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SHADOWS OF CONVEX BODIES

KEITH BALL

Abstract. It is proved that if C is a convex body in R" then C has an affine

image C (of nonzero volume) so that if P is any 1-codimensional orthogonal

projection,

\PC\>\C\{tt~l)/n.

It is also shown that there is a pathological body, K , all of whose orthogonal

projections have volume about \fh~ times as large as |Ä"| .

0. Introduction

The problems discussed in this paper concern the areas of shadows (orthog-

onal projections) of convex bodies and, to a lesser extent, the surface areas of

such bodies. If C is a convex body in R" and 8 a unit vector, PeC will denote

the orthogonal projection of C onto the 1-codimensional space perpendicular

to 8 . Volumes and areas of convex bodies and their surfaces will be denoted

with | • |.

The relationship between shadows and surface areas of convex bodies is ex-

pressed in Cauchy's well-known formula. For each n e N, let vn be the volume

of the «-dimensional Euclidean unit ball and let a = an_x be the rotationally

invariant probability on the unit sphere S"~ . Cauchy's formula states that if

C is a convex body in R" then its surface area is

|ÔC| = ^ A x\PeC\da(8).

The classical isoperimetric inequality in R" states that any body has surface

area at least as large as a Euclidean ball of the same volume. The first section of

this paper is devoted to the proof of a "local" isoperimetric inequality showing

that all bodies have large shadows rather than merely large surface area (or

average shadow). The principal motivation for this result is its relationship to a

conjecture of Vaaler and the important problems surrounding it. This theorem

and its connection with Vaaler's conjecture are described at the beginning of § 1.

An important role is played in the theory of convex bodies by the so-called

"projection body" of a convex body. It is easily seen, by considering polytopes,
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892 KEITH BALL

that for every convex body CcR", there is a Borel measure p on Sn so

that for each 8eSn~x,

\PeC\= f    \{8,4>)\dp(4>).
Js"~'

Hence, there is a norm || • || on R" , with ||0|| = \PeC\ for each 8 e Sn~x, with

respect to which R" is isometrically isomorphic to a subspace of Lx. The unit

ball of this norm is a symmetric convex body which will be denoted n*(C).

The map n*, from the collection of convex bodies in R" to the collection of

unit balls of representations of «-dimensional subspaces of L, on R", has

been extensively studied: see e.g. [B-L]. The restriction of n* to the class of

centrally symmetric convex bodies was shown to be injective by Aleksandrov:

if C and D are centrally symmetric convex bodies and \PgC\ — \PeT>\ for

all 8 € S"~x then C = D. If the condition of central symmetry is dropped,

C and D may not even be congruent: The Rouleaux triangle in R2 has all

1-dimensional shadows equal in length to those of some disc.

The map n* was shown to be surjective by Minkowski. What Minkowski's

proof actually gives (at least in the context of poly topes) is the result stated in

§2 as Lemma 6. (This rather detailed statement of Minkowski's theorem will

be needed for the construction of a pathological body with large shadows.)

An important observation of Petty [P], is that if T is a linear operator on

R" of determinant 1 then, for every C,

(1) U*(TC) = T(U*(C)).

Motivated in part by Aleksandrov's theorem on the injectivity of IT , Shephard

asked whether, if C and D are centrally symmetric convex bodies with

\PeC\ > \PeD\   forallöeS""1

then necessarily \C\ > \D\. This question was answered in the negative by

Petty and Schneider independently in [P and S]. (The corresponding question

for sections rather than shadows was posed in [B-P] and answered (again in

the negative) by [L-R].) The second section of this paper contains a strongly

negative answer to Shephard's question. It will be shown that a "random" «-

dimensional subspace of l£ has a unit ball, all of whose shadows are very large

compared with those of a Euclidean ball of the same volume. Such examples

suggest that the Shephard problem is less delicate than the Busemann-Petty

problem for sections: it is an important open question as to whether there are

highly pathological examples for the latter problem. This question is usually

referred to as the slicing problem.

1. A LOCAL ISOPERIMETRIC INEQUALITY

In [V], Vaaler conjectured that for every « e N, every symmetric convex

body C c R" and every k < n , there is an affine image TC of C (for some
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SHADOWS OF CONVEX BODIES 893

automorphism T of R") so that for every ^-dimensional subspace H of R" ,

\Hr\TC\>\TC\k/n.

(Vaaler actually conjectured something slightly stronger, which is false for small

values of k .) This conjecture strengthens the slicing problem mentioned above,

namely: there exists a ô > 0 so that for each « and C there is a 1-codimen-

sional subspace H of R" with

\Hr\C\ >S\C\{n~x/n.

