination is accelerated due to physical proximity and other
factors, such as wind. The FPA optimization approach was developed based on the research
on the aforementioned pollination process characteristics. As a result, the four principles
listed above have been transformed into mathematical modeling equations. In the first
step of global pollination, pollinators, such as flying insects, transport pollen gametes over
long distances. Pollination and breeding of the fittest solution are defined as f ∗ in this
procedure. Equation (15) can be used to show rule 1 and flower reliability [77].

yt+1
i = yt

i + P
(
yt

i − f ∗
)

(15)

The initial value of yt
i is selected as random value. yt

i represents the pollen, i in
Equation (15) or vector of solution yi at generation t. The pattern f ∗ displays the current
optimal solution after the current number of iterations. The pollination’s durability is
expressed by the element P, which is essentially the step size.

Because flying insects can travel long distances while transporting pollen, we can de-
fine their flight characteristics in terms of Lèvy flight. In other words, 0 > P is embellished
from a Lèvy distribution [77].

P ∼ λΓ(λ) sin(πλ/2)
π

1
s1+λ

, (s >> s0 > 0). (16)

where s represents the step size. Equation (16) expresses the classic gamma function as
Γ(λ), and this type of distribution is applicable for large steps 0 > s. The accepted value of
λ is 1.5. Local pollination is clarified by Equation (17), and rule 2 plus flower reliability can
be mathematically modeled as [78,79]:

yt+1
i = yt

i+ ∈
(

yt
j − yt

k

)
(17)

where pollen of different flowers on same plant shown by yt
j and yt

k. This essentially mimics
the flower constancy in a limited neighborhood. If yt

j and yt
k belong to the same category

and the same population, this becomes a local random walk if we express ∈ from a uniform
distribution in the range [0, 1] [77].

Flower pollination can occur on all scales, both large and small. Pollen from nearby
flower patches is more likely to fertilize neighborhood flower patches than pollen from
distant flower patches. As a result, we can use the fourth rule (switch probability) p to
transit from common global pollination to local pollination. The pseudo-code for the
algorithm is as given in Algorithm 2.

We can find the most convenient parameter range by starting with p = 0.5 and perform-
ing a parametric analysis. p = 0.7 to 0.8 can be used to improve response in the majority of
applications. The pseudo-code for the FP Algorithm [77–79] is shown below.

Estimate the new optimal solution from Algorithms 1 and 2 by minimizing the Mean
Square Error (MSE) between the prior and current estimations. The MSE equation is shown
in Equation (18).

MSE =
1
n

n

∑
i=1

(Ȳi −Yi)
2 (18)



Math. Comput. Appl. 2022, 27, 89 10 of 32

4. Two-Tank Conical Frustum Non-Interacting Level System with Mathematical Model

We employed different non-linear uncertain level control situations to test the effi-
cacy of the proposed control method. A chemical process, petrochemical, refinery, food
processing, dyes and paints, cement, and other industries have all employed level control
systems [8,25,29,80–85]. Using the same non-linear uncertain system, the performance
of numerous fault-control methods may also be evaluated [8,25,29,84,86–89]. As a conse-
quence, we choose the two-tank conical frustum non-interacting level control (TTCFNLC)
technique under actuator uncertainties.

The (TTCFNLC) process prototype model [84] is utilized as a benchmark problem in a
variety of research disciplines, as shown in Figure 3.

Figure 3. Prototype structure of frustum two-tank level control system [84].

The TTCFNLC process is a non-interacting single input single output (SISO) process
in which the measured variable is the tank liquid level (h2) and the manipulated variable
is the inflow flow ( f1). Because the radius of the tank (r) changes, it is expressed as a ratio
of the Frustum Tank’s maximum radius (R) to its maximum height (H).

Modeling of Coupled Frustum Tank Level Control Process

We begin by looking into the single frustum tank system (FTS) illustrated in Figure 4
to derive the mathematical model for the TTCFNLC process.
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Figure 4. Variables of the frustum single tank for the non-linear model [90].

As per the mass balance equation, the mathematical model of the FTS is [84,91,92]:

Rate of accumulation = inflow – outflow

d(Vol)
dt

= fin − fo (19)

The liquid in the conical frustum tank has a volume Vol. As the tank’s surface area
changes, the volume of liquid changes as well. The volume of a conical frustum tank is
calculated using Equation (20),

Vol =
π

3

(
r2

b + r2 + rbr
)

(20)

The bottom radius of the tank is rb, and the top radius of the liquid is (r). The variable
top radius of the liquid level is calculated using the trigonometric law.

