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Abstract

We present a catalog of 23,790 extended low-surface-brightness galaxies (LSBGs) identified in ~5000 deg2 from
the first three years of imaging data from the Dark Energy Survey (DES). Based on a single-component Sérsic
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model fit, we define extended LSBGs as galaxies with g-band effective radii > R g 2. 5eff ( ) and mean surface
brightness m > -g 24.2 mag arcseceff

2¯ ( ) . We find that the distribution of LSBGs is strongly bimodal in (g−r)
versus (g−i) color space. We divide our sample into red (g−i�0.60) and blue (g−i<0.60) galaxies and
study the properties of the two populations. Redder LSBGs are more clustered than their blue counterparts and are
correlated with the distribution of nearby (z<0.10) bright galaxies. Red LSBGs constitute ∼33% of our LSBG
sample, and~30% of these are located within 1° of low-redshift galaxy groups and clusters (compared to ∼8% of
the blue LSBGs). For nine of the most prominent galaxy groups and clusters, we calculate the physical properties
of associated LSBGs assuming a redshift derived from the host system. In these systems, we identify 41 objects
that can be classified as ultradiffuse galaxies, defined as LSBGs with projected physical effective radii

>R 1.5 kpceff and central surface brightness m > -g 24.0 mag arcsec0
2( ) . The wide-area sample of LSBGs in

DES can be used to test the role of environment on models of LSBG formation and evolution.

Unified Astronomy Thesaurus concepts: Sky surveys (1464); Low surface brightness galaxies (940)

Supporting material: machine-readable tables

1. Introduction

The low-surface-brightness universe is notoriously difficult
to characterize due to the significant impact of observational
selection effects (e.g., Disney 1976; McGaugh et al. 1995).
Low-surface-brightness galaxies (LSBGs) are conventionally
defined as galaxies with central surface brightnesses fainter
than the night sky (Bothun et al. 1997). While these faint
galaxies are thought to contribute a minority (a few percent) of
the local luminosity and stellar mass density (e.g., Bernstein
et al. 1995; Driver 1999; Hayward et al. 2005; Martin et al.
2019), they may account for ~15% of the dynamical mass
budget in the present-day universe (e.g., Driver 1999; O’Neil
et al. 2000; Minchin et al. 2004). However, due to the
observational challenges in detecting these faint systems,
LSBGs remain difficult to study as an unbiased population.

LSBGs are known to span a wide range of physical sizes and
environments, ranging from the ultrafaint satellites of the Milky
Way (e.g., McConnachie 2012; Simon 2019), to satellites of other
nearby galaxies (e.g., Martin et al. 2013; Merritt et al. 2016;
Martin et al. 2016; Danieli et al. 2017; Cohen et al. 2018), and
members of massive galaxy clusters like Virgo (e.g., Sabatini et al.
2005; Mihos et al. 2015, 2017), Perseus (e.g., Wittmann et al.
2017), Coma (e.g., Adami et al. 2006; van Dokkum et al. 2015;
Koda et al. 2015), Fornax (e.g., Ferguson 1989; Hilker et al. 1999;
Muñoz et al. 2015; Venhola et al. 2017), and other nearby clusters
(e.g., van der Burg et al. 2016). Untargeted searches have also
found a large population of LSBGs in the field (e.g., Zhong et al.
2008; Rosenbaum et al. 2009; Galaz et al. 2011; Greco et al.
2018). Understanding how LSBGs come to populate this wide
range of environments may inform models of cosmology and
galaxy evolution. Are LSBGs truly outliers relative to the rest of
the galaxy population, or are they merely a natural continuation of
the galaxy size–luminosity relation?

The standard model of cosmology (ΛCDM) predicts that
galaxies form hierarchically, with smaller galaxies forming first
and assembling to form larger galaxies, galaxy groups, and
galaxy clusters (e.g., Peebles 1980; Davis et al. 1985; White &
Frenk 1991). The formation and growth of galaxies over cosmic
time is connected to the growth of the dark matter halos in which
they reside (the so-called “galaxy–halo connection”; e.g.,
Wechsler & Tinker 2018). Many attempts have been made to
use the properties of dark matter halos to predict the properties of
the galaxies that inhabit them (e.g., Behroozi et al. 2013; Moster
et al. 2013). As extremes in the relationship between galaxy size
and luminosity, LSBGs provide a litmus test for models that
predict galaxy properties from cosmological principles (e.g.,

Ferrero et al. 2012; Papastergis et al. 2015). It has been
suggested that LSBGs form naturally within the ΛCDM
framework, either primordially in halos with high angular
velocity (Dalcanton et al. 1997; Amorisco & Loeb 2016) or
through evolution in dense environments (Tremmel et al. 2020;
Martin et al. 2019). On the other hand, observations of LSBGs
with anomalously low dark matter content (van Dokkum et al.
2018, 2019) may necessitate modified models of galaxy
formation (e.g., Papastergis et al. 2017; Sales et al. 2020) and/
or dark matter physics (e.g., Carleton et al. 2019). Disentangling
the contributions of various mechanisms for LSBG formation
has been historically challenging due to the small volume and
highly biased observational samples available.
Over the last few decades, the rapid advance of wide-area,

homogeneous, digital imaging has greatly increased our sensitivity
to LSBGs. The Sloan Digital Sky Survey (SDSS) enabled
statistical studies of large samples of LSBGs down to central
surface brightnesses of m ~ -B 24 mag arcsec0

2( ) (Zhong et al.
2008; Rosenbaum et al. 2009; Galaz et al. 2011). Smaller
telescopes optimized for the low-surface-brightness regime (i.e.,
the Dragonfly Telephoto Array; Abraham & van Dokkum 2014)
have illuminated the populations of LSBGs in nearby groups
(Merritt et al. 2016; Danieli et al. 2017; Cohen et al. 2018)
and clusters (van Dokkum et al. 2015; Janssens et al. 2017),
extending down to unprecedented central surface brightnesses of
m > -g 27 mag arcsec0

2( ) . Recently, the Hyper Suprime-Cam
Subaru Strategic Program (HSC SSP) revealed a large population
of LSBGs with m > -g 24.3 mag arcseceff

2¯ ( ) in an untargeted

search of the first ~200 deg2 from the Wide layer of the HSC
SSP (Greco et al. 2018). However, results from these deep
photometric surveys are still limited to relatively small areas of
sky, limiting our ability to characterize the faintest galaxies in an
unbiased manner.
Untargeted searches for LSBGs are essential to understand the

role that environment plays in their formation and evolution.
However, such searches are challenging due to the deep imaging
and wide area coverage that is required to provide a statistically
significant population of LSBGs. Here we use data from the first
three years of the Dark Energy Survey (DES) to detect LSBGs
with half-light radii r1/2>2 5 and mean surface brightness
m > -g 24.2 mag arcseceff

2¯ ( ) over ~5000 deg2 of the southern
Galactic cap. Through a combination of classical cut-based
selections on measured photometric properties, machine-learning
(ML) techniques, and visual inspection, we produce a high-
purity catalog of 23,790 LSBGs. We present the spatial,
morphological, and photometric properties of this sample based
on detailed multiband Sérsic model fits.
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This paper is organized as follows. In Section 2, we
describe the DES data set and object catalog used for our
search. In Section 3, we describe our multistep selection and
measurement pipeline, resulting in our catalog of LSBGs. In
Section 4, we estimate the efficiency of our catalog selection
method by comparing against deeper data around the Fornax
galaxy cluster. In Section 5, we describe the observed
properties of this sample, and in Section 6, we examine the
statistical clustering of LSBGs. In Section 7, we examine the
properties of LSBGs that are close in projection to nearby
galaxy groups and clusters. We summarize the results of this
work in Section 8.

2. DES Data

DES is an optical–near-infrared imaging survey covering
~5000 deg2 of the southern Galactic cap using the Dark
Energy Camera (DECam; Flaugher et al. 2015) on the 4-m
Blanco Telescope at the Cerro Tololo Inter-American Obser-
vatory (CTIO). The DECam focal plane comprises 62
2 k×4 k CCDs dedicated to science imaging and 12
2 k×2 k CCDs for guiding, focus, and alignment. The
DECam field of view covers 3 deg2 with a central pixel scale
of 0 263. DES observes with a dithered exposure pattern to
account for gaps between CCDs (Neilsen et al. 2019) and
combines the individual exposures into coadded images that are

´0.73 0.73 deg in size (Morganson et al. 2018).The median
sky brightness levels in the DES exposures are =g 22.01,
=r 21.15, and = -i 19.89 mag arcsec 2 (DES Collaboration

et al. 2018).
We use data collected from the first three years of DES

observing (DES Y3). This data set shares the same single-
image processing, image coaddition, and object detection as the
first DES data release (DR1; DES Collaboration et al. 2018). In
particular, object detection was performed on r+i+z
coadded detection images using SourceExtractor (Bertin
2006). Photometric measurements were performed in each
band using SourceExtractor in “dual image” mode using
the band of interest in combination with the detection image.
The depth of the DES Y3 object catalog at signal-to-noise ratio
(S/N)=10 based on the SourceExtractor adaptive
aperture fit (MAG_AUTO) is g=23.52, r=23.10, and i=
22.51 (DES Collaboration et al. 2018). The DES pipeline was
optimized for the detection and measurement of galaxies at
cosmological distances, which are generally faint and relatively
small in projected size.

Sky background estimation is an important component in the
detection of extended LSBGs. In DES Y3, sky background
estimation and subtraction were performed in two phases
(Morganson et al. 2018). First, the background was fit using a
principal component analysis algorithm applied to the full focal
plane binned into 128×128 superpixels that are ~ ¢1 in size
(Bernstein et al. 2018). Next, SourceExtractor was used
to fit the residual local background on each CCD using a
bicubic spline fit to 256×256 pixel blocks, which are again
~ ¢1 in size (Bertin 2006; Morganson et al. 2018). For
comparison, the half-light radii of the LSBGs in this study
range from 2 5 to ~ 20 in radius. Background modeling may
reduce the efficiency for detecting larger and lower-surface-
brightness sources, and we leave further background modeling
optimization to future work.

We estimated the surface-brightness contrast on 10″×10″
scales for each DES coadd tile using the sbcontrast module

from Multi-Resolution Filtering packaged developed for the
Dragonfly Telephoto Array (van Dokkum et al. 2020).50 This
procedure bins each coadd image on the desired scale, subtracts
a local background from each binned pixel based on the
surrounding 8 pixels, and calculates the variation among
the binned and background-subtracted pixels (e.g., Gilhuly
et al. 2020). We applied this procedure to each DES coadd
tile after masking bad pixels and sources detected by
SourceExtractor. We find that on 10″× 10″ scales, the
median surface brightness limit at 3σis = -

+g 28.26 0.13
0.09,

= -
+r 27.86 0.15
0.10, = -

+ -i 27.37 mag arcsec0.13
0.10 2 , where the upper

and lower bounds represent the 16th and 84th percentiles of the
distribution over DES tiles (Appendix A).51 These values can
be directly compared to the 3σsurface-brightness contrast of
= = -g r28.616, 28.936 mag arcsec 2 reported for Dragonfly

observations of NGC 4565 (Gilhuly et al. 2020). However, we
note that the DES source detection pipeline has not been
optimized for the detection of large, low-surface-brightness
sources, and so the source detection threshold cannot be
directly compared to other catalogs optimized to this purpose.

3. LSBG Catalog

Here we describe the pipeline used to identify and measure
LSBGs in the DES Y3 data. Briefly, we start with a generic
catalog of SourceExtractor detections and use the
morphological and photometric properties to identify a subset
of LSBG candidates. We train a ML algorithm to remove
artifacts and visually inspect the resulting candidate list to
assemble a high-purity catalog of LSBGs. We then fit a Sérsic
profile to each identified LSBG in order to determine
photometric properties in a manner that is consistent with
previous work (e.g., Greco et al. 2018). Our full catalog of DES
LSBGs is available as supplemental material.52

3.1. Initial Sample Selection

We began with the DES Y3 Gold coadd object catalog
(v2.2) assembled from SourceExtractor detections
(Sevilla-Noarbe I. & Bechtol K. 2020, in preparation).
We first removed objects classified as point-like based on
the i-band SourceExtractor SPREAD_MODEL parameter
(see Appendix B and Sevilla-Noarbe I. & Bechtol K. 2020,
in preparation, for more details). Following Greco et al.
(2018), we defined our initial sample of candidate LSBGs
based on angular size and surface brightness. Because these
cuts were primarily intended to reject imaging artifacts,
no correction for interstellar extinction was applied at
this stage. We required that sources have half-light radii
in the g band (as estimated by SourceExtractor FLUX_
RADIUS) in the range  < < r g2. 5 201 2 ( )

53 and mean surface

brightness m< < -g24.2 28.8 mag arcseceff
2¯ ( ) .54 We also

restricted our selection to objects with colors (based on the

50
https://github.com/AstroJacobLi/mrf

51
The uncertainty within individual tiles is sharply peaked at a median value

of -0.004 mag arcsec 2.
52

https://des.ncsa.illinois.edu/releases/other/y3-lsbg
53

After assembling our catalog, we inspected all of the candidates (∼ 1500)
satisfying our color and surface-brightness cuts and having r1/2(g)>20″. We
found six LSBGs that were subsequently included in our catalog.
54

Note that there is a difference in the mean surface-brightness selection,
compared to Greco et al. (2018), who use m< < -g24.3 28.8 mag arcseceff

2¯ ( ) .
Our definition is slightly more inclusive, and the reader should keep this in mind
when comparing to the HSC catalog from Greco et al. (2018).
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SourceExtractor MAG_AUTO magnitudes) in the range:

- < - <g i0.1 1.4 1( )

- > ´ - -g r g i0.7 0.4 2( ) ( ) ( )

- < ´ - +g r g i0.7 0.4. 3( ) ( ) ( )

These color cuts were guided by the HSC SSP analysis of

Greco et al. (2018) and were found to produce similar results in

DES. Furthermore, we required the objects in our catalog

to have ellipticity <0.7, to eliminate some high-ellipticity

spurious artifacts (i.e., diffraction spikes). Our complete

selection criteria are presented in Appendix B. After perform-

ing the cuts described above, our sample consisted of 419,895

objects from an initial catalog of ~400 million objects.