The case k = 1 of Vaaler's conjecture (for arbitrary « and C) was proved by

the present author in [Bx], where the result is stated as a volume ratio estimate.

The proof for k = 1 really estimates volumes of 1-dimensional shadows and

then uses the fact that the smallest 1-dimensional section of a convex body is its

smallest 1-dimensional shadow. Since minimal sections and minimal shadows

are not identical for subspaces of dimension larger than 1, such an argument

cannot be employed if k > 1 : but it is natural to ask whether Vaaler's conjecture

can be proved for shadows (of dimension other than 1) independently of the

outstanding problem for sections. The principal result of this paper deals with

the most important case,

k = n-\.

Theorem 1. Let C be a convex body in R" . There is an affine image C of C

(with nonzero volume) so that for each unit vector 8 e Rn ,

\PdC\>\C\{n~l)/n.

The result is exactly best possible as shown by the cube.

The proof of Theorem 1 uses the well-known theorem of John [J] which char-

acterises ellipsoids of minimal volume containing convex bodies. This result is

stated here as a lemma.

Lemma 2. Let K be a symmetric convex body in R" . The ellipsoid of minimal

volume containing K is the Euclidean unit ball B" if and only if K is contained

in B2 and there are Euclidean unit vectors (w,)™ (for some m e N) on the

boundary dK of K and positive numbers (c;)™ so that

m

Y,CiUi®Ui = In-     U
1

(Here, ut <g> ui is the usual rank-Mi orthogonal projection onto the span of

ui and In is the identity on R" .) The identity above states that the ui 's are

distributed rather like an orthonormal basis in that for each xeI",

m

W =2^ci(ui>x) ■
i

The equality of the traces of the operators appearing above shows that Yl7ci= n •
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Theorem 1 will be deduced from the following, which is little more than an

affine invariant reformulation.

Theorem 3. Suppose C is a convex body in E.", (u¡)™ a sequence of unit vectors

in R" and (ct)™ a sequence of positive numbers for which

m

¿ZCiUi®Ui=In-
1

For each i, let P¡ be the orthogonal projection Pu  along ui. Then

m

1er1 < filler',
i

There is an obvious relationship between Theorem 3 and Lemma 2. Theo-

rem 3 is closely related to an inequality of Brascamp and Lieb [Br-L] which has

been used in several places by this author, [B¡ and B2]. Theorem 3 and general-

isations of it were conjectured in [Br-L] (in a different form). The special case

of Theorem 3 in which the w('s form an orthonormal basis (in which case, nec-

essarily, ¿v■ = 1 for I < i < m = n) was proved by Loomis and Whitney [L-W].

Theorem 3 can be regarded as an isoperimetric inequality in that it estimates

the volume of a body in terms of an average of volumes of its shadows: in

this case, a geometric average. The key point is that the "number" of shadows

involved is small enough that the local isoperimetric inequality of Theorem 1

can be deduced.

Proof of Theorem 1. Because of the intertwining property of U* with linear

transformations (1), there is an affine image C of C so that the ellipsoid of

minimal volume containing n*(C) is the Euclidean ball B" . This ensures that

\Pe(C)\ > 1

for every unit vector 8 e R" and, by Lemma 2, that there are unit vectors (w,)7

and positive numbers (c;)™ so that

\PU C\ = 1   for each i

and ¿27ciui®ui=In-

Now, from Theorem 3,

m

icri<ni^cií,=i. □
i

The proof of Theorem 3 uses Minkowski's inequality for mixed volumes to

establish a duality between the 1-codimensional problem to be solved and a 1-

dimensional problem. The relevant information on mixed volumes is included

here for completeness.
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For a fixed « , let ? = £? be the set of compact, convex subsets of R". ?

can be regarded as a convex cone under Minkowski addition and multiplication

by nonnegative scalars. A crucial theorem of Minkowski states that there is a

symmetric «-positive-linear form

V: ffx ■•■ x? ^[0, oo)

n times

whose diagonal is volume: i.e. V is positive linear in each of its « arguments

and, for each Ce?,

|C| = F(C,...,C).

The values of V are called mixed volumes. As a consequence of Minkowski's

theorem, the volume \C + tD\, (t e [0, oo)) can be expanded as a polynomial

in t,

(2) \C + tD\ = j^(r!\vn_k(C,D)tk
o   v '

where

v„_k(C,D) = VC,--- ,C , D,...,D)

n-k k

and is called the « - kin mixed volume of C and D.

