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The paper deals with the shakedown behaviour of a CT (compact tension) specimen consisting of St52 steel under 
cyclical loading. Experiments have been carried out for determining the shakedown limit load. For comparison, the 
analytical and numerical methods are used to study the same problem. Satisfactory agreement has been achieved 
between the results from these different methods. 
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1 INTRODUCTION 
An elastic-plastic system subjected to cyclical loadings 
may behave in a very complicated manner. Frederick 
and Armstrong (1)t pointed out that the stresses and 
increments of plastic strains in the system will become 
stationary after a certain number of loading cycles. The 
system shakes down, it fails due to alternating plasticity 
(low cycle fatigue) or it fails incrementally (ratcheting). 

By shakedown, a system reaches a state in which no 
further plastic deformations occur although loadings can 
still vary. Shakedown is regarded as a safe state of a 
system. As early as in 1938, Melan (2,3) formulated static 
shakedown theorems for elastic-perfectly plastic 
materials as well as for linear, unlimited kinematic hard- 
ening materials. Koiter (4) introduced a kinematic shake- 
down theorem for a perfectly plastic material, a dual one 
of Melan's static theorem. A shakedown theorem for 
materials with non-linear hardening has been formulated 
for the first time by Neal (S), who used a Masing overlay 
model (6) to describe the non-linear kinematic hardening 
behaviour of materials. Neal's formulation is only valid 
for one-dimensional stress state problems. Recently, 
Stein and co-workers (7-9) used a three-dimensional 
overlay model to describe the non-linear kinematic hard- 
ening behaviour of ductile materials and formulated a 
corresponding shakedown theorem for this material 
model. Following this method, the failure mechanism of 
a system under cyclical loading can be determined. For 
instance, a system consisting of linear kinematic hard- 
ening material fails only locally by alternating plasticity 
(see reference (9)). 

An important task of shakedown investigations is to 
find the maximum extension of the given load domain, 
within which the system will still shake down. In the 
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framework of computational mechanics, this kind of 
optimization problem can be solved by using the finite 
element method (FEM). Generally, the dimension of the 
optimization problem is very large; Mahnken (10) and 
Zhang (11) used special numerical methods, namely the 
dual method and the reduced base technique, to solve 
these problems. For linear kinematic hardening 
materials, however, Stein and Huang (12) developed an 
analytical method to determine the shakedown limit 
load. 

There are only a few experimental investigations on 
shakedown. Most of the published experiments are done 
for simple structures. Konig (13) reported and com- 
mented on most results in this context. In this paper the 
experimental results obtained for CT specimens consist- 
ing of St52 steel are reported. At the same time, the 
problem is treated by using analytical and numerical 
methods. Results of these different methods will be com- 
pared and discussed. The reason why a CT specimen was 
chosen for experiments is that the result of a notched CT 
specimen is useful for the prediction of the fatigue thresh- 
old of a cracked body (see reference (14)). 
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Notation 
Set of Gaussian points 
Set of vertices in the load domain 
Stress intensity factor 
Safety factor against inadaptation 
Number of loading cycles 
Number of finite elements 
Number of Gaussian points of an element 
Number of stress components of a Gaussian point 
Applied load 
Elastic limit load 
Shakedown limit load with linear kinematic hard- 
ening material 
Shakedown limit load with non-linear kinematic 
hardening material 
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Shakedown limit load with elastic-perfectly plastic 
material 
Ultimate load 
Notch radius 
Back stress field 
Shakedown load factor 
Strain 
Eigen stress field 
Stress 
Effective stress 
Elastic stress field 
Ultimate stress 
Initial yield stress 
Yield function 
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2 SHAKEDOWN EXPERIMENTS WITH CT 
SPECIMEN 

A CT specimen with a notch is illustrated in Fig. 1, which 
has been used very frequently for fracture experiments. 
The specimen consists of St52 steel. The chemical com- 
position of this material is given in Table 1. 

The O-E diagram of this material under a monotonic 
load is shown in Fig. 2. It has an initial yield stress of 
oo = 35.5 kN/cm2. After yielding, the material behaves at 
first as if it were perfectly plastic. Up to E = 1.2 per cent, 
the O-E curve approaches a straight line in a hardening 
manner. A more detailed description of mechanical 
behaviour of this material can be found in reference (15). 