3.2. Machine-learning Classification

Visual inspection of a few thousand candidates passing the
cuts described in the previous section revealed that 8% of the
objects passing these selections were LSBGs. The most
common sources of contamination were:

1. Faint, compact objects blended in the diffuse light from
nearby bright stars or giant elliptical galaxies.

2. Bright regions of Galactic cirrus.
3. Knots and star-forming regions in the arms of large spiral

galaxies.
4. Tidal ejecta connected to high-surface-brightness host

galaxies.

The large size and low purity of our initial candidate list was
well suited to the application of conventional ML classification
algorithms. Our goal with ML classification was to reject a
large fraction of false positives while retaining high complete-
ness for true LSBGs.

3.2.1. Training Set

In order to train a supervised ML classification algorithm, we
required a sample of objects where the true classification was
known. To avoid biases when training the classifier, we seek to
assemble a labeled training sample that is representative of the
full LSBG candidate sample. We created a labeled sample by
visually inspecting all objects that pass the cuts defined in
Section 3.1 in seven patches spread over the DES footprint,
comprising ~100 deg2 (Figure 1). One of these regions was
centered on the Fornax galaxy cluster, which is known to
contain a high concentration of LSBGs (e.g., Muñoz et al.
2015), while the locations of the other regions were selected at
random. Our training set consists of 7760 visually inspected
objects, of which 640 were classified as LSBGs.

3.2.2. Features and Classifiers

We split the labeled objects into two sets: 75% of the labeled
objects were used as a training set, while the remaining 25%
were used as a validation set. We used the validation set to
evaluate the performance of different classifiers and tune their
hyperparameters. Because the ML classifier was used solely as
a precursor to visual inspection, we were not concerned with
precisely characterizing its performance. Thus, rather than
allocating an independent testing sample, we used our entire
labeled data set for training and validation.

In the classification, we used 18 features derived from the
SourceExtractormeasured properties without correcting
for interstellar extinction. Specifically, we used:

1. The adaptive aperture magnitudes in the g, r, i bands,
MAG_AUTO.

2. The colors (g−r), (g−i), and (i−r) derived from the
adaptive aperture magnitudes.

3. The size of a circular isophote containing half the flux in
the g, r, i bands, FLUX_RADIUS.

4. The effective surface brightness in the g r i, , bands,
MU_EFF_MODEL.

5. The maximum surface brightness measured by Sour-

ceExtractor in the g, r, i bands, MU_MAX.
6. The semimajor and semiminor axes of the isophotal

ellipse containing half the light, A_IMAGE and
B_IMAGE.

7. The isophotal ellipticity, 1−B_IMAGE/A_IMAGE.

We tested a number of popular classification algorithms,
as implemented in the Python library scikit-learn

(Pedregosa et al. 2011).55 Specifically, we tested naive Bayes,
AdaBoost, nearest neighbor, random forest, linear support
vector machines (SVM), and SVM with radial basis function
(RBF) kernel classifiers. Due to the relatively small size of our
training set (and specifically the small number of positive
instances), we did not attempt classification using deep learning
techniques.
Our goal was to find a classifier that minimized the false-

negative rate (FNR)—i.e., true LSBGs classified as false
detections—while keeping the true-positive rate (TPR) reason-
ably high. In other words, we favored completeness over purity
in the sample classified as LSBGs. This choice was motivated
by our goal to reduce the candidate sample to a tractable size
for visual inspection (which would reject the remaining false
positives), without losing many real LSBGs in the process.
Note that the samples in our training data were heavily

imbalanced: from the 5820 objects (7760×0.75) only 480
(640×0.75) were true LSBGs. Class imbalance can lead to
low accuracy in predicting the label of objects belonging to the
less frequent class. We dealt with this by weighting the classes

Figure 1. The distribution of the objects visually classified as LSBGs in the
seven 4°×4° regions used to create the labeled set for classification and
validation. The Fornax galaxy cluster is located at (R.A., decl.)∼(55°, −35°).

55
https://scikit-learn.org/stable/
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using the class_weight parameter. Setting this parameter
equal to ‘‘balanced’’ assigns each class a weight that is
inversely proportional to its frequency, wj=n/2nj, where wj is
the weight of the jth class and n, nj are the total number of
observations and observations of the jth class, respectively.

We found that the optimal classifier for our specified goal
was an SVM classifier with an RBF kernel and parameters
C=104 and γ=0.012. (These parameters are related to the
sensitivity to the misclassification rate of training examples
versus simplicity of the decision boundary, and the influence of
a single training example, respectively. For more details on
SVMs, see, e.g., Hastie et al. 2001). In Figure 2, we present the
confusion matrix for this classifier, evaluated on the validation
set. We see that the FNR, defined as the fraction of true LSBGs
classified as non-LSBGs ( = +FNR FN FN TP( )), is ~9%.
We visually inspected the 15 LSBGs rejected by the SVM
classifier, as well as examples of LSBGs that were correctly
classified. Comparing the two cases, we find that the rejected
objects are systematically fainter (about one magnitude in mean
surface brightness) than the LSBGs that passed the classifica-
tion step.

From the same plot, we expect that ~44% of the objects
classified as LSBGs are false positives. Subsequent visual
inspection (Section 3.3) showed that the number of false
positives was consistent with the estimate presented here.

Using the optimized classifier, as described in the above
section, we classified the 419,895 LSBG candidates that were
selected by the cuts defined in Section 3.1. The classification
returned 44,979 objects classified as LSBGs, thus reducing the
sample by about an order of magnitude.

3.3. Visual Inspection

The next step in the generation of our LSBG sample was
visual inspection of objects that were classified as LSBGs by
our ML classifier. We generate 30″×30″ cutouts centered at
the coordinates of each of the candidates, and we inspect
candidates in batches of 500. For cutout generation, we use the

DESI Legacy Imaging Surveys sky viewer to access the DES
DR1 images.56

Figure 3 shows cutouts around 20 candidates passing our
ML classifier. Our visual inspection procedure classified
candidates 2, 3, 8, 11, 12, 13, 14, 15, and 18 as LSBGs. Some
of these objects are elliptical galaxies while others are spirals.
We see that candidates 10 and 11 represent the same object, as
do 4, 5, 6, and 7. These duplicates come from SourceEx-

tractor shredding larger galaxies into smaller constituents.
When we find sources that have been shredded in this way, we
make an effort to “stitch” the segmentation maps back together
for the galfitm (Section 3.4). In these cases, we picked the
candidate that was best centered on the galaxy; in the example
presented here, these are candidates 11 and 4. To avoid further
contamination from duplicates in our sample, we also ran an
automated spatial cross-match on our final catalog to remove
duplicate objects separated by <4″. Candidates 0, 1, 9, 16, 17,
and 19 were rejected by visual inspection as false positives. For
some candidates (i.e., number 4), it is not immediately clear
whether they are isolated LSBGs or tidal debris from larger
nearby galaxies. In these cases, we used the DES Sky Viewer57

to inspect the region surrounding the candidate. The DES Sky
Viewer provides flexible zooming and scaling, and we ended
up rejecting candidate 4, because it is a point-like object
blended with the diffuse light of a large galaxy centered outside
of the cutout. We note that we make no attempt to distinguish
between small, low-luminosity, nearby LSBGs and large,
luminous, distant LSBGs.
After visual inspection, our sample contains 21,292 objects.

Although we tried to minimize false positives, this sample may
still contain a small fraction of low-surface-brightness
contaminants such as:

1. Ejecta from large galaxies that reside outside the small
angular size of the cutouts.

2. Small background galaxies in the halos of bright stars.
3. Recent mergers with extended halos of stellar debris.

3.4. Sérsic Model Fitting

To compare the properties of our LSBG catalog against
similar catalogs in the literature (e.g., Greco et al. 2018), we fit
each galaxy with a single-component Sérsic light profile. We
use galfitm, a multiband implementation of galfit devel-
oped in the context of the MegaMorph project (Peng et al.
2002; Barden et al. 2012; Häußler et al. 2013), to perform a
multiband fit for each galaxy using the DES coadd images from
the g, r, and i bands. We started by creating square cutout
images centered on each galaxy. The cutout size was set to
be 10× theFLUX_RADIUS of each galaxy (rounded up to
the nearest 50 pixel step). A minimum cutout size of

´201 201 pix (~ 50 on a side) was used for small galaxies.
We assembled a mask in each band by combining the
segmentation map from the DES detection coadd (a combina-
tion of the r, i, z images) with the bad pixel mask from each
individual band. The galfitm “sigmaimage” was derived
from the inverse variance weights plane produced by SCAMP

(Bertin 2006) for each of the DES coadded images.
Large LSBGs are sometimes segmented into several catalog

objects by SourceExtractor. Because we are using the

Figure 2. The confusion matrix of our final SVM classifier evaluated on the
validation set. The quoted numbers correspond to the number of validation
instances (objects) based on their true and predicted label. The false-negative
rate is ∼9%.

56
http://legacysurvey.org/

57
https://desportal2.cosmology.illinois.edu/sky/#sky/23
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segmentation map as a mask, regions of the image associated
with other SourceExtractor sources are excluded from
the galfitm analysis by default. These “siblings” of the LSBG
often consist of foreground stars, background galaxies, and
various stellar overdensities associated with the LSBG itself
(e.g., globular clusters, star-forming regions, nuclei of recently
merged satellites, etc.), as well as spurious shredding of the
(mostly) smooth emission of the LSBG. To avoid unnecessary
masking, we visually inspect the segmentation maps of each
LSBG in our sample. We remove mask regions associated with
spurious shredding, while retaining masks associated with
compact, high-surface-brightness objects. Approximately 5%
of our LSBG sample had segmentation maps modified in
this way.

The parameters of the Sérsic model fit were initialized based
on the values of the SourceExtractor catalog. The
centroid was initialized at the position derived by SourceEx-

tractor and was constrained within 10% of the FLUX_
RADIUS. The Sérsic effective radius was similarly initialized
based on the FLUX_RADIUS and was constrained to be within
a factor of 2 from this initial value. The Sérsic index was

initialized at a value of n=1.0 and was constrained to lie
within the range 0.2<n<5.0. The galfitm package uses a
series of Chebyshev polynomials to parameterize the morpho-
logical parameters as a function of wavelength (Häußler et al.
2013). When performing the fit with galfitm, we tied the
centroid position, Sérsic index, ellipticity, and position angle
across the three bands. In contrast, the flux normalization of the
model was allowed to vary independently in each band
according to a quadratic function of wavelength, and the
effective radius was fit in each band as a linear function of
wavelength. This has the effect of constraining color gradients
to vary monotonically with wavelength. We visually inspect
the residuals of each fit to identify and correct catastrophic
errors. The resulting best-fit Sérsic model parameters are
provided as supplemental material.
While the Sérsic model fit provides consistent properties

across all objects in our sample and allows comparison to
similar catalogs in the literature, it is not a sufficiently complex
model to provide a good fit for all LSBGs. In particular, we
note that a subset of our objects would be fit better through the
inclusion of a nuclear point source, while others show clear

Figure 3. 30″×30″ cutouts of 20 candidates, positively classified by our machine-learning algorithm (Section 3.2). Candidates 2, 3, 8, 11, 12, 13, 14, 15, and 18 are
visually classified as LSBGs, while the other candidates are rejected as false positives and/or duplicates.
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indications of irregular, peculiar, or spiral structure. We
provide a local estimate of the reduced χ2

(χ2 per degree of
freedom) of our model in each band calculated within the
central region of each LSBG. This information can be used to
identify objects that were poorly fit by the simple Sérsic model
and can be followed up with more detailed modeling. The most
common modeling issue comes from the existence of compact
nuclear sources, which often lead to local χ2>3.

3.5. Extinction Correction and Final Cuts

We corrected for the effects of Galactic interstellar extinction
on the magnitudes and other derived quantities (color and
surface brightness) of our sample. We used the fiducial DES
interstellar extinction coefficients (see Section 4.2 of DES
Collaboration et al. 2018). Briefly, these were derived from the
E(B−V ) maps of Schlegel et al. (1998) with the normal-
ization adjustment of Schlafly & Finkbeiner (2011) using the
reddening law of Fitzpatrick (1999) with RV=3.1. For the
remainder of this paper, we refer only to the extinction-
corrected properties of our sample.

As a final step in defining our LSBG sample, we require that
galaxies have > R g 2. 5eff ( ) and m > -g 24.2 mag arcseceff

2¯ ( )
58

based on the extinction-corrected Sérsic profile fit. After
performing these cuts, our final sample contains 23,790 LSBGs
distributed over the ~5000 deg2 DES Y3 footprint. Interest-
ingly, the average angular number density of LSBGs in DES
Y3 (~ -4.5 deg 2) is similar to that found in the first ~200 deg2

of HSC SSP (~ -3.9 deg 2, Greco et al. 2018).

4. Detection Efficiency around the Fornax Cluster

To estimate the efficiency of our multistep LSBG selection
procedure, we compare our LSBG catalog to similar catalogs
produced with deeper data (note that here by deeper we refer to
the point-source depth, not the surface brightness). The Fornax
galaxy cluster (Abell S373) resides within the DES footprint
and is known to host a large population of faint galaxies (e.g.,
Ferguson 1989; Hilker et al. 1999; Muñoz et al. 2015; Venhola
et al. 2017). In particular, the Next Generation Fornax Survey
(NGFS; Muñoz et al. 2015) has used DECam to image the
region around Fornax to an S/N=5 point-source depth of
g=26.1 and i=25.3, which is approximately 2 mag deeper
than the DES Y3 imaging in this region of the sky. The NGFS
has assembled catalogs of dwarf galaxies covering ~30 deg2

around the Fornax cluster. The NGFS has reported a total dwarf
galaxy population of 643 galaxies, which is split into nucleated
(181) and nonnucleated (462) galaxies (Eigenthaler et al. 2018;
Ordenes-Briceño et al. 2018).