The Brunn-Minkowski inequality states that

\C + tD\X/"

is a concave function of t (on [0, oo)). Differentiation of (2) at t = 0 gives

Minkowski's inequality

(3) \C\(n-X)ln\D\xln<vn_x(C,D).

If D — B2 is the Euclidean unit ball, (3) is the classical isoperimetric inequality.

Inequality (3) will be used here with an appropriate choice of D.

A Minkowski sum of line segments

^[-x(, x¿] = < x G R" : x = ¿^Xixi for some sequence (k¡)

with \X¡\ < 1, 1 < i < m >

is called a zonotope. It is easily checked that if « is a unit vector and D -

[-u, u] = {x e R": x = Xu for some X e [-1, 1]} then

vn_l(C,D) = l\PuC\

for any convex body C. So if Z is the zonotope

m

z = ¿Zaii-ui> wJ
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with (m,-)™ a sequence of unit vectors and (a,)™ a sequence of positive num-

bers,

~    m

(4) Vi(C,Z)^E«ilV|.

There is equality in Minkowski's inequality (3) if C = D and so with Z as

before
^   m

(5) \z\ = -ya.\puz\.
1

This identity is usually called the volume formula for zonotopes. A simple

induction argument can be used to obtain an expression for \Z\ in terms of

the a('s and determinants of square matrices formed from the w('s. In the

following lemma, a similar inductive argument is used to obtain an estimate for

\Z\ which is easier to use than the actual value.

Lemma 4. Let (w¿)™ be a sequence of unit vectors in R", (c,-)™ a sequence of

positive numbers with
m

Y,CiUi®Ui = In
1

and (a,)f another sequence of positive numbers. If

m

Zss¿2ati-ut>uti
i

then

!zi>2"n(^)'
i

Proof. The proof uses induction on the dimension « . For n = 1,

|Z| = 2¿t,, = 2¿c,(2¡)>2n(^t
1

by the AM-GM inequality since VJi ci■ — 1, when « = 1.

For larger « , the volume formula (5) shows that with Pi = Pu

~   m m

\Z\ = -Ya\PiZ\ = 2YC^\PiZ\

(6) '

1    Xti

Em
I  ci = n ■

Now, for each fixed i, P(Z is a zonotope with summands

a)\-PAu¡),PAu¡)\,        \<j<m,
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and contained in the (« - 1 )-dimensional space P((R"). For each i and j let

ytj = \Pi(Uj)\ = I fy«,)l

(so y\: = 1 - (m/ , w^)2). Then for each i,

m

j=i

where u(   is the unit vector in the direction of Pai. (or any direction if y.. = 0).

Now, for each i,

m rn

P — y^c Pu ■ ® Pu = y^c-y.-u-- ®i>--

and .P. acts as the identity on P.(R"). So, by the inductive hypothesis,

m  /        yú

\P,Z\ > 2n~x J]   J.
j=ï\cj?y

where it is understood that if y( = 0, the jth factor is 1: (so in particular, the

/th factor is 1).

2N    1/1

, c /    \ c y

Substitution of the inequalities for each i into (6) shows that

izi>2"( ft

and this expression is at least

2"n(!
because l/y/;- > 1 for all i and j and, for each j,

m m

5Z^yJ = Sc/(i-<"i."i>2) = «-i-

m    /      \ c

u

;=1 ;=1

Proof of Theorem 3. Let C, (m.)™, (c;),   and (P,.),   be as in the theorem's

statement. For each i, set

a,= \p%-

With Z = Y,™ a¡[-u¡, u¡], (3) and (4) above, show that

1er' < ¡ZI'1 (¡t^ClJ = \Z\-X ̂¿c,y - 2»\Z\~X

Em
1   ci — n
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Now by Lemma 4,

(m    ,      % c,\ _1        m

Remark 1. The lower estimate for volumes of zonotopes given by Lemma 4

could have been obtained from the volume ratio estimates proved in the author's

paper [B2] together with Reisner's reverse Santalo inequality for zonoids, [R].

Remark 2. For every convex body C in I" , there is an affine image C of C

with

\PgC\ < M^\C\(n~X)'n

for each unit vector 8 ( M being an absolute constant). This estimate depends

upon the fact that subspaces of Lx have uniformly bounded volume ratios. It

seems likely that M could be taken to be 1 for symmetric convex bodies C

(the cube again being extremal). The estimates in [B2] show that M can be

taken to be 2y/ë/n « 1.05 in this case.