The top radius of liquid level is r = rb + rs,

r = rb +
(R− rb)

H
h (21)

The mathematical model of TTCFNLC’s frustum tank 1 without an uncertainty can be
written using Equation (22) and the non-interaction condition, according to [8,84].

dh1
dt

=
fin1 − fo1 − f12

π
3

[
3r2

b1 + 6rb1

(
R−rb1

H1

)
h1 + 3

(
R−rb1

H1

)2
h1

2
] (22)

The rate of accumulation equation for tank 2 in TTCFNLC process is represented
by (23),

dh2
dt

=
f12 − fo2 − fout

π
3

[
3r2

b2 + 6rb2

(
R−rb2

H2

)
h2 + 3

(
R−rb2

H2

)2
h2

2

] (23)
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We formulate the faulty model of the same system from healthy (without fault or
uncertainty) mathematical model of the TTCFNLC, as shown by Equations (24) and (25). In
TTCFNLC, an actuator defect in the main control valve is taken into account, which causes
the manipulated variable inlet flow rate ( fin) of the conical frustum tank 1 to be disrupted.
The system component (leak) fault in conical frustum tank 2 is the second fault considered
in the TTCFNLC. Uncertain process disturbances (d) are also taken into account by the
valve (V1), which manipulates ( fo2).

In this study, only an actuator fault is considered during the simulation and produce
the results.

dh1
dt

=
(α× fin1)− fo1 − f12

π
3

[
3r2

b1 + 6rb1

(
R−rb1

H1

)
h1 + 3

(
R−rb1

H1

)2
h1

2
] (24)

The rate of accumulation equation for tank 2 in TTCFNLC process with uncertainty is
represented by (25),

dh2
dt

=
f12 − (d× fo2)− fout

π
3

[
3r2

b2 + 6rb2

(
R−rb2

H2

)
h2 + 3

(
R−rb2

H2

)2
h2

2

] (25)

where (α) signifies a faulty actuator (loss of efficacy) in the primary actuator that controls
the controlled variable input flow rate ( fin). Equations (24) and (25) show a faulty system
model with uncertainties (actuator ( fa) fault and process disturbances (d)):

fin = kpV fout = β2a
√

2gh2
fo1 = β1a1

√
2gh1 fo2 = β2a2

√
2gh2

f12 = β12a12
√

2gh1

(26)

The bottom radius rb1 = rb2 = 18 cm and the top radius R1 = R2 = 24 cm are the same
because the two frustum tanks are comparable. The frustum conical tank has two heights:
H1 and H2 (H1 = 90 cm and H2 = 90 cm). Tank 1, 2’s liquid levels are indicated by the h1
and h2. The valve coefficients in both tanks are the same (β1 = β2 = 0.33), and the interaction
pipe valve coefficient is β12 = 0.2. The pump 1 gains are the kp = (25 cm3/v.s) [84].

The incipient nature of the actuator fault (loss of effectiveness in the main control
valve) that gradually limits the inlet flow fin rate and the abrupt process disturbance d
(occur in fo2) (instant close the valve V2) that causes the rate of aggregation in tank 2 to
increase are both taken into account during the simulation process. Furthermore, the system
component (leak) abrupt fault is considered in the conical frustum tank 2 in TTCFNLC
process.

Two input variables, the error and derivative of the error, are granulated into three
interval type-2 membership functions, two trapezoidal for the edges and one trapezoidal
for the centre with a triangle lower membership function (LMF), labelled as “low”, “mod-
erate”, and “high”, respectively, to construct the fuzzy controller of the TTCFNLC. The
CV action output variables are divided into three triangle membership functions labelled
“low”, “moderate”, and “high”. The inputs and outputs, making up the interval type-2
fuzzy controller of the coupled frustum tank process, granulated with triangle and trape-
zoidal interval type-2 membership functions, are depicted below. The type-2 membership
functions are shown in Figure 5 for input and output of the IT2FLC.
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Figure 5. Fuzzy inference system using IT2FIS for TTCFNLC system.

5. Proposal and Methods

The work’s main contributions are the proposed fuzzy base metaheuristic optimiza-
tion algorithm methodology and its application for determining the best membership
function parameters in the design of an interval type-2 fuzzy controller, which governs
the behavior of the TTCFNLC system. The fuzzy controller attempts to follow a given set
point with the smallest (negligible) margin of error, as determined by a defined control
performance criterion. The main difference between using dynamic parameter adjustment
in metaheuristic algorithms and using fixed parameters in metaheuristic algorithms is that
the parameters chosen for dynamic adjustment are adjusted by the iterations’ progress,
resulting in better results.

Using a metaheuristic algorithm, the methodology optimizes the membership function
parameters of the interval type-2 fuzzy logic level controller (IT2FLLC) for set-point tracking
(regulatory control) with negligible steady-state error. In this scenario, we measure the
interval type-2 fuzzy controller’s performance and produce a result based on the established
performance metric. We then continue with the optimization until a stopping criterion or a
previously established number of iterations is met. Figure 6 depicts a simplified version of
the process.

Figure 6. Proposed optimization method using metaheuristic algorithm.