The NGFS dwarf galaxy catalogs were assembled through
visual inspection of the DECam data surrounding Fornax. The
NGFS catalog creation process was specifically focused on
identifying dwarf galaxies/LSBGs, and it did not apply any
cuts similar to those that we imposed on the photometric DES
catalog. This makes the NFGS an interesting independent data
set to quantitatively evaluate the efficiency of our catalog
creation and LSBG sample selection procedures.

We match the NGFS catalogs from Eigenthaler et al. (2018)
and Ordenes-Briceño et al. (2018) with the DES Y3 Gold
catalog using a matching radius of 3″ (we find that using a
larger matching radius does not significantly increase the
number of matches). In Table 1, we report the fraction of
objects from the NGFS catalog that are matched to objects in
the DES Y3 Gold catalog before any cuts, and the resulting
change in the matched fraction of galaxies as we apply each of
the LSBG selection criteria defined in Section 3. This allows us
to estimate the efficiency of each cut and the completeness of
our final LSBG sample relative to the NGFS sample. We also
examine the efficiency of our selection to nucleated and
nonnucleated galaxies separately, because the nonnucleated
galaxies in the NGFS were found to be fainter and smaller than
their nucleated counterparts.
Table 1 shows that ~77% of the NGFS galaxies were

matched to objects in the DES Y3 Gold catalog generated with
SourceExtractor. As expected, the recovery fraction is
higher for the nucleated LSBGs where the DES detection
efficiency reaches ∼90%. Our surface-brightness cut signifi-
cantly reduces the number of detected objects, affecting
nucleated galaxies more strongly due to their higher central
surface brightnesses. The angular size cut, r1/2>2 5, results
in a more significant reduction in the efficiency for recovering
nonnucleated galaxies. We expect that this angular size cut will
result in an even more severe reduction in the number of distant
LSBGs that pass our cuts, as more distant galaxies will be
required to have larger physical sizes.
After applying both surface-brightness and size criteria, the

detection efficiency drops to 43.4% overall, with a detection
efficiency of 52.2% and 40.3% for the nucleated and
nonnucleated subsamples, respectively. We further examine
the decrease in efficiency from applying our ML classification
and visual inspection. We find that the drop in efficiency
(difference between the last two rows of Table 1) corresponds
to an absolute drop of ~13% in the number of LSBGs in the
field that were not detected. That number is consistent with our
expectation that the ML classification has FNR∼10%
(Figure 2). Furthermore, visual inspection of misclassified
galaxies showed that most were either extremely faint/hard to
distinguish from random background fluctuations or too
compact to be included in our LSBG catalog.
Figure 4 shows a scatter plot of the NGFS dwarfs, matched

LSBGs from our catalog, and unmatched LSGBs in the region
around the Fornax cluster. Some of them (~5) are close to an
NGFS object and would have been matched with a slightly

Table 1

Detection Efficiency Around the Fornax Cluster

Cuts applied All Galaxies Nucleated Nonnucleated

No cuts 76.6% 89.5% 71.6%

Surface-brightness cut only 63.1% 58.6% 64.9%

Angular size cut only 56.4% 81.8% 46.4%

Both cuts 43.4% 52.5% 40.3%

Final result (after ML/Vis.

inspection)

37.7% 46.9% 34.1%

Note.Efficiency of our LSBG selection procedure estimated by comparing to

the NGFS catalog (Eigenthaler et al. 2018; Ordenes-Briceño et al. 2018). We

calculate the fraction of NGFS objects included in the DES LSBG sample after

performing each step in sample selection. We also present the efficiency for

nucleated and nonnucleated subsamples separately.

58
Note that there is no consensus in the literature about the definition of the

effective radius of the LSBGs. Some authors use the semimajor axis =R aeff

of the ellipse used in the Sérsic model fit, while others use the circularized
effective radius, defined as =R R b aeff eff . We use the first option and then
we estimate the mean surface brightness as the total flux contained within the
ellipse over its area.
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larger matching radius. This figure also shows the presence of
LSBGs detected in our catalog but not present in the NGFS
catalog. Most of these galaxies reside outside of the NGFS
footprint. Within half the projected virial radius of the Fornax
cluster (~700 kpc, Drinkwater et al. 2001), we find 11 LSBGs
not present in the NGFS catalog.

Overall, our analysis here shows that our pipeline is able to
retrieve most NGFS LSBGs, as we defined them based on the
surface-brightness and radius cuts.

NGFS has the benefit of having been conducted with the
same instrument as DES, thus optimal for comparison with our
catalog. However, completeness estimates are not provided.
The Fornax Deep Survey (FDS) provides a catalog of 564
dwarf galaxies around Fornax, together with completeness
estimates from simulations (Venhola et al. 2017, 2018). This
catalog is �50% complete at a mean surface brightness (in the
r band) of m = -r 26.0 mag arcseceff

2¯ ( ) .
We match our sample with the FDS catalog using a matching

radius of 3″. Before applying any cuts, we find that ∼92% of the
galaxies in FDS are also present in the DES data. We repeat this
matching after applying cuts of m > -r 24.2 mag arcseceff

2¯ ( )

and > R r 2. 5eff ( ) (only r-band data were provided for FDS) to
both the DES catalog and the FDS catalog. We find that ∼66%
of the galaxies in the FDS catalog are contained in the DES
catalog. A more detailed analysis of efficiency as a function of
surface brightness and radius is not very informative given the
small number of galaxies that pass the LSBG selection.
However, we find that the DES LSBG catalog is 80%–90%
complete for the lowest- and highest-surface-brightness galaxies.

5. LSBG Properties

The large sky area covered by DES (~5000 deg2) gives
us a unique opportunity to study the statistical properties

of the LSBG population. Our search results in a sample of
23,790 LSBGs with effective radii > R g 2. 5eff ( ) and extinc-

tion-corrected mean effective surface brightnesses m >geff¯ ( )
-24.2 mag arcsec 2 . This is the largest such catalog of LSBGs

to date. In this section, we divide our catalog of LSBGs into red
and blue subsamples and compare the properties of these

samples to each other and to previous results (i.e., Greco et al.

2018).
The optical colors of galaxies are indicative of their stellar

populations. Colors are known to correlate strongly with galaxy

morphology and environment. Galaxies are conventionally
divided based on color into two well-known sequences of red

and blue galaxies (e.g., Strateva et al. 2001; Blanton &

Moustakas 2009). Less is known about how the colors of

LSBGs correlate with morphology, star formation history, and
environment. For example, O’Neil et al. (1997) found that

classical disk LSBGs span a range of blue and red colors.

Similar to high-surface-brightness galaxies (HSBGs), blue

colors are generally associated with actively star-forming spiral
or irregular systems, while red colors tend to be indicative of

spheroidal or elliptical morphology (e.g., Larson et al. 1980;

Strateva et al. 2001; Baldry et al. 2004; Lintott et al. 2011). Red
galaxies are found preferentially in denser environments, where

quenching from massive hosts prevents ongoing star formation

(Bamford et al. 2009; Geha et al. 2017; Román &

Trujillo 2017). Greco et al. (2018) found that LSBGs detected
in HSC showed a clear bimodality in color, with two apparently

distinct populations separated at g′−i′=0.64 (where g′ and i′

are used to indicate extinction-corrected magnitudes in the

HSC filters). They found that blue LSBGs had a brighter mean
surface brightness, while galaxies that are large ( > R 6eff ) and

faint (m > -g 26 mag arcseceff
2¯ ( ) ) are almost exclusively red.

In Figure 5, we present the distribution of our LSBG sample

in the g−i versus g−r color space. We show the color–color

diagrams derived from the SourceExtractor MAG_AUTO

quantities (left panel), and the magnitudes derived from the
galfitm Sérsic model fit (right panel). The color distributions

are similar and present signs of bimodality that are slightly

more prominent using colors from the Sérsic model fit. Having
established the similarity of the color distributions derived from

these two fits, in the remainder of this paper, we quote

photometric parameters (magnitudes, colors, surface bright-

ness) derived from the galfitm model. Thus, photometric and
structural parameters (Sérsic index, effective radius) come from

the same model fit and can be consistently compared to results

in the literature.
We separate the total LSBG sample into red and blue

subsamples, according to their g−i color. To do so, we use

the following procedure: we fit a two-component Gaussian
mixture model (GMM) to the 1D g−i color distribution. The
components can be seen in the top panels of Figure 5 (dashed

gray lines). We find that the two Gaussians intersect at

g−i=0.60 (galfit case; for comparison using the distribu-
tion coming from the SourceExtractor quantities the

same point is at g−i=0.66). We define a red galaxy sample

as galaxies with g−i�0.60 (7,671 galaxies), and a blue
galaxy sample as galaxies with g−i<0.60 (16,119 galaxies).

Note that in the upper-right corner in both panels a “tail” of

objects is clearly visible. Inspecting them visually and checking

the χ2 of their galfit model fit, we found that most of these
are poorly fitted spiral LSBGs.

Figure 4. The dwarf galaxies present in the NGFS catalog (in blue) and the
matches from our DES LSBG catalog (red). The NGFS catalog is separated
into nucleated (denoted by an “X”) and nonnucleated (circles) galaxies. We
plot DES LSBGs that were not matched to NGFS objects in light red (these are
generally located outside the NGFS area). The black cross denotes the nominal
center of the Fornax cluster.
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Our g−i separation threshold is bluer than that of Greco
et al. (g′−i′=0.64 in the HSC bandpass).59 Note that Greco
et al. used the median of the distribution to separate the two
populations, which was effective since the two populations had
similar size. However, the DES LSBG sample is dominated by
blue galaxies, which shifts the median to (g−i)=0.60. The
median colors of our red and blue LSBG subsamples are
g−i=0.76 and g−i=0.40, respectively.

In Figure 6, we show examples of randomly selected blue
galaxies with g−i<0.40 (below the median of the blue
population) and red galaxies with g−i>0.76 (above the
median of the red population). As we can see, the two
subsamples show morphological differences. The blue sample
is composed primarily of irregular galaxies and galaxies with
signs of spiral structure. The red sample consists predominantly
of nucleated and nonnucleated spherical and elliptical galaxies.

In the left panel of Figure 7, we present the joint distribution
of our red and blue LSBG samples in the space of effective
radius, R geff ( ), and mean surface brightness (within the
effective radius), m geff¯ ( ). Both populations have sizes ranging
from 2 5–16″. Despite the wide range in angular sizes, most
LSBGs in our sample (90%) have radii less than 6″, with a
median of ~ 4 . Note that the scatter in angular sizes does not
necessarily mean that our galaxies occupy a wide range in
physical sizes; much of the scatter comes from the fact that our
sample contains galaxies at different distances. For example, in
Section 7, we show that overdensities in the distribution of
LSBGs are associated with galaxy clusters that lie in a range of
distances between ~20 Mpc and ~100 Mpc. For a typical
galaxy size of ~1 kpc, that translates into a range of angular
sizes between 2″–10″.

We find that the red galaxy population has a larger tail
toward lower surface brightness (larger values of m geff¯ ( )),

while the blue galaxies tend to have higher mean
surface brightness. The 50th, 80th, and 90th percentiles in surface
brightness are m = -g 24.6, 24.9, 25.2 mag arcseceff

2¯ ( ) for the

red sample and m = -g 24.9, 25.6, 25.9 mag arcseceff
2¯ ( ) for

the blue sample. This result is interesting in the context of early
studies that showed no pronounced relationship between color and
surface brightness (e.g., Bothun et al. 1997). However, extrapolat-
ing the size–luminosity relationship for red and blue galaxies in
SDSS (Shen et al. 2003) suggests that at lower luminosities, red
galaxies should be larger than their blue counterparts. A similar
result has been shown for the LSBG sample from HSC SSP (Greco
et al. 2018).
In the right panel of Figure 7, we plot the Sérsic index, n,

versus the central surface brightness, μ0(g), for our red and blue
LSBG samples (e.g., Graham & Driver 2005). The distribution
in the Sérsic index is similar for two samples, with
0.2n4.0 and median of n∼1.0. We do note that the
red LSBGs tend to be underrepresented in the regime of small
Sérsic index, n<0.7. Unsurprisingly, we find that blue
galaxies tend to have higher central surface brightness;
however, the difference in central surface brightness between
red and blue galaxies is not as striking as the difference in mean
surface brightness. The median of the red population is at
m = -g 23.6 mag arcsec0

2( ) , while that of the blue population

at m = -g 23.3 mag arcsec0
2( ) .

6. Clustering of LSBGs

6.1. Clustering of Red and Blue LSBGs

Greco et al. tentatively suggested that the spatial distribution
of LSBGs in the HSC SSP may be correlated with low-redshift
galaxies from the NASA-Sloan Atlas.60 However, due to the
relatively small area covered by their HSC SSP data set
(~200 deg2), they were unable to make any firm statistical

Figure 5. Color–color diagram of our LSBG sample, using (a) SourceExtractor MAG_AUTO parameters and (b) magnitudes derived by fitting with galfitm. In
both cases, we observe a bimodality in the g−i and g−r color distributions. We separate the total sample into red and blue galaxies, based on their g−i color
value: we fit the g−i distribution with a Gaussian mixture model with two Gaussians (gray dashed lines in the top panels) and find the intersection point. This is at
g−i=0.66 and g−i=0.60 for the SourceExtractor and galfitm cases, respectively (black vertical dashed lines). We use the intersection point derived
from the galfitm distribution to define red and blue LSBG samples.

59
From a comparison of matched point sources in the HSC SSP Wide and

DES Y3 Gold catalogs, we find that the difference between HSC and DES
colors is Δ(g−i)=0.013 for sources with 0.3<(g′−r′)<0.6.

60
http://nsatlas.org/
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statement about possible correlations. Our DES Y3 LSBG
catalog covers a contiguous region ~25 times larger than that
of Greco et al., allowing us to perform a detailed exploration of
the spatial distribution of LSBGs. In particular, we are able to
separately explore the clustering of our red and blue LSBG
subsamples (as defined in Section 5). In Figure 8, we present
the spatial distribution of blue and red LSBGs over the DES
footprint. We find a stark contrast in the spatial distribution of
these two LSBG subpopulations: red LSBGs are highly
clustered, while blue galaxies are more uniformly distributed.