For investigating the shakedown behaviour of CT 
specimens, loadings with different amplitudes P and dif- 
ferent numbers of loading cycles N have been used. 
Eleven strain gauges have been bonded to a specimen. 
Thus, the strain distribution along the notch ligament 
can be measured. This information can be used for iden- 
tification of material parameters (16). Locations of strain 
gauges are shown in Fig. 3. One of them is located 

Table 1. Chemical comDosition of St52 steel 

C Si Mn P S A1 N, 

0.096 0.291 1.390 0.015 0.006 0.041 0.010 

I P  

1 Q U  

T H 

H = 12.0cm 
W = 10.0 cm 
S = 2.25 cm 
D = 2.0 cm 
G = 2.5 cm 
r = 0.5 cm 
u = 4.5 cm 
oo = 35.5 kN/cm' 

GL 
Fig. 1. A compact tension specimen 

directly at the notch root (point A). Theoretically, the 
information at this point is most important. Therefore, 
the strain there should be measured. Technically, 
however, it is difficult to do. On the one hand, the defor- 
mation at point A may be large, while on the other hand 
the strain gauge at point A is curved and responds in an 
unstable fashion as loading proceeds. In some experi- 
ments the strain gauge comes off the specimen after a 
number of loading cycles. Therefore, the measurements 
at this point are not reliable. The information obtained 
from strain gauges 1 to 10 (see Fig. 3) are used to deter- 
mine the shakedown limit load. Experiments show that 
once the shakedown is measured by strain gauge 1, the 
shakedown condition will also be satisfied by other 
strain gauges. This indicates that among these ten strain 
gauges, the information of strain gauge 1 is most impor- 
tant for the shakedown investigation. In this work, there- 
fore, only some of the important results obtained from 
strain gauge 1 will be shown. For readers who are inter- 
ested in knowing the whole experiments, details can be 
found in reference (15). Furthermore, for the sake of 
simple notation, the point where strain gauge 1 is located 
will be denoted by B, which is at  a distance of 2 mm from 
point A. 

In all the experiments, steady states for loading- 
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Front side 

-- 

Strain gauge: 0 
Back side 

-- 

Strain gauge: m@@@ 
Fig. 3. Locations of strain wire gauges on the specimen 

deformation relations are reached after ca. 10 loading 
cycles. This verifies the theory of Frederick and Arm- 
strong (1). There are three different types of steady states. 
The first one is shakedown, as shown in Figs 4(a) and 
5(a), in which no plastic deformation occurs after the 
steady state is reached and the system responds as if it 
were elastic. The second one is alternating plasticity (also 
called plastic shakedown), as shown in Fig. 4(b), (c) and 
(d), in which the plastic deformation increment from one 
loading cycle to another is zero. However, within one 
cycle, the first half of the loading-deformation path (the 
loading path) is not identical with the second one (the 
unloading path) and during such a cycle the plastic 
energy is dissipated. In this case, the system can fail in a 
form of low cycle fatigue. The third steady state is ratch- 
eting, as shown in Figs 5(b) and 6. In the ratcheting state, 
the plastic deformation grows from one cycle to another 
and after a larger number of cycles the system deforms so 
much that it becomes unserviceable. 

Before starting the shakedown experiments, the elastic 
limit load P' of the CT specimen is established by a test 
experiment with a monotonically increasing loading. It is 
found that P' = 8.8 kN. 

In the first experiment, four loadings with different 
amplitudes (0 + 8.75 kN, 0 s  17.0 kN, O e  17.75 kN and 
0 s  18.5 kN) and different cycles (10, 30, 30 and 30) are 
applied. The loading-deformation diagrams of point B 
are presented in Fig. 4. It can be seen that for the loading 
of P = 8.75 kN the system shakes down, while for load- 
ings of P = 17.0 kN, P = 17.75 kN and P = 18.5 kN the 
system does not shake down. This means that the shake- 
down limit load of the CT specimen lies between 
P = 8.75 kN and P = 17.0 kN. 

In the second experiment, two different loadings 
( P  = 15.0 kN and P = 18.0 kN) with N = 2000 are 
applied. The loading-deformation diagrams of point B 
are given in Fig. 5. For the loading of P = 15.0 kN the 
system shakes down, while for the loading of P = 18.0 
kN the system does not shake down. 
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For the third experiment, loading amplitudes are 
P = 18.0 kN and P = 20.0 kN with N equal to 2000. The 
loading-deformation diagrams of point B are drawn in 
Fig. 6 .  It can be seen that for both of these loadings the 
system does not shake down. 

For the fourth experiment, loadings of P = 12.0 kN, 
P = 20.0 kN and P = 25.0 kN with N = 500 are used. 
From the loading-deformation diagrams it is obvious 
that for P = 12.0 kN the system shakes down, while for 
loadings of P = 20.0 kN and P = 25.0 kN the system 
does not shake down. 

By the fifth experiment, a loading with amplitude 
P = 35.0 kN is repeated until the specimen fails. It has 
been observed that for N = 4950 a crack of length 2.5 
mm at the notch root has been developed, while for 
N = 6950 the CT specimen breaks down totally. 

Comparing all the experimental results, it can be con- 
cluded that the shakedown limit load of the system mea- 
sured at point B is between P = 15.0 kN and P = 17.0 
kN. In order to obtain a more accurate result, further 
experiments with loading amplitudes between 15.0 and 
17.0 kN must be done. 