The fuzzy system used for both algorithms has one input and one output. In the case of
the CS algorithm, the input parameter is the “Simulation Iterations (SI)” and for the output,
the “Lèvy flight (P)” parameter is used, and for the FP algorithm, the input parameter is
the “Simulation Iterations (SI)” and the output parameter is “Switching Probability (P’)”.
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In Equation (27), the “Simulation Iterations (SI)” refers to “Iterations (I)” for the FCS
method and generations for the FFP method. The current simulation represents the current
iterations or generations and the maximum of simulations represents the maximum number
of iterations and generations.

Equation (27) is used to calculate the input of the shadowed type-2 fuzzy system
according to the method:

Simulation Iteration(SI) =
Current Simulation

Maximum o f Simulations
(27)

After finding the input of shadowed type-2 fuzzy inference system “Iteration (I)”, we
found the outputs “Lèvy flight (P)” and “Switching Probability (P’)” for the fuzzy CS and
fuzzy FP algorithm, respectively. As a result, after proposing ST2FIS for fuzzy CS and
fuzzy FP algorithms, the optimized IT2FLS for a frustum two-tank level control system was
realized. The IT2FLC optimized for nonlinear systems was tested both with and without
uncertainties.

To optimize the type-2 fuzzy controller, two fuzzy metaheuristic algorithms are used,
i.e., the CS and FP algorithms. In the first scenario, we use a shadowed type-2 fuzzy
inference system to optimize the fuzzy CS variant. The parameter adjustment fuzzy system
of the CS algorithm takes “Iteration (I)” as the input variable and the “Lèvy flight (P)”
parameters as the output variables. Each variable, as shown in Figure 7, is composed
of three trapezoidal membership functions labelled “low,” “moderate,” and “high”. The
fuzzy FP using ST2FIS that adjusts the FP’s parameters employ the “Iteration (I)” variable
as the input variable and the “Lèvy flight (P)” parameter as the output variable, and
these variables are made up of three trapezoidal membership functions labeled as “low,”
“moderate,” and “high”, as shown in Figure 8.

Figure 7. Dynamic parameter adaption of fuzzy CS algorithm using ST2FIS.

Figure 8. Dynamic parameter adaption of fuzzy FP algorithm using ST2FIS.

The idea behind the use of fuzzy system rules is that algorithms can explore in early
iterations and exploit in later iterations.

Fuzzy rules for Fuzzy CS using ST2FIS:

1. If iteration is low, then Lèvy flight (P) is low;
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2. If iteration is moderate, then Lèvy flight (P) is moderate;
3. If iteration is high, then Lèvy flight (P) is high.

Fuzzy rules for Fuzzy FP using ST2FIS:

1. If iteration is low, then switching Probability (P’) is low;
2. If iteration is moderate, then switching Probability (P’) is moderate;
3. If iteration is high, then switching Probability (P’) is high.

The rules are based on human expertise and previous experimentation as presented
in [25,29], while the ST2FCS and ST2FFP methods are used in a decreasing fashion.

In our proposal, each individual or feasible solution is defined by the required pa-
rameters for automatically generating the type-2 fuzzy controller rather than manually
generating the fuzzy controller, with the goal of obtaining better results than those obtained
with the basic fuzzy controller [93,94]. The settings that comprise the fuzzy controller are
unique to each individual. In this case, the controller has two input variables built by two
trapezoidal membership functions, each with eight parameters, and a triangular with six
parameters, for a total of 22 parameters per input variable. The output variables are made
up of three triangle membership functions, each with 6 parameters, resulting in a total of 18
parameters per output variable. When all the parameters for the input and output variables
are collected, the fuzzy controller is built.

Individual structure in the CS and FP algorithms contributes to the formation of inter-
val type-2 fuzzy controllers, which are formed by a triangle and trapezoidal membership
functions. The following equations and illustrations employing interval type-2 fuzzy logic
are shown.

The representation of the interval type-2 triangular membership functions (itritype2)
of the fuzzy controller consists of 6 parameters an1, bn1, cn1, an2, bn2, and cn2, mathematically
presented by Equation (28),

µ(x) = itritype2(x, [an1, bn1, cn1, an2, bn2, cn2]), (28)

where the membership function parameters value an1 < an2, bn1 < bn2, cn1 < cn2.
The representation of the interval type-2 trapezoidal membership functions (itrapatype2)

of the fuzzy controller consists of 8 parameters an1, bn1, cn1, dn1,an2, bn2, cn2, dn2, where
an1 < an2, bn1 < bn2, cn1 < cn2 and dn1 < dn2 and the MATLAB syntax for the same
illustrated in Equation (29),

µ(x) = itrapatype2(x, [an1, bn1, cn1, dn1, an2, bn2, cn2, dn2, ]), (29)

where the membership function parameters value an1 < an2, bn1 < bn2, cn1 < cn2,dn1 < dn2.
In Figure 9, we can find the graphical description of the interval type-2 triangular and

trapezoidal membership functions, respectively.

Figure 9. Interval type-2 membership function. (a) triangular membership function; (b) trapezoidal
membership function.
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Table 1 shows the vector size during the optimization process using the fuzzy CS and
FP algorithms for a given non-linear control problem.