To quantify the clustering of our LSBG sample and the red/
blue subsamples, we calculate the angular two-point auto-
correlation function of LSBGs, w(θ) (e.g., Peebles 1980;
Connolly et al. 2002). We use treecorr (Jarvis 2015)61 to
calculate w(θ) using the estimator of Landy & Szalay (1993)
with a random sample of points drawn from the DES Y3 Gold
footprint mask derived from the DES imaging data using
mangle (e.g., Swanson et al. 2008). In Figure 9, we plot w(θ)
for the full LSBG sample, as well as the red and blue
subsamples (gray, red, and blue curves, respectively). We
estimate the errors on w(θ) using jackknife resampling (e.g.,
Efron & Gong 1983). As expected from Figure 8, we find that
the amplitude of the autocorrelation function of red LSBGs is
more than an order of magnitude larger than that of blue
LSBGs at angular scales θ3°.

The differences in clustering amplitude between red and blue
galaxies has been studied extensively in spectroscopic surveys
(e.g., Zehavi et al. 2002, 2005, 2011; Law-Smith &
Eisenstein 2017). In particular, it has been noted that there is
a strong difference in the amplitude and shape of the
autocorrelation function of intrinsically faint red galaxies
relative to brighter and/or bluer galaxies (e.g., Norberg et al.
2002; Hogg et al. 2003; Zehavi et al. 2005; Swanson et al.
2008; Cresswell & Percival 2009; Zehavi et al. 2011). We find
the same pronounced difference in the amplitude and shape of
w(θ) for red LSBGs relative to the blue LSBG subsample and
the power-law behavior observed in higher-surface-brightness
galaxies, w(θ)∝θ−0.7

(e.g., Connolly et al. 2002; Maller et al.
2005; Zehavi et al. 2011; Wang et al. 2013). The observed
shape of the angular autocorrelation function of red LSBGs
(which is also manifested in the total LSBG population) can be
produced if the LSBG sample has a preferred scale for
clustering. We find that we can reproduce the shape of the
LSBG w(θ) by selectively enhancing overdense regions at
scales of a few degrees.
Previous theoretical modeling has suggested that the strong

clustering of faint red galaxies is the result of these galaxies
being dominantly satellites of massive dark matter halos
(Berlind et al. 2005; Wang et al. 2009; Zehavi et al. 2011).
Zehavi et al. (2011) note a strong inflection in the clustering of
faint red galaxies (Mr<−19) at a scale of ~ -h3 Mpc1 . By
mapping this physical scale to the enhanced clustering

Figure 6. Examples of (a) blue and (b) red LSBGs in our sample. We randomly selected red galaxies with g−i above the median for the red population
(g−i>0.76) and blue galaxies below the median of the blue population (g−i<0.40) to make the color difference more prominent. Each cutout is 30″×30″
in size.

61
https://github.com/rmjarvis/TreeCorr
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observed in the red LSBG sample at angular scales of θ3°,
we derive an estimated distance of ~40 Mpc for the clustered
red LSBG sample.

To assess whether the difference in clustering observed
between red and blue LSBGs could be attributed solely to a
difference in stellar mass, we subdivide our red and blue LSBG
samples into samples of faint red galaxies (21<g<22) and
bright blue galaxies (19.5<g<20.5). Blue galaxies gener-
ally have a higher luminosity at a given stellar mass than red
galaxies (e.g., Conroy 2013). Following Greco et al. (2018), we
find that the (g−i) colors of our blue and red LSBGs are well
represented by a simple stellar population from Marigo et al.
(2017) with [Fe/H]=−0.4 and an age of 1 Gyr and 4 Gyr,
respectively. We find that these populations differ in total
absolute g-band magnitude by Δ(Mg)∼1.5. We also find that
the angular autocorrelation functions of the bright red and faint
blue samples do not differ significantly from the total red and
blue LSBG samples, respectively. This suggests that the
difference in clustering shape and amplitude cannot be
attributed to a difference in stellar mass alone.

Some authors have argued that observations support a
decrease in the number of LSBGs close to the cores of galaxy
clusters (e.g., van der Burg et al. 2016; Wittmann et al. 2017).
Such a suppression could reduce the clustering power on small
scales, leading to a flattening in the autocorrelation function.
However, rigorously testing for a suppression in the abundance
of LSBGs in dense regions would require end-to-end
simulations with injected LSBGs to characterize the DES
detection efficiency as a function of local galaxy density. (e.g.,
using a tool like Balrog; Suchyta et al. 2016; S. Everett et al.
2021, in preparation). We leave a detailed characterization of
the DES selection function for LSBGs to future work.

6.2. Comparison to Other Galaxy Samples

We compare the clustering properties of our LSBG sample to
two other galaxy samples: a catalog of HSBGs extracted from
the DES Y3 Gold catalog, and an external sample of low-
redshift galaxies from the 2MASS Photometric Redshift
(2MPZ) catalog. Our goals here are twofold: (1) to compare
the clustering of DES galaxies as a function of surface
brightness and (2) to use the superior redshifts of the 2MPZ
sample to approximately determine the redshift distribution of
our LSBGs.
We construct an HSBG sample from the DES Y3 Gold

catalog by applying the same star–galaxy separation, color, and
ellipticity cuts described in Section 3.1 and summarized in
Appendix B. We do not apply any angular size restriction on
the HSBG sample, but rather we require that the HSBGs have
mean surface brightness m< < -g20.0 22.0 mag arcseceff

2¯ ( ) .
Ideally, we would be able to compare the clustering of LSBGs
and HSBGs with the same stellar mass and redshift distribu-
tions. Because the redshift distribution of the LSBGs is
unknown, we scanned over a range of redshifts for the HSBGs
using redshifts estimated trough the Directional Neighbour-
hood Fitting algorithm (DNF; De Vicente et al. 2016) derived
from the DES multiobject fitting (MOF) photometry.
For each redshift-selected sample of HSBGs, we select a

random subset of galaxies that produces the same distribution
in g-band apparent magnitude as our LSBG sample in the range
18<g<22 (see Appendix C). We compare the clustering
amplitude of the LSBG and HSBG samples, and find that the
best match is achieved for a photometric redshift cut of
z<0.07. However, even for this optimal selection, we find
less clustering in the HSBG sample than the LSBG sample in
the intermediate angular range θ∼0°.1–4° (Figure 10). We

Figure 7. (a) Joint distribution of the red and blue LSBGs in the space of effective radius, Reff , and mean surface brightness (within the effective radius), meff¯ , both in
the g band. The two populations are defined according to the g−i color criterion described in Section 5. The dashed horizontal and vertical lines correspond to the

limits of the selection criteria r1/2>2 5 and m > -g 24.2 mag arcseceff
2¯ ( ) , respectively. Note that although surface brightness is independent of distance, and thus

the scatter shown here reflects the intrinsic properties of our sample, much of the scatter in the angular effective radius comes from the fact that the LSBGs lie at
different distances. (b) Sérsic index, n, versus central surface brightness, μ0(g) (e.g., Graham & Driver 2005), for the galaxies in our red and blue subsamples. The

black dashed line corresponds to our selection criterion, m = -g 24.2 mag arcseceff
2¯ ( ) .
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note that it is likely that the HSBG sample is contaminated by
distant galaxies due to the large photometric redshift
uncertainty of DES, which is σ68(z)∼0.1 overall and is
known to have a large outlier fraction at low redshift (e.g.,
Hoyle et al. 2018).

We perform a similar analysis for the 2MPZ catalog (Bilicki
et al. 2014), an optical-IR all-sky photometric redshift catalog based
on SuperCOSMOS, 2MASS, and WISE extending to z∼0.3
(peaking at z∼0.07). We select this catalog due to its uniform sky

coverage and accurate photometric redshifts (σz=0.015). We note
that 2MPZ has a very different selection function than DES, as it
requires detection in the IR bands. By matching 2MPZ galaxies
with galaxies in the DES Y3 Gold catalog, we retrieved
information about DES-measured magnitude and surface-bright-
ness distribution of 2MPZ galaxies. We find that the DES-
measured mean surface brightness for matched 2MPZ galaxies is
significantly brighter ( m< < -g19.0 23.0 mag arcseceff

2¯ ( ) ) than
the LSBG sample. The g-band magnitude (MAG_AUTO) of the

Figure 8. Sky positions of (a) blue LSBGs (g−i<0.60; 7,671 galaxies) and (b) red LSBGs (g−i�0.60; 16,119 galaxies) within the DES footprint. The
distribution of the red LSBGs is more strongly clustered than that of the blue LSBGs.
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2MPZ sample lies in the range 14.0<g<18.5, while the LSBG
sample range is 18<g<22 (see Appendix C, Figure 19). We

thus expect the 2MPZ sample to consist of brighter, higher stellar

mass galaxies compared to the LSBG sample. As before, we

identified a redshift cut that resulted in an angular autocorrelation

function that is best-matched to that of the LSBGs. In the case of

2MPZ galaxies, we find that this is achieved with a redshift cut

of z<0.10.
In Figure 10 we plot the angular autocorrelation function, w

(θ), of the LSBGs (gray line), the DES HSBGs with z<0.07
(blue line), and the 2MPZ catalog with z<0.10 (red line). We

find that both the DES HSBG and 2MPZ samples have lower

clustering amplitude than the LSBG sample at intermediate

angular scales (0°.1θ4°). Overall, we find that the

amplitude of the angular correlation function of LSBGs is

better matched by the 2MPZ catalog than the DES HSBG
catalog.

6.3. Cross-correlation between Galaxy Samples

The previous autocorrelation analysis compares the clustering
properties of the LSBG, HSBG and 2MPZ catalogs individually.
However, it does not indicate whether these galaxy samples probe
the underlying matter density field in a similar way, i.e., whether
the peaks and troughs in their distributions coincide on a statistical
basis. Galaxies are known to be biased traces of the underlying
matter density field. For large angular scales, the two fields
are connected by a (linear) galaxy bias factor, bg, defined as
δg(z)≡bg(z) δm(z), where δ refers to the overdensity field and
the subscripts g and m refer to galaxies and matter, respectively. In
general, these are functions of redshift, while the bias factor is
different for different galaxy samples. The galaxy angular
autocorrelation function can be defined as q d d= á nw g g( ) ( ˆ)

q d d q+ ñ = á + ñn n nbg m m
2( ˆ ) ( ˆ) ( ˆ ) , where n̂ is the direction in

the sky.
To address whether the galaxy samples studied in the

previous section trace the matter density field in a similar way,
we calculate the cross-correlation function, ξ(θ), between the
LSBG and HSBG samples, the LSBG and the 2MPZ samples,
and the HSBG and 2MPZ samples (left panel of Figure 11).
The cross-correlation between two galaxy samples (labeled
1 and 2) is given by x q12 ( ) = d d qá + ñn ng g,1 ,2( ˆ) ( ˆ ) =

d d qá + ñn nb bg g m m,1 ,2 ( ˆ) ( ˆ ) . We define the cross-correlation
coefficient between the two samples as

r q
x q
q q

=
w w

, 412
12

1 2

( )
( )

( ) ( )
( )

where w1,2(θ) are the autocorrelation functions of the individual

samples. In this case, we can cancel the corresponding bias

factors present in the different samples, and we can compare

the correlations between the matter fields probed by the two

samples. We plot the (square of the) cross-correlation

coefficient between the same samples as those described above

in the right panel of Figure 11.
Although the uncertainties are large, we find that the

2MPZ×LSBG sample exhibits a larger cross-correlation
signal than the LSBG×HSBG. This likely reflects the better
agreement between the redshift distributions of the LSBG and
2MPZ samples, which is expected due to the superior redshift
information provided by the 2MPZ. The stronger cross-
correlation signal motivates our use of the 2MPZ sample when
constructing radial profiles of HSBGs associated with the
prominent peaks in the LSBG distribution.

7. Associations with Galaxy Clusters and Groups

In the previous section, we described a statistical study of the
clustering of LSBGs, which can also be demonstrated visually
when plotting the positions of LSBGs (Figure 8). In this
section, we instead focus on identifying the most prominent
spatial overdensities of LSBGs and associating them with
known galaxy clusters, galaxy groups, and individual bright
galaxies. Associating peaks in the LSBG distribution to
external catalogs provides useful information, such as:

1. Associating a peak in the LSBG distribution with a
galaxy system at a known distance allows us to estimate

Figure 9. The angular autocorrelation function of the total LSBG sample (dark
gray line), and the red and blue LSBG subsamples (red and blue lines,
accordingly). The errors were calculated using the jackknife method. The
correlation function of the red LSBGs has a higher amplitude than that of the
blue LSBGs across all angular scales.

Figure 10. The angular autocorrelation function of all LSBGs (gray line), the
HSBG sample extracted from the DES data (blue line), and the 2MPZ sample
(red line). We see that the LSBG exhibits a turnover at lower angular scales that
is not observed either at the HSBG or 2MPZ samples.
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the distances to the LSBGs (assuming a physical
association between the LSBGs and reference object).
Distances allow us to estimate the intrinsic properties of
the LSBGs, such as physical size and luminosity.

2. Defining a sample of likely LSBG cluster members
allows us to compare the properties of the LSBGs in
cluster environments to those in the field. Such
comparisons can be useful for testing models of LSBG
formation and evolution. For example, we can compare
the radial distributions of LSBG and HSBG cluster
members to test for observable signatures of environ-
mental effects that may be responsible for the formation
of LSBGs.

3. Peaks in the LSBG density that are not associated with
known clusters or groups can be potentially interesting,
indicating different clustering patterns for LSBGs and
HSBGs.

We use kernel density estimation (KDE) to estimate the
projected density of our full LSBGs sample. We apply a
Gaussian smoothing kernel with a bandwidth of 0°.3, using the
haversine distance metric to account for the cosine dependence
on decl. (Pedregosa et al. 2011). The kernel bandwidth was
selected to be similar to the characteristic angular scale of the
overdensities present in Figure 8. This kernel size is further
motivated by the radial profiles of LSBGs around peaks (see
Figure 13), where it is seen that the typical scale of cluster
cores is of the order of ~0.5 Mpc. The median distance of
clusters associated to our sample is ~80 Mpc, which results
into a typical angular size of ~ 0 .35. For more distant clusters,
that typical angular size is smaller (~ 0 .28 at a distance of 100
Mpc), while for the closest clusters, the typical angular size is
significantly larger (e.g., for Fornax at a distance of ~19 Mpc,
this scale is 1°.5). In fact, a bandwidth of 0°.3 resolves the
Fornax cluster into two peaks.