2. A REMARK ON THE SHEPHARD PROBLEM

This section contains a strongly negative solution to the Shephard problem

described in the introduction. Petty and Schneider [P and S] constructed pairs

of bodies C and D in R" so that

(7) \PgD\ < \PeC\   for all 8 e Sn~x,

but \D\ > \C\. They also showed that the conclusion \D\ < \C\ does hold if

C is a zonoid (a limit, in the Hausdorff metric, of zonotopes). A little more

generally, if C and D are convex bodies satisfying (7) and Z = £™ a¡[-ui, u¡]

is a zonotope included in C (with u¡ e Sn~x, 1 < / < m), then, rather as in

the proof of Theorem 3,

m

\D\{n-X),n\Z\X/n<vn  AD,Z) = Ya\P D\
II II —      n—[\       y I /    j      l<     Uj       '

1

m

<¿Zai\PuC\ = vn_x(C,Z)
i

<vn_l(C,C) = \C\

where the last inequality is a consequence of the monotonicity of mixed vol-

umes: (this particular case is obvious from the fact that if Z c C,

c + tz c(i + oc

for all t > 0).

Hence,
/|C|x    1/(11-1)
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Since every convex body C contains a zonoid Z with |C|/|Z| not too large,

the last inequality shows that under hypothesis (7), one does have

|D|<|V»|C|.

Apart from a constant factor, it turns out that this is the most that can be said.

The Euclidean ball of volume 1 in R" has shadows of 1-codimensional volume

about y/ë (as « —> oo): in Theorem 5 it is shown that there is a body of volume

1 in R" , all of whose shadows have volume about \fh~.

Theorem 5. There is a constant S > 0 so that for each « € N, there is a

symmetric convex body K in R" satisfying,

\PeK\>ôJh-\K\(n-X)ln

for every unit vector 8 e R" .

The proof of Theorem 5 depends heavily upon the theorem of Minkowski

on the existence of bodies with given projections. An appropriately detailed

statement of this theorem is given as Lemma 6 below: the following notation

is needed. For a sequence (ut)m of unit vectors spanning R" and a sequence

(yt)m of positive numbers let !7 = SF((u¡), (y¡)) be the family of convex bodies

of the form

{jceR": \(x, «(.)| </,.,  1 < i<m}

indexed by sequences (t¡)m of positive reals satisfying

m

i

Lemma 6. With the above notation, 9~ has a unique element of maximal vol-

ume, K (say), satisfying

i

for each 6 e Sn~x .   u

The body that satisfies the conclusion of Theorem 5 will be the unit ball

of a "random" «-dimensional subspace of l£ . Such subspaces are known to

have many pathological properties stemming from the fact that the lx n and l2"

norms are well-equivalent on such spaces: this was proved in [F-L-M]. For the

history of this result and its many extensions, see e.g. [M-S]. The form of the

result needed here is given as a lemma.

Lemma 7. There is a ô > 0 so that for « e N there are unit vectors ux, ... , u2n

in R" with
In

£|<*.«,>I>*/«M
1

for every vector x € R" .     G
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The last lemma that will be needed is a result of Vaaler [V], concerning

volumes of sections of the cube in R". The form required here is the following.

Lemma 8. Let (u¡)m be a sequence of unit vectors in Rn . Then the volume of

the symmetric convex body with these vectors as boundary functionals satisfies

|{xeR":|(i,H;)|<l,  l<i<m}\x/n>2J^.   a

Proof of Theorem 5. Let (u¡)x    be a sequence of vectors with the property

described in Lemma 7.   Take m = 2« and apply Lemma 6 with yi = ^,

1 < i < m.
The body K of maximal volume in the family y satisfies

i

for every unit vector 8 . Now, y also contains the body

C = {xeRn: \(x, u¡)\ < 1,  l<i<m}.

So (by the maximality of K), \K\ >\C\. But, by Lemma 8,

\C\x/n>2,f^ = V2
~   \ m

and hence \K\x'n > y/2. Therefore, for every unit vector 8 ,

\PdK\>S-^\K\{n-X)/n.   üi e   i- 2^2'

Remark. The above argument can be extended slightly to estimate surface area

to volume ratios of subspaces of lx . If iq(X) is the isoperimetric quotient of

the finite-dimensional normed space X (see [Schii] for definitions) normalised

so that iq(l2) - 1 then for every «-dimensional subspace X of /^ ,

,q{X) - Trrm
for some absolute constant ô > 0.
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