Table 1. Size of vector in the optimization by fuzzy CS and FP algorithm for control problem.

Control
Problem

Input Output Total Size
of VectorTotal Type of MFs Total Type of MFs

TTCFNLC
Process 3

2—IT2 Trapezoidal
and 1—IT2 Triangular

in each Input
3 3—IT2 Triangular in

each output 80

6. Simulation Results

In non-linear plants, a series of performance indices are used to evaluate the efficiency
of the CS algorithm in control, including the Integral Square Error (ISE), Integral Absolute
Error (IAE), Integral Time Absolute Error (ITAE), Integral Time Squared Error (ITSE), Mean
Square Error (MSE), and Root Mean Square Error (RMSE). Equations (30)–(34), and (18)
show the respective mathematical representations.

ISE =
∫ ∞

0
e2(t)dt (30)

IAE =
∫ ∞

0
|e(t)|dt (31)

ITAE =
∫ ∞

0
|e(t)t|dt (32)

ITSE =
∫ ∞

0
e2t(t)dt (33)

RMSE =

√√√√ 1
N

N

∑
t=1

(xt − x̂t)
2 (34)

The MSE (see Equation (18)) is the fitness function of the CS and FP algorithms, which
means the best individual in each execution is the particle with the lowest MSE in the entire
population.

The simulations designed to evaluate the proposed approach are described in Section 5
to optimize the type-2 fuzzy controller for the non-linear uncertain level control system.

In non-linear plant, a total of 30 simulations were performed without fault, with a
sudden actuator fault of 50%, at time t = 4 s and M = 60% at time t = 6 s. Additionally,
abrupt system component fault in tank 2 bottom was also considered and simulation results
were produced with leak fault of 50%, at time t = 4 s and M = 60% at time t = 6 s. Table 2
displays the findings for each model, as well as the average result for the minimum values
to be found by the CS and FP algorithms of the four performance indexes and the control
problem with and without actuator and system component (leak) fault.
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Table 2. Results of average performance index of minimums values found by the CS and FP algorithm
using ST2FIS.

Algorithm Performance
Index

Simulation Scenarios

Without Fault With Actuator Fault 1

CS

ITAE 1.481× 102 2.612× 102

ITSE 3.418× 102 3.933× 102

IAE 0.891× 101 0.989× 101

ISE 1.793× 102 3.156× 102

FP

ITAE 3.213× 103 4.773× 103

ITSE 7.422× 103 8.1014× 103

IAE 1.971× 102 2.262× 102

ISE 3.9135× 103 4.828× 104

Comparative Analysis and Result Discussion

This section compares the results obtained when faults are included in the model. A
visualization of the many measures utilized to assess the performance of the CS and FP
algorithms is also examined.

Figures 10 and 11 depict the optimal distribution of the MFs for the IT2FIS discovered
by the fuzzy FP and fuzzy CS algorithm for the frustum water tank level control problem
using ST2FIS. Figure 10 displays the optimal MFs distribution found by the fuzzy CS using
ST2FIS for the proposed frustum water tank level control problem, while Figure 11 depicts
the best MFs vector distribution found by the fuzzy FP using ST2FIS for proposed frustum
water tank level control problem. From the critical observation from Figures 10 and 11, we
found the two inputs (Error and Error Rate) x-axis distributions of the IT2FLC is slightly
changed for both the optimal MFs distribution found by fuzzy CS and fuzzy FP algorithms.

Figure 10. Best/Optimize IT2FLS that FP algorithm using ST2FIS finds for the frustum two-tank
fuzzy Controller.
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Figure 11. Best/Optimize IT2FLS that CS algorithm using ST2FIS finds for the frustum two-tank
fuzzy Controller.

Finally, in Figures 12–14, the results achieved using the fuzzy CS and fuzzy FP ap-
proaches with ST2FIS are shown, with disparities between the desired set point and the
real (process/measured value) created by the TTCFNLC with the best-optimized interval
type-2 fuzzy logic controller from FCS using ST2FIS and FFP using ST2FIS. The observing
results, clearly show that fuzzy CS using ST2FIS outperforms the other algorithms for the
TTCFNLC system without fault and in two different faulty conditions.

Figure 12. Comparative results of TTCFNLC process subject to without fault using fuzzy CS and FP
algorithms.
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Figure 13. Comparative results of TTCFNLC process subject to actuator fault using fuzzy CS and FP
algorithms.

Figure 14. Comparative results of TTCFNLC process subject to system component (leak) fault using
fuzzy CS and FP algorithms.

The MSE error comparison of the TTCFNLC process utilizing the CS and FP algorithm
using ST2FIS is shown in Table 3. The fault considered during the simulations is abrupt
in nature.