The resulting KDE map is presented in Figure 12, with blue
regions representing areas of lower density and yellow/red
regions representing areas of higher density. To detect outliers
in this map, we perform an iterative sigma-clipping procedure
where at each step, values that exceed the median by 5σor

more are rejected. We find the local maxima in the regions of
the KDE map that are above the 5σthreshold value returned
from sigma clipping. We locate 82 peaks passing our criteria,
which are indicated with red open circles in Figure 12. We
furthermore number the 10 most prominent of them (as defined
by their KDE value) and present their coordinates in Table 2. In
the seventh column of that table, we also present the number of
LSBGs within 0°.5 from the center of each peak. The complete
catalog can be found in the machine-readable version of
Table 2.
Next, we cross-match our list of high-density LSBG peaks

with known overdensities in the low-redshift universe.
Specifically, we cross-match against:

1. The Abell catalog of rich clusters (southern survey, Abell
et al. 1989).

2. The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy
cluster survey (Böhringer et al. 2004).

3. A catalog of galaxy groups built from the sample of the
2MASS Redshift Survey (Tully 2015). We keep only
those groups that have more than five members.

4. Bright galaxies from the revised New General Catalogue
(Sulentic & Tifft 1999).

For each peak in the LSBG distribution, we overplotted the
distribution of LSBGs and external catalog objects in a region
±0°.5 from the nominal center of the peak. To identify
associations (if any), we selected the object from the external
catalogs that is closest to the center of the LSBG peak, giving
priority to objects according to ordering listed above. For
example, if an LSBG peak is matched to both an NGC galaxy
and an Abell cluster, we select the Abell cluster as the
association. From the 82 peaks, we find that 32 are associated
with an Abell cluster, 11 with a REFLEX cluster, 10 with a
2MASS group, 16 with an NGC galaxy, while 13 peaks have
no association assigned by our criteria. We used the DES Sky
Viewer tool to visually inspect the regions around the 13 LSBG
peaks that were not associated with objects in our external
catalogs. In seven cases, we identified nearby bright galaxies/
galaxy clusters that were not included in the external catalogs

Figure 11. (a) The cross-correlation function, ξ(θ), between (i) the DES LSBG and HSBG samples (orange line), (ii) the LSBG and 2MPZ samples (blue line), and
(iii) the DES HSBG and 2MPZ samples (green line). (b) The square of the cross-correlation coefficient between the same samples as in panel (a), in order to cancel out
the contribution of the different galaxy biases and compare the different cross-correlation levels. In both panels, the shaded regions correspond to the errors in the
estimated cross-correlations.
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we used for the matching. Interestingly, in six cases, we did not
find an obvious nearby galaxy cluster, galaxy group, or bright
nearby galaxy. As an interesting case, we mention a peak at
(R.A., decl.)∼(−50°.978, −49°.348) with 18 LSBGs in a 0°.5
area around it. We leave the more detailed study of these
systems for future work.

In Table 2, we present the coordinates of the ten most
prominent LSBG overdensities and their best associations,
along with the coordinates, redshifts, and distances of these
associations (retrieved from the NASA Extragalactic Data-
base).62 We also report the number of LSBGs within 0°.5 from
the center of each peak. Note that two peaks are both associated
with the Fornax cluster (Abell S373). The full table of
associations can be found in the machine-readable version,

where we provide an additional column characterizing the
quality of association: I (very good), II (good), to III (not so
good). The quality of the association was determined based on
the projected, angular distance of the association from the peak
and the presence (or absence) of other potential associations in
the vicinity of the peak. Our classification is qualitative,
though, and is just a guide for follow-up research. For the cases
where we did not find an association using any of the catalogs
mentioned above, we visually inspected the region around the
peak using the DES Sky Viewer. If there was not any visible
high-surface-brightness counterpart around, we indicated
quality=I, otherwise (visible clusters of bright galaxies) we
indicated quality=III.
By assuming a physical association between these LSBG

overdensities and the matched external systems, we can use the

known distances of the external systems to estimate the

Figure 12. KDE map of the distribution of our LSBG sample. Blue regions denote areas of low density, while regions of high density are indicated in yellow/red.
Open red circles indicate the positions of the 82 prominent density peaks identified as described in Section 7. We have labeled the 10 most prominent peaks, which are
summarized in Table 2.

Table 2

Characteristics of the 10 Most Prominent Density Peaks and Their Associations

Peak (R.A., Decl.)peak Best (R.A., Decl.)assoc Redshift Distance N (<0°. 5)

Number (deg, deg) Association (deg, deg) z (Mpc)

1 (21.5012, −1.4286) Abell 194 (21.4200, −1.4072) 0.018 75.07±5.26 68

2 (54.9388, −18.4712) RXC J0340.1-1835 (55.0475, −18.5875) 0.0057 23.41±1.64 48

3 (9.8887, 3.1829) NGC 199 (9.8882, 3.1385) 0.0153 62.81±4.41 46

4 (17.4972, −45.9398) Abell 2877 (17.6017, −45.9228) 0.0247 106.61±7.45 41

5 (18.4983, −31.7043) Abell S141 (18.4758, −31.7519) 0.020 84.80±5.94 42

6 (53.9377, −35.3133) Fornax (Abell S373) (54.6162, −35.4483) 0.0046 18.97±1.33 32

7 (16.8965, −46.7418) Abell 2870 (16.9299, −46.9165) 0.0237 102.03±3.89 36

8 (55.3393, −35.5138) Fornax (Abell S373) (54.6162, −35.4483) 0.0046 18.97±1.33 28

7 (21.3014, 1.7794) RXC J0125.5+0145 (21.3746, 1.7627) 0.01739 72.32±5.10 28

10 (9.8888, −55.9649) Abell 2806 (10.0270, −56.1167) 0.0277 120.23±8.42 32

Note.Characteristics of the 10 most prominent overdensities in the spatial distribution of LSBGs: (1) peak label, (2) centroid of the density peaks, (3) best association

(see Section 7), (4) coordinates of best associations, (5)–(6) redshift and the distance to the associations, retrieved from the NASA Extragalactic Database, and (7)

number of LSBGs that lie within 0°. 5 from the center of each peak.

(This table is available in its entirety in machine-readable form.)

62
https://ned.ipac.caltech.edu/
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distance to the associated LSBGs. This information is

otherwise absent due to our inability to accurately estimate

the photometric redshift for these galaxies from the DES data

alone. In the remainder of this section, we will use distance

information from the nine most prominent associations to (i)

study the radial distribution of LSBGs around clusters and (ii)

derive the size–luminosity relation for associated LSBGs.

7.1. Radial Profiles

Comparing the distribution of LSBGs and HSBGs in dense

environments may help illuminate the processes governing

the formation and evolution of LSBGs. In Figure 13, we plot

the number density of LSBGs and 2MPZ galaxies with

redshift z<0.10 around the nine most prominent associated

systems (clusters and NGC galaxies; Table 2). For each of

these nine associations, we select all LSBGs and 2MPZ

galaxies that reside within an angle corresponding to 1.5 Mpc

at the distance of each associated object. We calculate the

radial profiles of LSBGs and 2MPZ galaxies in 15 annuli of

width 0.1 Mpc. In order to compare the LSBGs and 2MPZ

galaxies on the same scale, we normalize the number densities

to the mean number density of galaxies in each sample within

the 1.5 Mpc region—i.e., a flat line with unit amplitude

indicates a homogeneous distribution of galaxies within the

1.5 Mpc region. We estimate the uncertainty on our radial

profile by combining the Poisson uncertainties on the

measured number of galaxies per annulus and the total

number of galaxies in the 1 Mpc region.
In all cases, we find that the LSBG distribution is peaked

within 0.5 Mpc and flattens at distances 1 Mpc. We find that

the normalized number density of LSBGs peaks at similar

amplitudes for most systems, with the most peaked overdensity

found around the lenticular galaxy NGC 199. This may be

expected given that this association represents the dwarf

satellite population of a single central bright galaxy. We find

three cases where the normalized radial distributions of the

LSBG and 2MPZ samples appear quite different. RXC J0340.1

−1835 and Fornax are at significantly lower redshift than the

other systems, z=0.0057 and z=0.0046, respectively (the

next closest associated system is NGC 1200 at z=0.013.) The
2MPZ catalog includes just a few objects with such low

redshifts; there are only 24 objects with z<0.005 and 42

objects with z<0.006. Thus, in these two cases it is likely that

the 2MPZ sample consists of background galaxies. The third

case where the distribution of 2MPZ and LSBG galaxies differ

is around NGC199. Again, the LSBGs are much more peaked

than the 2MPZ sample, suggesting that the observed LSBG

overdensity is caused by dwarf galaxies surrounding a single

central host. Despite the small sample size, we can say

qualitatively that the radial distribution of LSBGs and 2MPZ

galaxies appear to largely agree. We use the Kolmogorov–

Smirnov test to quantitatively evaluate the similarity of the

radial distributions of LSBGs and 2MPZ galaxies surrounding

these systems. We calculate the p-values for the null hypothesis

that the two galaxy samples are drawn from the same underlying

distribution. We find that for RXC J0340.1−1835 and Fornax,

p=0.01 (thus strongly rejecting the null hypothesis), p=0.015
for NGC 199 (making the null hypothesis unlikely), while for all

the other systems p>0.1.

7.2. Size–Luminosity Relation

Distance information from our external catalog systems
allows us to calculate the physical properties of associated
LSBGs. For the nine most prominent peaks in the LSGB
distribution, we assume that all LSBGs that reside within a
projected distance of 0.5 Mpc are associated to these systems
and reside at the same distance. Using this distance, we can
estimate the physical effective radii (in pc) and absolute
magnitudes of these LSBGs.
In Figure 14, we present the size–luminosity relationship for

the LSBGs around these nine peaks, based on the physical
effective radius, R geff ( ), and the absolute magnitude in the g
band, Mg. We see that the number of LSBGs associated with
each system varies significantly; the smallest number of LSBGs
(17) is associated with Abell 2870, while the largest number of
LSBGs (175) are associated to Fornax. In Figure 14 we also
indicate the physical scale corresponding to the angular
selection criterion, > R g 2. 5eff ( ) , at the distance of the
associated system (dashed black line). Because Fornax is the
closest cluster, this angular selection criterion corresponds to
the smallest physical size (~230 pc), resulting in more faint
galaxies passing the selection. Similarly, RXC J0340.1−1835
is also a nearby cluster and has a large number of LSBGs (102).
We also show lines of constant mean surface brightness.
The bright-end limit is largely set by the requirement
m > -g 24.2 mag arcseceff

2¯ ( ) used to produce our catalog.
Only two associated galaxies have surface brightness m >geff¯ ( )

-27.0 mag arcsec 2 .
In Figure 15, we combine the observations of LSBGs from

the nine clusters in a single size–luminosity plot. We compare
the distribution of our sample to that of the dwarf galaxies
discovered in the NGFS survey, described in Section 4.
Because the NGFS only provides magnitudes and effective
radii in the i band (Eigenthaler et al. 2018; Ordenes-Briceño
et al. 2018), we choose to plot against the i-band quantities of
our sample. We see that the two samples occupy a similar
region in the size–luminosity parameter space, with the
NGFS sample spanning a larger range of absolute magnitudes.
The NGFS extends to fainter absolute magnitudes due to
their deeper imaging data, while the lack of an explicit
surface-brightness cut extends their sample to brighter
magnitudes.
Recently, much attention has been paid to the class of

ultradiffuse galaxies (UDGs), which have been conventionally
defined as galaxies with central surface brightness μ0(g)>24.0
and effective radius >R g 1.5 kpceff ( ) (e.g., van Dokkum et al.
2015). The LSBGs in our associated sample span a wide range of
physical sizes, from  R g0.26 kpc 4.83 kpceff ( ) , with a
median of =R g 0.8 kpceff ( ) (the i-band values presented in
Figure 15 are  R i0.20 kpc 4.36 kpceff ( ) with a median of

=R i 0.75 kpceff ( ) ). The lower limit is largely set by our angular
size selection criterion, translated to a physical size for the nearest
cluster (Fornax). We find 41 galaxies have size >R g 1.5 kpceff ( )

and surface brightness m > -g 24.0 mag arcsec0
2( ) , thus satisfy-

ing the conventional UDG definition. We note again that our
angular size selection requires distant galaxies to have larger
physical sizes.
The sample covers a wide range of absolute g-band magnitude,

−9.8Mg−16.5, with a median ofMg∼−12.4. We see that
the galaxies in the sample discussed here span the same range in
mean surface brightness ( m - g24.2 27.0 mag arcseceff

2¯ ( ) ),
regardless of their sizes: both small and large galaxies populate the
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range of surface brightnesses. Thus, UDGs seem to be a natural
continuation of the LSBG population in the regime of large size
and low surface brightness, and not a distinct population that is
well separated in the size–luminosity space from other LSBGs (a
similar conclusion was drawn by Conselice 2018).

8. Summary and Conclusions

In this paper, we have selected and analyzed 23,790 extended,
LSBGs from the first three years of DES imaging data. Our
sample selection pipeline consists of the following steps:

1. We selected objects from the DES Y3 Gold catalog
based on SourceExtractor parameters. The most

important selections were based on the half-light radius,

r1/2>2.5″, and mean surface brightness, m >g 24.2eff¯ ( )
-mag arcsec 2 . The selection criteria are summarized in

Appendix B.
2. We applied an SVM classifier tuned to reduce the

incidents of false negatives (LSBGs classified as non-

LSBGs). This reduced the number of false-positive

candidates by an order of magnitude.
3. A visual inspection that eliminated the remaining false

positives to produce a high-purity sample of LSBGs.
4. We fit each galaxy with a single-component Sérsic

profile, and we made a final selection based on the

derived size and surface brightness.