Table 3 shows the MSE error results for the two-tank conical frustum level control
system, the best result of the fitness function MSE to find by fuzzy CS and fuzzy FP
algorithm using shadowed type-2 fuzzy inference system with the metrics of “Best”,
“Worst”, “Average”, “Standard Deviation” (SD), without fault (not applied uncertainty),
with actuator fault (in main actuator CV ( fa) fault), is presented. Additionally, the result
in Table 3 shows the stabilization under the one uncertainty added in the two-tank level
control system. For example, the best MSE for FCS using ST2FIS with actuator fault is
1.2027× 10−2, while in the case of FFP the best MSE is 0.2923. Similarly, the average MSE
for FCS using ST2FIS with actuator fault is 9.0912× 10−2, while in the case of FFP the
average MSE is 1.4091× 10−1.
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Table 3. Results of metrics of Mean Square Error (MSE) values to found by CS and FP algorithm
using ST2FIS.

Algorithm Performance
Index

Simulation Scenarios

Without Fault With Actuator Fault 1

CS

BEST 1.1725× 10−4 1.2027× 10−2

WORST 0.1671 0.2315

AVERAGE 2.958× 10−2 9.0912× 10−2

STANDARD DEVIATION 4.4234× 10−2 4.74513× 10−2

FP

BEST 2.3412× 10−3 0.2923

WORST 0.2161 0.3019

AVERAGE 7.3812× 10−2 1.4091× 10−1

STANDARD DEVIATION 5.6124× 10−2 5.2341× 10−2

The RMSE error comparison of the TTCFNLC process utilizing the fuzzy CS and fuzzy
FP algorithm using ST2FIS which is shown in Table 4. In Table 4, the RMSE is presented
for both CS and FP algorithms using ST2FIS for the TTCFNLC system subject to actuator
fault and without actuator fault. The RMSE metrics distributed with same mathematical
functions, such as “BSET”, “WORST”, “AVERAGE”, and “STANDARD DEVIATION”.
The SD value for FCS using ST2FIS gives 8.5209× 10−2, while FFP using ST2FIS gives
10.02813× 10−2, subject to actuator fault in TTCFNLC system. The average value for FCS
is 2.9125× 10−1 and for FFP it is 3.8342× 10−1 for TTCFNLC system under actuator fault.
As can be seen from RMSE and MSE error values, FCS using ST2FIS outperforms the FFP
using ST2FIS for the TTCFNLC system subject to a fault and without fault.

Table 4. Results of metrics of Root Mean Square Error (RMSE) values to found by CS and FP algorithm
using ST2FIS.

Algorithm Performance
Index

Simulation Scenarios

Without Fault With Actuator Fault

CS

BEST 1.0913× 10−2 1.4230× 10−1

WORST 3.8561× 10−1 4.4671× 10−1

AVERAGE 1.3123× 10−1 2.9125× 10−1

STANDARD DEVIATION 1.1901× 10−1 8.5209× 10−2

FP

BEST 4.7816× 10−2 2.6091× 10−1

WORST 4.2891× 10−1 4.9891× 10−1

AVERAGE 2.6543× 10−1 3.8342× 10−1

STANDARD DEVIATION 1.2671× 10−1 10.02813× 10−2

Table 5 illustrates the fault recovery time analysis (t f r) for TTCFNLC system subject
to abrupt actuator and system component (leak). The comparative results clearly show that
the fault recovery time for FCS using ST2FIS is superior as compared to FFP using ST2FIS
for both uncertainties.
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Table 5. Comparative results of fault recovery time (t f r) for TTCFNLC system under two uncertain-
ties found by fuzzy CS and FP algorithm using ST2FIS.

Type of
Uncertainties

Fault
Magnitude

Nature of
Uncertainties

Time of
Occurrence
in Second

Metaheuristic Algorithms

Fuzzy CS Fuzzy FP

(t f r) in Second

Actuator Fault 1 50%
Abrupt

4 0.47 0.54

Actuator Fault 2 60% 6 0.52 0.57

Leak Fault 1 50%
Abrupt

4 0.43 0.48

Leak Fault 2 60% 6 0.49 0.56

Simulation Results with Noise and Intermittent Fault

The proposed method’s and type-2 fuzzy controller’s robustness was tested in the
presence of noise in the controller and faulty conditions in the proposed nonlinear level
control system. In the second phase of simulation, we take two uncertainties: one is type-2
fuzzy controller noise, and the other is two types of intermittent fault in the level control
TTCFNLC system. The noise applied to this type-2 fuzzy controller is 0.5 (Gaussian random
number), and the two faults in the TTCFNLC system considered are actuator and system
component (leak) faults with intermittent nature.

The simulation results are carried out in three different uncertainty conditions:

(1) Interval type-2 fuzzy controller with random noise with magnitude M = 0.5 (Gaussian
random number);

(2) Interval type-2 fuzzy controller with random noise and TTCFNLC system with in-
termittent actuator fault in main actuator CV with magnitude of M1 = 50% and
M2 = 60% at time t = 4 s and t = 6 s respectively;

(3) Interval type-2 fuzzy controller with random noise and TTCFNLC system with inter-
mittent system component (leak) fault in bottom of the frustum tank 2 (additional
flow rate fo2) with magnitude of M1 = 50% and M2 = 60% at time t = 4 s and t = 6 s,
respectively.