Figure 13. Normalized radial profiles of the distribution of LSB galaxies (blue) and galaxies from the 2MPZ catalog (red) around the associations of the most
prominent LSBG overdensity peaks, presented in Table 2. We have assumed that all galaxies that are within a radius that corresponds to a physical scale of 1.5 Mpc at
the distance of the association belong to that association. The normalization constant corresponds to the mean number density of galaxies within the 1.5 Mpc radius.
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We divided the total LSBG sample into two subsamples
according to their g−i color. We study the photometric,
structural and spatial clustering properties of the red
(g−i�0.60) and blue (g−i<0.60) subsamples. Our main
findings are the following:

1. The distributions in angular size (effective radius) are
similar for the two subsamples with the red population
having slightly higher median value (~ 3. 90) compared
to the blue population (~ 3. 76).

2. Both samples have a similar median Sérsic index of
n∼1.0.

3. The mean surface-brightness distributions differ notice-
ably between the two populations: blue galaxies tend to

be brighter. We note this behavior is not as prominent
as previously observed by Greco et al. (2018). The
distribution in the central surface brightness, μ0(g), does
not present as large a difference between the two
subsamples.

4. The spatial distribution of red LSBGs is much more
clustered than that of blue LSBGs, which have an almost
homogeneous distribution. This is quantified in the two-
point angular correlation function, which is an order of
magnitude higher for the red subsample than the blue
subsample.

Furthermore, we compared the clustering of the full LSBG
sample with a sample of HSBGs selected from the DES and

Figure 14. Size–luminosity relation for LSBGs around the associations of the most prominent overdensity peaks, presented in Table 2. We have assumed that all
LSBGs within an angle corresponding to a physical radius of 0.5 Mpc at the distance of the association belong to it. With the dashed horizontal lines, we show the
physical scale corresponding to the radius cut r1/2(g)>2 5 at the distance of the cluster. We also show (dashed, diagonal gray lines) the lines of constant mean
surface brightness.
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with an external catalog of low-redshift galaxies from the
2MPZ. We find a similar autocorrelation amplitude (and also a
high cross-correlation signal) between the LSBG sample and
the 2MPZ catalog with a redshift cut of z<0.1 (which is
indicative of the low redshift of our LSBG sample). An
interesting feature is the lower amplitude of clustering for
LSBGs at angular scales less than ∼0°.1.

The spatial distribution of LSBGs contains prominent
overdensities. We cross-match the 82 most prominent over-
densities with external catalogs of galaxy clusters, galaxy
groups, and individual bright galaxies. The association of peaks
with objects (clusters, groups, and galaxies) of known distance
provides us with distance information for a subset of LSBGs.
The distances of associated systems range from ~19 Mpc
(Fornax cluster) to ~354 Mpc (Abell 2911), with a median
distance of 82 Mpc. The mean distance is 106 Mpc with a
standard deviation of ~66 Mpc.

By associating LSBGs with other systems at known
distances, we are able to further explore the physical properties
of some LSBGs and their host systems. In particular, we
present:

1. Projected radial profiles of the distribution of the LSBGs
and 2MPZ galaxies around the nine most prominent
associations. We find that in galaxy clusters, the radial
distributions of these two galaxy samples are similar.

2. A physical size–absolute magnitude relationship for
LSBGs belonging to the nine most prominent associa-
tions. We find that LSBGs in our sample, span a range in
physical size (effective radius) from ~0.26 kpc up to
~4.83 kpc, with a median size of 0.8 kpc. Out of the 555
LSBGs studied, 41 can be classified as UDGs—i.e., have
effective radii >R g 1.5 kpceff ( ) and central surface

brightness m > -g 24.0 mag arcsec0
2( ) . UDGs appear to

be a continuation of the LSBG population.

Our catalog is the largest catalog of LSBGs ( > R g 2. 5eff ( )

and m > -g 24.2 mag arcseceff
2¯ ( ) ) assembled to date. We have

presented a general statistical analysis of our catalog, with the
hope of enabling more detailed analyses of individual systems
and the ensemble population. Future quantitative comparisons
can test galaxy formation models in the low-surface-brightness
regime, including studies of properties of LSBGs in different
environments (clusters/field) and constraints on the mean mass
of LSBGs using weak lensing (e.g., Sifón et al. 2018). Our
sample can also be used to better prepare for the next
generation galaxy surveys (e.g., with the Vera C. Rubin
Observatory). Automated selection procedures result in a large
false-positive fraction, necessitating the visual inspection of
LSBG candidates. However, visual inspection will become
infeasible for the large data sets collected by future surveys.
Our LSBG sample can serve as training set for machine and
deep learning algorithms, in the hope of fully automating the
selection process. The potential of such algorithms will be
further explored in upcoming projects. Furthermore, we plan to
build upon the know-how we developed constructing the
catalog presented in this paper to study LSBGs using the
upcoming, deeper data from the total six years of DES
observations.
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Dokkum et al. 2015).
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Appendix A
Surface-brightness Limits

We estimate the surface-brightness limit of the DES data by
applying the sbcontrast module from Multi-Resolution
Filtering packaged developed for the Dragonfly Telephoto
Array (van Dokkum et al. 2020).63 This procedure bins each
coadd image into 10″× 10″ regions, subtracts a local back-
ground from each binned pixel based on the surrounding 8
pixels, and calculates the variation among the binned and
background-subtracted pixels. We applied this procedure to
each DES coadd tile after masking bad pixels and sources
detected by SourceExtractor. The resulting maps and 1D
distributions of 3σsurface-brightness limits are shown in
Figure 16. The tail to lower surface-brightness limits comes
dominantly from tiles around the survey boarder, which have
fewer tilings and less homogenous coverage.

63
https://github.com/AstroJacobLi/mrf
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Appendix B
Selection Criteria

Removal of point sources (star–galaxy separation):
(EXTENDED_CLASS_COADD !=0)&
(SPREAD_MODEL_I+5/

3∗SPREADERR_MODEL_I>0.007)
Selection of LSBG candidates:
• Surface-brightness and radius cuts:
(FLUX_RADIUS_G>2.5)&

(FLUX_RADIUS_G<20)

(MU_MEAN_MODEL_G>24.2)&
(MU_MEAN_MODEL_G<28.8)
• Ellipticity cut:
(1—B_IMAGE/A_IMAGE)<0.7
• Color cuts:
−0.1<(MAG_AUTO_G-MAG_AUTO_I)<1.4
(MAG_AUTO_G—MAG_AUTO_R)>0.7∗(MAG_AUTO_G—

MAG_AUTO_I) - 0.4

(MAG_AUTO_G—MAG_AUTO_R)<0.7∗(MAG_AUTO_G—
MAG_AUTO_I) + 0.4

Figure 16. Surface-brightness limits at 3σestimated from the surface-brightness contrast in 10″×10″ regions over the DES coadd tiles in the g band (top), r band
(middle), and i band (bottom).
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Appendix C
Magnitude Distributions

This appendix presents supplemental plots characterizing the

magnitude distribution of our LSBG sample and associated

external 2MPZ sample.
In Figure 17, we present the g, r, and i-band magnitude

distributions of our LSBG sample. The magnitudes come from

the galfitm Sérsic model fitting of the sample. The median

magnitudes in each band are g=20.2, r=19.8, and i=19.7.
Similar to Figure 7, in Figure 18 we present joint

distributions of the blue and red LSBG subsamples in the

space of (a) effective radius, Reff , and (b) Sérsic index versus

the g-band magnitude this time. We note that there is no strong

color dependence of the g-magnitude distribution.
Finally, in Figure 19, we compare the g-band magnitude

distributions of the LSBG sample and the 2MPZ galaxy

sample that we used in the main text. Because the 2MPZ

catalog did not provide such magnitudes, we matched the

2MPZ catalog with the DES Y3 GOLD catalog. The

distribution presented here is derived from the SourceEx-

tractor’s MAG_AUTO magnitudes of these matches. That

sample is significantly brighter than the LSBGs, with a

median magnitude g∼16.8.

Note that we do not consider the HSBG sample separately in

this section, as by construction it has the same magnitude

distributions as the LSBG sample.

Figure 17. Normalized distribution of the g-, r-, and i-band magnitudes of our
LSBG sample.
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Figure 19. g-band magnitude distributions of the LSBG sample and the DES catalog matches on the 2MPZ sample.

Figure 18. Joint distributions of the red and blue LSBGs in the space of g-band magnitude vs. (a) effective radius, Reff , and (b) Sérsic index, n, both in the g band.
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Appendix D
LSBG Catalog

The catalog of NLSBG extended low-surface-brightness

galaxies is detailed in Table D1 and is available in a machine-

readable format.

ORCID iDs

D. Tanoglidis https://orcid.org/0000-0002-4631-4529
A. Drlica-Wagner https://orcid.org/0000-0001-8251-933X
T. S. Li https://orcid.org/0000-0002-9110-6163
Y. Zhang https://orcid.org/0000-0001-5969-4631
A. H. G. Peter https://orcid.org/0000-0002-8040-6785

A. Feldmeier-Krause https://orcid.org/0000-0002-
0160-7221
K. Casey https://orcid.org/0000-0002-2991-9251
A. Palmese https://orcid.org/0000-0002-6011-0530
C. Conselice https://orcid.org/0000-0003-1949-7638
S. Allam https://orcid.org/0000-0002-7069-7857

Table D1

Extended Low-surface-brightness Galaxy Catalog

Column Units Label Description

1 L oid object sequential identifier

2 L coadd-oid coadd object identifier

3 deg RAdeg-se Right Ascension, decimal degrees, SourceExtractor (J2000)

4 deg DEdeg-se Declination, decimal degrees, SourceExtractor (J2000)

5 deg RAdeg-gfm Right Ascension, decimal degrees, galfitm (J2000)

6 deg DEdeg-gfm Declination, decimal degrees, galfitm (J2000)

7 mag E(B-V) Reddening, E(B-V), Schlegel et al. (1998)

8 L ell-se isophotal ellipticity, SourceExtractor

9 L ell-gfm isophotal ellipticity, galfitm

10 mag gmag-auto-corr g-band MAG_AUTO, SourceExtractor

11 mag e_gmag-auto-corr Uncertainty in gmag-auto-corr

12 mag rmag-auto-corr r-band MAG_AUTO, SourceExtractor

13 mag e_rmag-auto-corr Uncertainty in rmag-auto-corr

14 mag imag-auto-corr i-band MAG_AUTO, SourceExtractor

15 mag e_imag-auto-corr Uncertainty in imag-auto-corr

16 arcsec Radius-g SourceExtractor FLUX_RADIUS g-band, arcseconds

17 arcsec Radius-r SourceExtractor FLUX_RADIUS r-band, arcseconds

18 arcsec Radius-i SourceExtractor FLUX_RADIUS i-band, arcseconds

19 mag gmag-gfm-corr g-band, galfitm

20 mag e_gmag-gfm-corr Uncertainty in gmag-gfm-corr

21 mag rmag-gfm-corr r-band, galfitm

22 mag e_rmag-gfm-corr Uncertainty in rmag-gfm-corr

23 mag imag-gfm-corr i-band, galfitm

24 mag e_imag-gfm-corr Uncertainty in imag-gfm-corr

25 L n Sérsic index

26 L e_n Uncertainty in n

27 kpc Reff-g Physical effective radius, g-band

28 kpc e_Reff-g Uncertainty in Reff-g

29 kpc Reff-r Physical effective radius, r-band

30 kpc e_Reff-r Uncertainty in Reff-r

31 kpc Reff-i Physical effective radius, i-band

32 kpc e_Reff-i Uncertainty in Reff-i

33 L chisq-loc-g χ2, loc, g-band

34 L chisq-loc-r χ2, loc, r-band

35 L chisq-loc-i χ2, loc, i-band

36 mag/arcsec2 mu-mean-g mean surface brightness, g-band

37 mag/arcsec2 mu-mean-r mean surface brightness, r-band

38 mag/arcsec2 mu-mean-i mean surface brightness, i-band

39 mag/arcsec2 mu0-g central surface brightness, g-band

40 mag/arcsec2 mu0-r central surface brightness, r-band

41 mag/arcsec2 mu0-i central surface brightness, i-band

42 mag/arcsec2 mu-mean-g-se mean surface brightness, g-band, SourceExtractor

43 mag/arcsec2 mu-mean-r-se mean surface brightness, r-band, SourceExtractor

44 mag/arcsec2 mu-mean-i-se mean surface brightness, i-band, SourceExtractor

(This table is available in its entirety in machine-readable form.)