Figures 15–17 illustrate the best regulatory control responses obtained with the two
fuzzy metaheuristic algorithms. One algorithm is fuzzy CS using ST2FIS and the other is
fuzzy FP using ST2FIS methods with three different uncertainties, one is noise in interval
type-2 fuzzy controller, the second is noise in interval type-2 fuzzy controller with actuator
fault in TTCFNLC process and the third is noise in interval type-2 fuzzy controller with
leak fault in TTCFNLC process, respectively.

Figure 15. Comparative results of TTCFNLC process subject to random noise in fuzzy controller
using fuzzy CS and FP algorithms.
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Figure 16. Comparative results of TTCFNLC process subject to random noise in the fuzzy controller
and actuator fault in TTCFNLC process using fuzzy CS and FP algorithms.

Figure 17. Comparative results of TTCFNLC process subject to random noise in the fuzzy controller
and system component (leak) fault in TTCFNLC process using fuzzy CS and FP algorithms.

Tables 6 and 7 show the MSE and RMSE error results (with four performance indexes
“BEST”, “WORST”, “AVERAGE”, and STANDARD DEVIATION“) obtained by optimizing
the parameters of the TTCFNLC type-2 fuzzy controller in 30 simulations, with the FCS
using ST2FIS and FFP using ST2FIS methods, respectively. The noise applied to this
controller is 0.5 (Gaussian random number), and the two faults magnitude is M1 = 50%
and M2 = 60% at time t = 4 s and t = 6 s, respectively.

Table 8 illustrates the fault recovery time analysis (t f r) for the TTCFNLC system
subject to the abrupt actuator fault, system component (leak) fault, and noise in the interval
type-2 fuzzy controller for TTCFNLC, the comparative results clearly show that the fault
recovery time for FCS using ST2FIS is superior as compared to FFP using ST2FIS for all the
three types of uncertainties.

Finally, the MSE and RMSE error results obtained from the proposed method for the
TTCFNLC system subject to noise in type-2 fuzzy controller are presented in Figures 18 and 19
in the radar plot, respectively. In order to validate the performance of the proposed fuzzy
metaheuristic algorithms, we use the proposed optimization algorithms for optimizing the
interval type-2 MFs parameters of the TTCFNLC fuzzy controller system with, two different
uncertainties (actuator and leak faults) introduced into the system simultaneously with
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random Gaussian noise into the type-2 fuzzy controller, and subsequently the MSE and
RMSE error results for the different cases are presented in Figures 20 and 21, respectively,
where one can note the proposed fuzzy CS using ST2FIS outperforms the other fuzzy FP
algorithm using ST2FIS for proposed non-linear level control system subject to uncertainties,
with the optimized type-2 fuzzy logic controller.

Table 6. Results of metrics of Mean Square Error (MSE) values to found by fuzzy CS and fuzzy FP
algorithm using ST2FIS.

Algorithm Performance
Index

Simulation Scenarios

With Noise With Noise and
Actuator Fault 1 and 2

With Noise and
Leak Fault 1 and 2

CS

BEST 7.16× 10−2 9.78× 10−2 8.37× 10−2

WORST 0.2667 0.2767 0.2709

AVERAGE 0.1415 0.1607 0.1447

SD 5.24× 10−2 5.35× 10−2 5.52× 10−2

FP

BEST 9.73× 10−2 1.034× 10−1 9.87× 10−2

WORST 0.3093 0.3477 0.3118

AVERAGE 0.2154 0.2390 0.2179

SD 6.67× 10−2 8.36× 10−2 6.89× 10−2

Table 7. Results of metrics of Root Mean Square Error (RMSE) values to found by fuzzy CS and fuzzy
FP algorithm using ST2FIS.

Algorithm Performance
Index

Simulation Scenarios

With Noise With Noise and
Actuator Fault 1 and 2

With Noise and
Leak Fault 1 and 2

CS

BEST 0.2675 0.3127 0.2893

WORST 0.4934 0.5260 0.5204

AVERAGE 0.37 0.3957 0.3737

SD 6.17× 10−2 6.51× 10−2 6.23× 10−2

FP

BEST 0.3142 0.3215 0.3138

WORST 0.5561 0.5896 0.5574

AVERAGE 0.4583 0.4812 0.4610

SD 7.39× 10−2 8.82× 10−2 7.44× 10−2

Table 8. Comparative results of fault recovery time (t f r) for TTCFNLC system under three uncertain-
ties found by fuzzy CS and FP algorithm using ST2FIS.