24

The Astrophysical Journal Supplement Series, 252:18 (26pp), 2021 February Tanoglidis et al.

https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0002-4631-4529
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0001-8251-933X
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0002-9110-6163
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0001-5969-4631
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-8040-6785
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-0160-7221
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-2991-9251
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0002-6011-0530
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0003-1949-7638
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857
https://orcid.org/0000-0002-7069-7857


S. Avila https://orcid.org/0000-0001-5043-3662
D. Brooks https://orcid.org/0000-0002-8458-5047
A. Carnero Rosell https://orcid.org/0000-0003-3044-5150
M. Carrasco Kind https://orcid.org/0000-0002-4802-3194
J. Carretero https://orcid.org/0000-0002-3130-0204
C. Chang https://orcid.org/0000-0002-7887-0896
M. Costanzi https://orcid.org/0000-0001-8158-1449
J. De Vicente https://orcid.org/0000-0001-8318-6813
S. Desai https://orcid.org/0000-0002-0466-3288
H. T. Diehl https://orcid.org/0000-0002-8357-7467
T. F. Eifler https://orcid.org/0000-0002-1894-3301
A. E. Evrard https://orcid.org/0000-0002-4876-956X
B. Flaugher https://orcid.org/0000-0002-2367-5049
J. Frieman https://orcid.org/0000-0003-4079-3263
J. García-Bellido https://orcid.org/0000-0002-9370-8360
D. W. Gerdes https://orcid.org/0000-0001-6942-2736
R. A. Gruendl https://orcid.org/0000-0002-4588-6517
J. Gschwend https://orcid.org/0000-0003-3023-8362
G. Gutierrez https://orcid.org/0000-0003-0825-0517
D. L. Hollowood https://orcid.org/0000-0002-9369-4157
D. Huterer https://orcid.org/0000-0001-6558-0112
D. J. James https://orcid.org/0000-0001-5160-4486
E. Krause https://orcid.org/0000-0001-8356-2014
K. Kuehn https://orcid.org/0000-0003-0120-0808
N. Kuropatkin https://orcid.org/0000-0003-2511-0946
M. A. G. Maia https://orcid.org/0000-0001-9856-9307
J. L. Marshall https://orcid.org/0000-0003-0710-9474
F. Menanteau https://orcid.org/0000-0002-1372-2534
R. Miquel https://orcid.org/0000-0002-6610-4836
R. L. C. Ogando https://orcid.org/0000-0003-2120-1154
A. K. Romer https://orcid.org/0000-0002-9328-879X
A. Roodman https://orcid.org/0000-0001-5326-3486
E. Sanchez https://orcid.org/0000-0002-9646-8198
I. Sevilla-Noarbe https://orcid.org/0000-0002-1831-1953
M. Smith https://orcid.org/0000-0002-3321-1432
E. Suchyta https://orcid.org/0000-0002-7047-9358
G. Tarle https://orcid.org/0000-0003-1704-0781
D. L. Tucker https://orcid.org/0000-0001-7211-5729
A. R. Walker https://orcid.org/0000-0002-7123-8943

References

Abell, G. O., Corwin, H. G., Jr., & Olowin, R. P. 1989, ApJS, 70, 1
Abraham, R. G., & van Dokkum, P. G. 2014, PASP, 126, 55
Adami, C., Scheidegger, R., Ulmer, M., et al. 2006, A&A, 459, 679
Amorisco, N. C., & Loeb, A. 2016, MNRAS, 459, L51
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A,

558, A33
Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681
Bamford, S. P., Nichol, R. C., Baldry, I. K., et al. 2009, MNRAS, 393, 1324
Barden, M., Häußler, B., Peng, C. Y., McIntosh, D. H., & Guo, Y. 2012,

MNRAS, 422, 449
Behroozi, P. S., Wechsler, R. H., & Conroy, C. 2013, ApJ, 770, 57
Berlind, A. A., Blanton, M. R., Hogg, D. W., et al. 2005, ApJ, 629, 625
Bernstein, G. M., Abbott, T. M. C., Armstrong, R., et al. 2018, PASP, 130,

054501
Bernstein, G. M., Nichol, R. C., Tyson, J. A., Ulmer, M. P., & Wittman, D.

1995, AJ, 110, 1507
Bertin, E. 2006, in ASP Conf. Ser., 351, Astronomical Data Analysis Software

and Systems XV, ed. C. Gabriel et al. (San Francisco, CA: ASP), 112
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bilicki, M., Jarrett, T. H., Peacock, J. A., Cluver, M. E., & Steward, L. 2014,

ApJS, 210, 9
Blanton, M. R., & Moustakas, J. 2009, ARA&A, 47, 159
Böhringer, H., Schuecker, P., Guzzo, L., et al. 2004, A&A, 425, 367
Bothun, G., Impey, C., & McGaugh, S. 1997, PASP, 109, 745
Carleton, T., Errani, R., Cooper, M., et al. 2019, MNRAS, 485, 382

Cohen, Y., van Dokkum, P., Danieli, S., et al. 2018, ApJ, 868, 96
Connolly, A. J., Scranton, R., Johnston, D., et al. 2002, ApJ, 579, 42
Conroy, C. 2013, ARA&A, 51, 393
Conselice, C. J. 2018, RNAAS, 2, 43
Cresswell, J. G., & Percival, W. J. 2009, MNRAS, 392, 682
Dalcanton, J. J., Spergel, D. N., Gunn, J. E., Schmidt, M., & Schneider, D. P.

1997, AJ, 114, 635
Danieli, S., van Dokkum, P., Merritt, A., et al. 2017, ApJ, 837, 136
Davis, M., Efstathiou, G., Frenk, C. S., & White, S. D. M. 1985, ApJ, 292, 371
De Vicente, J., Sánchez, E., & Sevilla-Noarbe, I. 2016, MNRAS, 459, 3078
DES Collaboration, Abbott, T. M. C., Abdalla, F. B., et al. 2018, ApJS, 239, 18
Disney, M. J. 1976, Natur, 263, 573
Drinkwater, M. J., Gregg, M. D., & Colless, M. 2001, ApJL, 548, L139
Driver, S. P. 1999, ApJL, 526, L69
Efron, B., & Gong, G. 1983, Am. Stat., 37, 36
Eigenthaler, P., Puzia, T. H., Taylor, M. A., et al. 2018, ApJ, 855, 142
Ferguson, H. C. 1989, AJ, 98, 367
Ferland, G. J., Porter, R. L., van Hoof, P. A. M., et al. 2013, RMxAA, 49, 137
Ferrero, I., Abadi, M. G., Navarro, J. F., Sales, L. V., & Gurovich, S. 2012,

MNRAS, 425, 2817
Fitzpatrick, E. L. 1999, PASP, 111, 63
Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, AJ, 150, 150
Galaz, G., Herrera-Camus, R., Garcia-Lambas, D., & Padilla, N. 2011, ApJ,

728, 74
Geha, M., Wechsler, R. H., Mao, Y.-Y., et al. 2017, ApJ, 847, 4
Gilhuly, C., Hendel, D., Merritt, A., et al. 2020, ApJ, 897, 108
Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759
Graham, A. W., & Driver, S. P. 2005, PASA, 22, 118
Greco, J. P., Greene, J. E., Strauss, M. A., et al. 2018, ApJ, 857, 104
Hastie, T., Tibshirani, R., & Friedman, J. 2001, The Elements of Statistical

Learning (New York: Springer)
Häußler, B., Bamford, S. P., Vika, M., et al. 2013, MNRAS, 430, 330
Hayward, C. C., Irwin, J. A., & Bregman, J. N. 2005, ApJ, 635, 827
Hilker, M., Kissler-Patig, M., Richtler, T., Infante, L., & Quintana, H. 1999,

A&AS, 134, 59
Hogg, D. W., Blanton, M. R., Eisenstein, D. J., et al. 2003, ApJL, 585, L5
Hoyle, B., Gruen, D., Bernstein, G. M., et al. 2018, MNRAS, 478, 592
Hunter, J. D. 2007, CSE, 9, 90
Janssens, S., Abraham, R., Brodie, J., et al. 2017, ApJL, 839, L17
Jarvis, M. 2015, TreeCorr: Two-point Correlation Functions, Astrophysics

Source Code Library, ascl:1508.007
Koda, J., Yagi, M., Yamanoi, H., & Komiyama, Y. 2015, ApJL, 807, L2
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692
Law-Smith, J., & Eisenstein, D. J. 2017, ApJ, 836, 87
Lintott, C., Schawinski, K., Bamford, S., et al. 2011, MNRAS, 410, 166
Maller, A. H., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2005, ApJ,

619, 147

Marigo, P., Girardi, L., Bressan, A., et al. 2017, ApJ, 835, 77

Martin, G., Kaviraj, S., Laigle, C., et al. 2019, MNRAS, 485, 796

Martin, N. F., Ibata, R. A., Lewis, G. F., et al. 2016, ApJ, 833, 167
Martin, N. F., Ibata, R. A., McConnachie, A. W., et al. 2013, ApJ, 776, 80
McConnachie, A. W. 2012, AJ, 144, 4
McGaugh, S. S., Bothun, G. D., & Schombert, J. M. 1995, AJ, 110, 573
Merritt, A., van Dokkum, P., Danieli, S., et al. 2016, ApJ, 833, 168

Mihos, J. C., Durrell, P. R., Ferrarese, L., et al. 2015, ApJL, 809, L21
Mihos, J. C., Harding, P., Feldmeier, J. J., et al. 2017, ApJ, 834, 16

Minchin, R. F., Disney, M. J., Parker, Q. A., et al. 2004, MNRAS, 355,
1303

Morganson, E., Gruendl, R. A., Menanteau, F., et al. 2018, PASP, 130, 074501

Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121

Muñoz, R. P., Eigenthaler, P., Puzia, T. H., et al. 2015, ApJL, 813, L15
Neilsen, E. H. J., Annis, J. T., Diehl, H. T., et al. 2019, arXiv:1912.06254

Norberg, P., Baugh, C. M., Hawkins, E., et al. 2002, MNRAS, 332, 827
O’Neil, K., Bothun, G. D., & Cornell, M. E. 1997, AJ, 113, 1212
O’Neil, K., Bothun, G. D., & Schombert, J. 2000, AJ, 119, 136
Ordenes-Briceño, Y., Eigenthaler, P., Taylor, M. A., et al. 2018, ApJ, 859, 52
Papastergis, E., Adams, E. A. K., & Romanowsky, A. J. 2017, A&A, 601, L10

Papastergis, E., Giovanelli, R., Haynes, M. P., & Shankar, F. 2015, A&A,
574, A113

Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res.,
12, 2825

Peebles, P. J. E. 1980, The Large-scale Structure of the Universe (Princeton,
NJ: Princeton Univ. Press)

Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266
Román, J., & Trujillo, I. 2017, MNRAS, 468, 4039

25

The Astrophysical Journal Supplement Series, 252:18 (26pp), 2021 February Tanoglidis et al.