Type of
Uncertainties

Fault
Magnitude

Nature of
Uncertainties

Time of
Occurrence
in Second

Metaheuristic Algorithms

Fuzzy CS Fuzzy FP

(t f r) in Second

Actuator Fault 1 50 %
Abrupt

4 0.49 0.64

Actuator Fault 2 60 % 6 0.53 0.61

Leak Fault 1 50 %
Abrupt

4 0.44 0.53

Leak Fault 2 60 % 6 0.51 0.59
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Figure 18. MSE error for TTCFNLC process subject to random noise in fuzzy controller using fuzzy
CS and FP algorithms for 30 simulations.

Figure 19. RMSE error for TTCFNLC process subject to random noise in fuzzy controller using fuzzy
CS and FP algorithms for 30 simulations.

(a) (b)

Figure 20. MSE error comparison for 30 simulations. (a) TTCFNLC with actuator fault and noise in
the fuzzy controller. (b) TTCFNLC with leak fault and noise in the fuzzy controller.
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(a) (b)

Figure 21. RMSE error comparison for 30 simulations. (a) TTCFNLC with actuator fault and noise in
the fuzzy controller. (b) TTCFNLC with leak fault and noise in the fuzzy controller.

7. Statistical Results and Analysis

A statistical comparison is made to find evidence that the fuzzy metaheuristic algo-
rithms are used to test the proposed optimization methodology for optimizing the interval
type-2 membership function parameters of the TTCFNLC fuzzy controller subject to un-
certainties. Table 5 depicts the values used in the statistical test to evaluate whether the
proposed strategy generated better results in the optimization of membership function
parameters, generating a data vector, and assisting in the improvement of the interval
type-2 fuzzy controller for the coupled frustum tank system performance under faulty
condition.

The null hypothesis (H0) says that the average MSE error for the CS algorithm and
the variants (µ1) are greater than or equal to the average MSE error for the FP algorithm
and the variants (µ2), as shown in Table 9. According to the alternative hypothesis (Ha),
the average MSE error for the CS algorithm and the variations (µ1) is less than the average
MSE error for FP algorithm and the variants (µ2).

Table 10 displays the averages, standard deviations, and z values for each of the
comparisons. The CS method and the variants receive significant evidence against the FP
algorithm and the variants. As a result, H0 is rejected and Ha is accepted with a 95% level
of significance. The rejection zone for values is less than −1.645.

Table 9. Statistical z-test parameters.

Parameter Value

H0 µ1 ≥ µ2

Ha µ1 < µ2 (Claim)

Level of significance 95 %

A 0.05

Critical value −1.645

The statistical z-test, based on Equation (35), was used and the settings for this test were
α of 0.05 and a 95% level of confidence. The main goal is to demonstrate that combining
FTC and interval Type-2 approaches yields a better result than utilizing the shadowed
Type-2 fuzzy system, for any values less than −1.645:

Z =
(X̄1 − X̄2)− (µ1 − µ2)

(σ1 − σ2)
(35)
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As previously discussed, metaheuristic algorithms produce good results in optimiza-
tion issues. In this study, we optimized an interval type-2 fuzzy controller that regulates
the TTCFNLC system, and we then described the experimental results. The experiment is
carried out with ST2FIS optimization approaches for interval type-2 fuzzy controllers in
order to compare the methods and determine the best. The CS optimization approach offers
the best outcomes according to the hypothesis test, as shown in Table 10. This is because
the flower pollination algorithm gives a bigger difference error between the desired (set
point) and measured level value of the TTCFNLC process.

In Table 10, statistical z-test results are presented for the proposed fuzzy CS and fuzzy
FP algorithm method for an uncertain non-linear TTCFNLC system. The z-values obtained
in Table 10 demonstrate that the proposed approach with the FCS using ST2FIS outperforms
the FPA using ST2FIS.

Table 10. Results of the Z-test for the CS and the FP algorithm.

CS FP
z-Value

Average Std Average Std

FCS ST2FIS FPA ST2FIS

3.7981× 10−1 3.3761× 10−1 7.9023× 10−1 4.5021× 10−1 −5.081× 10+01

In addition, we performed the non-parametric Friedman test to increase our confidence
in the results’ validity. The Friedman test [95] is a non-parametric test used to assess
multiple algorithms in order to determine the best.

In the first case, when we used ST2FIS to compare the fuzzy CS and FP approaches, we
discovered that the CS has a significant advantage with a p value of 0.000061 (see Table 11).
In the second case, we compared the fuzzy CS and FP algorithms using ST2FIS for the
TTCFNLC system with actuator fault and found that the CS has a significant advantage
with a p value of 0.0000589 (see Table 12). We conclude that the cuckoo search (and the
fuzzy variants) outperforms the fuzzy flower pollination method.

Table 11. Friedman test in comparing FCS Using ST2FIS vs. FPA Using ST2FIS.

FCS Using IT2FIS vs. FPA Using IT2FIS

Test Statistic p-Value

16.13333

0.000061
Q = 12n

k(K+1)

[
∑j R2

j −
k(K+1)2

3

]
Q = 0.066666× 4292− 270

Q = 16.13333

Table 12. Friedman test in comparing FCS Using ST2FIS vs. FPA Using ST2FIS for TTCFNLC with
abrupt actuator fault 1.

FCS Using T1FIS vs. FPA Using T1FIS

Test Statistic p-Value

16.13333

0.0000589
Q = 12n

k(K+1)

[
∑j R2

j −
k(K+1)2

3

]
Q = 0.066666× 4292− 270

Q = 16.13333
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8. Conclusions

This paper presents an efficient implementation of the fuzzy CS and fuzzy FP algo-
rithms using ST2FIS for the designing of optimized interval type-2 membership functions
(IT2MFs) of interval type-2 fuzzy logic controller (IT2FLC) for a given non-linear con-
trol problem with uncertainties. When uncertainty is introduced, the proposed structure
for determining the best distribution of interval type-2 MFs in a given control problem
demonstrates that the CS method can control a stabilization in a nonlinear control problem;
coupled frustum water tank controller. The exploration and exploitation abilities of the CS
algorithm are an important feature that is investigated and reflected in the positive results.
Many such metrics are developed to assess the effectiveness of the CS and FP algorithms,
including ITAE, ITSE, ISE, IAE, MSE, and RMSE.

The proposed implementation shows the CS algorithm is a useful tool for deter-
mining the best design in IT2MFs for interval type-2 fuzzy logic controller and fuzzy
controller stabilization. The simulations have very few errors, as shown in Tables 2 and 4.
Figures 18–21 show that the CS algorithm converges quickly and produces very few errors
after only a few iterations, owing to the algorithm’s exploitability. It can also be utilized
for various fuzzy controllers, such as without fault simulations and with actuator fault
in a non-interacting two-tank conical frustum level system. The best optimize IT2FLC
system using fuzzy FP and fuzzy CS algorithms with ST2FIS for TTCFNLC system are
presented in Figures 10 and 11 respectively. In addition, the fault recovery time analy-
sis is presented for both the metaheuristic algorithm using dynamic parameter adaption
techniques using ST2FIS.

In the future, different types of fuzzy systems for dynamic parameter adjustment in
metaheuristic algorithms will be investigated and applied to various control challenges
with higher levels of uncertainties. Other metaheuristic algorithms can also be used and
tested for the non-linear control problems with fault-tolerant control capability with fault
recovery time (t f r) analysis.

Different types of fuzzy systems for dynamic parameter adjustment in metaheuristic al-
gorithms will be investigated and applied to various control applications in future research.
In addition, it would be interesting to monitor and assess the shadowing type-2 fuzzy logic
systems’ executing time and performance when greater noise levels are incorporated into
the control process.

It is also proposed to use generalized type-2 fuzzy systems to perform dynamic param-
eter tweaking and to extend the controller to a generalized type-2 fuzzy controller [25,29,96].
Furthermore, a study of the controllers could be conducted by introducing various levels of
disturbance to the plants to assess the efficacy of the proposed method in various scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

ANNs Artificial Neural Networks
ACO Ant Colony Optimisation
CS Cuckoo Search
CV Control Valve
CPS Cyber-Physical Systems
DE Differential Evolution
DMs Decision Makers
DOF Degrees of Freedom
DTs Decision Threes
EA Elevation Area
FF Feedforward
FP Flower Pollination
FSs Fuzzy Sets
FLC Fuzzy Logic Controller
FISs Fuzzy Inference Systems
FTS Frustum Tank System
GA Genetic Algorithm
GT2FS General Type-2 Fuzzy Sets
GT2FIS General Type-2 Fuzzy Inference System
GOA Grasshopper Optimization Algorithm
GSO Galactic Swarm Optimization
LFM Lower Membership Function
LPFNs Linguistic Pythagorean fuzzy numbers
MFs Membership Functions
MSE Mean Square Error
MPPT Maximum Power Point Tracking
NN Neural Network
PID Proportional Integral Derivative
PSO Particle swarm optimisation
PV Photo Voltaic
RTAC Rotational/Translational Proof-Mass Actuator
RA Reduction Area
RL Reinforcement Learning
RMSE Root Mean Square Error
SA Shadowing Area
SISO Single Input Single Output
ST2FIS Shadowed Type-2 Fuzzy Inference System
SFC Stochastic Fractal Search
SVMs Support Vector Machines
TTCFNLCS Two-Tank Conical Frustum Non-Interacting Level System
T1FLCs Type-1 Fuzzy Logic Controllers
t f r Fault recovery time
HS Harmony Search
IP Inverted Pendulum
IAE Integral Absolute Error
ICS Improved Cuckoo Search
ISE Integral Square Error
ITAE Integral Time Absolute Error
ITSE Integral Time Absolute Error
IT2FLCs Interval Type-2 Fuzzy Logic Controllers
IT2FIS Interval Type-2 Fuzzy Inference System
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