https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0001-5043-3662
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0002-8458-5047
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0003-3044-5150
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-4802-3194
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-3130-0204
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0002-7887-0896
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8158-1449
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0001-8318-6813
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-0466-3288
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-8357-7467
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-1894-3301
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-4876-956X
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0002-2367-5049
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0003-4079-3263
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0002-9370-8360
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0001-6942-2736
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0002-4588-6517
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-3023-8362
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0003-0825-0517
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0002-9369-4157
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-6558-0112
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-5160-4486
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0001-8356-2014
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-0120-0808
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0003-2511-0946
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0001-9856-9307
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0003-0710-9474
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-1372-2534
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0002-6610-4836
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0003-2120-1154
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0002-9328-879X
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0001-5326-3486
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-9646-8198
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-1831-1953
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-3321-1432
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0002-7047-9358
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0003-1704-0781
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0001-7211-5729
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://orcid.org/0000-0002-7123-8943
https://doi.org/10.1086/191333
https://ui.adsabs.harvard.edu/abs/1989ApJS...70....1A/abstract
https://doi.org/10.1086/674875
https://ui.adsabs.harvard.edu/abs/2014PASP..126...55A/abstract
https://doi.org/10.1051/0004-6361:20053758
https://ui.adsabs.harvard.edu/abs/2006A&A...459..679A/abstract
https://doi.org/10.1093/mnrasl/slw055
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459L..51A/abstract
https://doi.org/10.1051/0004-6361/201322068
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://ui.adsabs.harvard.edu/abs/2013A&A...558A..33A/abstract
https://doi.org/10.1086/380092
https://ui.adsabs.harvard.edu/abs/2004ApJ...600..681B/abstract
https://doi.org/10.1111/j.1365-2966.2008.14252.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.393.1324B/abstract
https://doi.org/10.1111/j.1365-2966.2012.20619.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.422..449B/abstract
https://doi.org/10.1088/0004-637X/770/1/57
https://ui.adsabs.harvard.edu/abs/2013ApJ...770...57B/abstract
https://doi.org/10.1086/431658
https://ui.adsabs.harvard.edu/abs/2005ApJ...629..625B/abstract
https://doi.org/10.1088/1538-3873/aaa753
https://ui.adsabs.harvard.edu/abs/2018PASP..130e4501B/abstract
https://ui.adsabs.harvard.edu/abs/2018PASP..130e4501B/abstract
https://doi.org/10.1086/117624
https://ui.adsabs.harvard.edu/abs/1995AJ....110.1507B/abstract
https://ui.adsabs.harvard.edu/abs/2006ASPC..351..112B/abstract
https://doi.org/10.1051/aas:1996164
https://ui.adsabs.harvard.edu/abs/1996A&AS..117..393B/abstract
https://doi.org/10.1088/0067-0049/210/1/9
https://ui.adsabs.harvard.edu/abs/2014ApJS..210....9B/abstract
https://doi.org/10.1146/annurev-astro-082708-101734
https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..159B/abstract
https://doi.org/10.1051/0004-6361:20034484
https://ui.adsabs.harvard.edu/abs/2004A&A...425..367B/abstract
https://doi.org/10.1086/133941
https://ui.adsabs.harvard.edu/abs/1997PASP..109..745B/abstract
https://doi.org/10.1093/mnras/stz383
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485..382C/abstract
https://doi.org/10.3847/1538-4357/aae7c8
https://ui.adsabs.harvard.edu/abs/2018ApJ...868...96C/abstract
https://doi.org/10.1086/342787
https://ui.adsabs.harvard.edu/abs/2002ApJ...579...42C/abstract
https://doi.org/10.1146/annurev-astro-082812-141017
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..393C/abstract
https://doi.org/10.3847/2515-5172/aab7f6
https://ui.adsabs.harvard.edu/abs/2018RNAAS...2...43C/abstract
https://doi.org/10.1111/j.1365-2966.2008.14082.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.392..682C/abstract
https://doi.org/10.1086/118499
https://ui.adsabs.harvard.edu/abs/1997AJ....114..635D/abstract
https://doi.org/10.3847/1538-4357/aa615b
https://ui.adsabs.harvard.edu/abs/2017ApJ...837..136D/abstract
https://doi.org/10.1086/163168
https://ui.adsabs.harvard.edu/abs/1985ApJ...292..371D/abstract
https://doi.org/10.1093/mnras/stw857
https://ui.adsabs.harvard.edu/abs/2016MNRAS.459.3078D/abstract
https://doi.org/10.3847/1538-4365/aae9f0
https://ui.adsabs.harvard.edu/abs/2018ApJS..239...18A/abstract
https://doi.org/10.1038/263573a0
https://ui.adsabs.harvard.edu/abs/1976Natur.263..573D/abstract
https://doi.org/10.1086/319113
https://ui.adsabs.harvard.edu/abs/2001ApJ...548L.139D/abstract
https://doi.org/10.1086/312379
https://ui.adsabs.harvard.edu/abs/1999ApJ...526L..69D/abstract
https://doi.org/10.1080/00031305.1983.10483087
https://doi.org/10.3847/1538-4357/aaab60
https://ui.adsabs.harvard.edu/abs/2018ApJ...855..142E/abstract
https://doi.org/10.1086/115152
https://ui.adsabs.harvard.edu/abs/1989AJ.....98..367F/abstract
https://ui.adsabs.harvard.edu/abs/2013RMxAA..49..137F/abstract
https://doi.org/10.1111/j.1365-2966.2012.21623.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.425.2817F/abstract
https://doi.org/10.1086/316293
https://ui.adsabs.harvard.edu/abs/1999PASP..111...63F/abstract
https://doi.org/10.1088/0004-6256/150/5/150
https://ui.adsabs.harvard.edu/abs/2015AJ....150..150F/abstract
https://doi.org/10.1088/0004-637X/728/2/74
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...74G/abstract
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...74G/abstract
https://doi.org/10.3847/1538-4357/aa8626
https://ui.adsabs.harvard.edu/abs/2017ApJ...847....4G/abstract
https://doi.org/10.3847/1538-4357/ab9b25
https://ui.adsabs.harvard.edu/abs/2020ApJ...897..108G/abstract
https://doi.org/10.1086/427976
https://ui.adsabs.harvard.edu/abs/2005ApJ...622..759G/abstract
https://doi.org/10.1071/AS05001
https://ui.adsabs.harvard.edu/abs/2005PASA...22..118G/abstract
https://doi.org/10.3847/1538-4357/aab842
https://ui.adsabs.harvard.edu/abs/2018ApJ...857..104G/abstract
https://doi.org/10.1093/mnras/sts633
https://ui.adsabs.harvard.edu/abs/2013MNRAS.430..330H/abstract
https://doi.org/10.1086/497565
https://ui.adsabs.harvard.edu/abs/2005ApJ...635..827H/abstract
https://doi.org/10.1051/aas:1999433
https://ui.adsabs.harvard.edu/abs/1999A&AS..134...59H/abstract
https://doi.org/10.1086/374238
https://ui.adsabs.harvard.edu/abs/2003ApJ...585L...5H/abstract
https://doi.org/10.1093/mnras/sty957
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478..592H/abstract
https://doi.org/10.1109/MCSE.2007.55
https://ui.adsabs.harvard.edu/abs/2007CSE.....9...90H/abstract
https://doi.org/10.3847/2041-8213/aa667d
https://ui.adsabs.harvard.edu/abs/2017ApJ...839L..17J/abstract
https://ascl.net/1508.007
https://doi.org/10.1088/2041-8205/807/1/L2
https://ui.adsabs.harvard.edu/abs/2015ApJ...807L...2K/abstract
https://doi.org/10.1086/172900
https://ui.adsabs.harvard.edu/abs/1993ApJ...412...64L/abstract
https://doi.org/10.1086/157917
https://ui.adsabs.harvard.edu/abs/1980ApJ...237..692L/abstract
https://doi.org/10.3847/1538-4357/836/1/87
https://ui.adsabs.harvard.edu/abs/2017ApJ...836...87L/abstract
https://doi.org/10.1111/j.1365-2966.2010.17432.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.410..166L/abstract
https://doi.org/10.1086/426181
https://ui.adsabs.harvard.edu/abs/2005ApJ...619..147M/abstract
https://ui.adsabs.harvard.edu/abs/2005ApJ...619..147M/abstract
https://doi.org/10.3847/1538-4357/835/1/77
https://ui.adsabs.harvard.edu/abs/2017ApJ...835...77M/abstract
https://doi.org/10.1093/mnras/stz356
https://ui.adsabs.harvard.edu/abs/2019MNRAS.485..796M/abstract
https://doi.org/10.3847/1538-4357/833/2/167
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..167M/abstract
https://doi.org/10.1088/0004-637X/776/2/80
https://ui.adsabs.harvard.edu/abs/2013ApJ...776...80M/abstract
https://doi.org/10.1088/0004-6256/144/1/4
https://ui.adsabs.harvard.edu/abs/2012AJ....144....4M/abstract
https://doi.org/10.1086/117543
https://ui.adsabs.harvard.edu/abs/1995AJ....110..573M/abstract
https://doi.org/10.3847/1538-4357/833/2/168
https://ui.adsabs.harvard.edu/abs/2016ApJ...833..168M/abstract
https://doi.org/10.1088/2041-8205/809/2/L21
https://ui.adsabs.harvard.edu/abs/2015ApJ...809L..21M/abstract
https://doi.org/10.3847/1538-4357/834/1/16
https://ui.adsabs.harvard.edu/abs/2017ApJ...834...16M/abstract
https://doi.org/10.1111/j.1365-2966.2004.08409.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.355.1303M/abstract
https://ui.adsabs.harvard.edu/abs/2004MNRAS.355.1303M/abstract
https://doi.org/10.1088/1538-3873/aab4ef
https://ui.adsabs.harvard.edu/abs/2018PASP..130g4501M/abstract
https://doi.org/10.1093/mnras/sts261
https://ui.adsabs.harvard.edu/abs/2013MNRAS.428.3121M/abstract
https://doi.org/10.1088/2041-8205/813/1/L15
https://ui.adsabs.harvard.edu/abs/2015ApJ...813L..15M/abstract
http://arxiv.org/abs/1912.06254
https://doi.org/10.1046/j.1365-8711.2002.05348.x
https://ui.adsabs.harvard.edu/abs/2002MNRAS.332..827N/abstract
https://doi.org/10.1086/118338
https://ui.adsabs.harvard.edu/abs/1997AJ....113.1212O/abstract
https://doi.org/10.1086/301160
https://ui.adsabs.harvard.edu/abs/2000AJ....119..136O/abstract
https://doi.org/10.3847/1538-4357/aaba70
https://ui.adsabs.harvard.edu/abs/2018ApJ...859...52O/abstract
https://doi.org/10.1051/0004-6361/201730795
https://ui.adsabs.harvard.edu/abs/2017A&A...601L..10P/abstract
https://doi.org/10.1051/0004-6361/201424909
https://ui.adsabs.harvard.edu/abs/2015A&A...574A.113P/abstract
https://ui.adsabs.harvard.edu/abs/2015A&A...574A.113P/abstract
https://doi.org/10.1086/340952
https://ui.adsabs.harvard.edu/abs/2002AJ....124..266P/abstract
https://doi.org/10.1093/mnras/stx694
https://ui.adsabs.harvard.edu/abs/2017MNRAS.468.4039R/abstract


Rosenbaum, S. D., Krusch, E., Bomans, D. J., & Dettmar, R. J. 2009, A&A,
504, 807

Sabatini, S., Davies, J., van Driel, W., et al. 2005, MNRAS, 357, 819
Sales, L. V., Navarro, J. F., Penafiel, L., et al. 2020, MNRAS, 494, 1848
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Shen, S., Mo, H. J., White, S. D. M., et al. 2003, MNRAS, 343, 978
Sifón, C., van der Burg, R. F. J., Hoekstra, H., Muzzin, A., & Herbonnet, R.

2018, MNRAS, 473, 3747
Simon, J. D. 2019, ARA&A, 57, 375
Strateva, I., Ivezić, Ž, Knapp, G. R., et al. 2001, AJ, 122, 1861
Suchyta, E., Huff, E. M., Aleksić, J., et al. 2016, MNRAS, 457, 786
Sulentic, J. W., & Tifft, W. G. 1999, yCat, VII/1B
Swanson, M. E. C., Tegmark, M., Hamilton, A. J. S., & Hill, J. C. 2008,

MNRAS, 387, 1391
Tremmel, M., Wright, A. C., Brooks, A. M., et al. 2020, MNRAS, 497, 2786
Tully, R. B. 2015, AJ, 149, 171
van der Burg, R. F. J., Muzzin, A., & Hoekstra, H. 2016, A&A, 590, A20
Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, CSE, 13, 22

van Dokkum, P., Danieli, S., Abraham, R., Conroy, C., & Romanowsky, A. J.
2019, ApJL, 874, L5

van Dokkum, P., Danieli, S., Cohen, Y., et al. 2018, Natur, 555, 629
van Dokkum, P., Lokhorst, D., Danieli, S., et al. 2020, PASP, 132, 074503
van Dokkum, P. G., Abraham, R., Merritt, A., et al. 2015, ApJL, 798,

L45
Venhola, A., Peletier, R., Laurikainen, E., et al. 2017, A&A, 608, A142
Venhola, A., Peletier, R., Laurikainen, E., et al. 2018, A&A, 620, A165
Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, NatMe, 17, 261
Wang, Y., Brunner, R. J., & Dolence, J. C. 2013, MNRAS, 432, 1961
Wang, Y., Yang, X., Mo, H. J., et al. 2009, ApJ, 697, 247
Wechsler, R. H., & Tinker, J. L. 2018, ARA&A, 56, 435
White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52
Wittmann, C., Lisker, T., Ambachew Tilahun, L., et al. 2017, MNRAS,

470, 1512
Zehavi, I., Blanton, M. R., Frieman, J. A., et al. 2002, ApJ, 571, 172
Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2005, ApJ, 630, 1
Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2011, ApJ, 736, 59
Zhong, G. H., Liang, Y. C., Liu, F. S., et al. 2008, MNRAS, 391, 986

26

The Astrophysical Journal Supplement Series, 252:18 (26pp), 2021 February Tanoglidis et al.

https://doi.org/10.1051/0004-6361/20077462
https://ui.adsabs.harvard.edu/abs/2009A&A...504..807R/abstract
https://ui.adsabs.harvard.edu/abs/2009A&A...504..807R/abstract
https://doi.org/10.1111/j.1365-2966.2005.08608.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.357..819S/abstract
https://doi.org/10.1093/mnras/staa854
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.1848S/abstract
https://doi.org/10.1088/0004-637X/737/2/103
https://ui.adsabs.harvard.edu/abs/2011ApJ...737..103S/abstract
https://doi.org/10.1086/305772
https://ui.adsabs.harvard.edu/abs/1998ApJ...500..525S/abstract
https://doi.org/10.1046/j.1365-8711.2003.06740.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.343..978S/abstract
https://doi.org/10.1093/mnras/stx2648
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.3747S/abstract
https://doi.org/10.1146/annurev-astro-091918-104453
https://ui.adsabs.harvard.edu/abs/2019ARA&A..57..375S/abstract
https://doi.org/10.1086/323301
https://ui.adsabs.harvard.edu/abs/2001AJ....122.1861S/abstract
https://doi.org/10.1093/mnras/stv2953
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457..786S/abstract
https://doi.org/10.1111/j.1365-2966.2008.13296.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.387.1391S/abstract
https://doi.org/10.1093/mnras/staa2015
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.2786T/abstract
https://doi.org/10.1088/0004-6256/149/5/171
https://ui.adsabs.harvard.edu/abs/2015AJ....149..171T/abstract
https://doi.org/10.1051/0004-6361/201628222
https://ui.adsabs.harvard.edu/abs/2016A&A...590A..20V/abstract
https://doi.org/10.1109/MCSE.2011.37
https://ui.adsabs.harvard.edu/abs/2011CSE....13b..22V/abstract
https://doi.org/10.3847/2041-8213/ab0d92
https://ui.adsabs.harvard.edu/abs/2019ApJ...874L...5V/abstract
https://doi.org/10.1038/nature25767
https://ui.adsabs.harvard.edu/abs/2018Natur.555..629V/abstract
https://doi.org/10.1088/1538-3873/ab9416
https://ui.adsabs.harvard.edu/abs/2020PASP..132g4503V/abstract
https://doi.org/10.1088/2041-8205/798/2/L45
https://ui.adsabs.harvard.edu/abs/2015ApJ...798L..45V/abstract
https://ui.adsabs.harvard.edu/abs/2015ApJ...798L..45V/abstract
https://doi.org/10.1051/0004-6361/201730696
https://ui.adsabs.harvard.edu/abs/2017A&A...608A.142V/abstract
https://doi.org/10.1051/0004-6361/201833933
https://ui.adsabs.harvard.edu/abs/2018A&A...620A.165V/abstract
https://doi.org/10.1038/s41592-019-0686-2
https://ui.adsabs.harvard.edu/abs/2020NatMe..17..261V/abstract
https://doi.org/10.1093/mnras/stt450
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432.1961W/abstract
https://doi.org/10.1088/0004-637X/697/1/247
https://ui.adsabs.harvard.edu/abs/2009ApJ...697..247W/abstract
https://doi.org/10.1146/annurev-astro-081817-051756
https://ui.adsabs.harvard.edu/abs/2018ARA&A..56..435W/abstract
https://doi.org/10.1086/170483
https://ui.adsabs.harvard.edu/abs/1991ApJ...379...52W/abstract
https://doi.org/10.1093/mnras/stx1229
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1512W/abstract
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.1512W/abstract
https://doi.org/10.1086/339893
https://ui.adsabs.harvard.edu/abs/2002ApJ...571..172Z/abstract
https://doi.org/10.1086/431891
https://ui.adsabs.harvard.edu/abs/2005ApJ...630....1Z/abstract
https://doi.org/10.1088/0004-637X/736/1/59
https://ui.adsabs.harvard.edu/abs/2011ApJ...736...59Z/abstract
https://doi.org/10.1111/j.1365-2966.2008.13972.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.391..986Z/abstract

	1. Introduction
	2. DES Data
	3. LSBG Catalog
	3.1. Initial Sample Selection
	3.2. Machine-learning Classification
	3.2.1. Training Set
	3.2.2. Features and Classifiers

	3.3. Visual Inspection
	3.4. Sérsic Model Fitting
	3.5. Extinction Correction and Final Cuts

	4. Detection Efficiency around the Fornax Cluster
	5. LSBG Properties
	6. Clustering of LSBGs
	6.1. Clustering of Red and Blue LSBGs
	6.2. Comparison to Other Galaxy Samples
	6.3. Cross-correlation between Galaxy Samples

	7. Associations with Galaxy Clusters and Groups
	7.1. Radial Profiles
	7.2. Size–Luminosity Relation

	8. Summary and Conclusions
	Appendix ASurface-brightness Limits
	Appendix BSelection Criteria
	Appendix CMagnitude Distributions
	Appendix DLSBG Catalog
	References