It is obvious that point A, not point B, dominates the 
shakedown behaviour of the CT specimen. The elastic 
stress at A is higher than the one at B; consequently the 
correct shakedown limit load of the CT specimen should 
be smaller than that measured from point B. It is there- 
fore reasonable to take P = 15.0 kN rather than 
P = 17.0 kN as the shakedown limit load of the CT 
specimen. 

3 ANALYTICAL A N D  NUMERICAL APPROACHES 
In this section, first some shakedown theorems are 
briefly reviewed. The formulations and mathematical 
proofs of these theorems can be found in references (2), 
(3), (7) and (11). The shakedown problem investigated 
experimentally in the last section is treated again analyt- 
ically and numerically with the help of these theorems. 
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Strain E ( '706) 

(a) Test 01 load P = 8.75 kN, cycles n = 10. wire strain gauge 01 

1 

0 i 2 
Strain E ( %o) 

(a) Test 02 load P = 15.0 kN, cycles n = 2000, wire strain gauge 01 

0 1 2 3 

Strain E (%c) 

( b )  Test 01 load P = 17 kN, cycles n = 30, wire strain gauge 01 

0 1 2 3 
Strain E ( %o) 

(b) Test 02 load P = 18.0 kN, cycles n = 2000, wire strain gauge 01 

Fig. 5. Load-strain diagrams at B for experiment 2 
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0 1 2 3 
Strain E ( % c )  

(c) Test 01 load P = 17.75 kN. cycles n = 30. wire strain gauge 01 

0 I 2 3 

Strain E ( % o )  

(d) Test 01 load P = 18.5 kN, cycles n = 30, wire strain gauge 01 

Fig. 4. Load-strain diagrams at B for experiment 1 
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0 1 2 3 
Strain E (%o) 

(a) Test 03 load F = 18.0 kN. cycles n = 2000, wire strain gauge 01 

0 1 2 3 4 
Strain E ( % o )  

(b)  Test 03 load F = 20 0 kN. cycles n = 2000. wire strain gauge 01 

Fig. 6. Load-strain diagrams at B for experiment 3 
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Theorem I 
For systems consisting of elastic-perfectly plastic 
material, if a time-independent eigen stress field p(x)  
exists such that for all possible loads within a given load 
domain the condition 

@[m{aE(x ,  t )  + is(x)}I < 03x) (1) 

is fulfilled V x E R and V t > 0, where m > 1 is a safety 
factor against inadaptation, then the total plastic energy 
dissipated within an arbitrary load path contained 
within the load domain is bounded and the system will 
shake down. 

Theorem 2 
For systems consisting of linear kinematic hardening 
material, if a time-independent eigen stress field Hx) and 
a time-independent back stress field &(x) exist such that 
for all possible loads within a given load domain the 
condition 

@[m{aE(x, t )  + p(x) - a(x)}] < a&) (2) 
is fulfilled V x E Q and V t > 0, then the system will shake 
down. 

Theorem 3 
For systems consisting of non-linear kinematic hard- 
ening material, if a time-independent eigen stress field 
fix) and a time-independent field &(x) exist satisfying 

@{ ma@)} < {a&) - cr,(x)} V x E SZ (3) 
such that for all possible loads within the load domain 
the condition 

@[m{aE(x ,  t )  + P(x) - cX(x)}] < a&) (4) 
is fulfilled V x E R and V t > 0, then the system will shake 
down. 

In Theorems 1 to 3, @ is the yield function, aE the 
elastic stress field, cro the initial yield stress and (T, the 
ultimate stress of the material. Note that Theorems 1 and 
2 can be obtained from Theorem 3 by replacing (T" with 
oo and with co. In Theorem 1 a = 0, in Theorem 2 the 
back stress a is an unlimited quantity, whereas in 
Theorem 3 a must fulfil condition (3). 

If the elastic limit load of a system is denoted by P', its 
ultimate load by P", the shakedown limit load of the 
system with elastic-perfectly plastic material by PsP, the 
shakedown limit load of the system with linear kinematic 
hardening material by P"' and the shakedown limit load 
of the same system with non-linear kinematic hardening 
material by P"", then the following relation holds: 

p' < p s p  < PS" < PSI < P" (5) 

The notch stress analysis of the CT specimen gives an 
elastic limit load of P' = 8.44 kN, which is 4 per cent less 
than the one obtained from experiment. 

For a system consisting of linear kinematical material, 
Stein and Huang (12) developed an analytical method for 
determining the shakedown limit load. Following this 
method, the shakedown limit load of a CT specimen is 
found to be 

(6) 2% psi = p - 
beff 
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where P is the applied load (see Fig. 1) and oeff the 
maximum effective stress in the CT specimen. It is 
obvious that the maximum effective stress will appear at 
the notch root. By assuming that the CT specimen has a 
plane stress state, then aefr equals the principal elastic 
stress at point A (denoted by oA) in the direct perpen- 
dicular to the notch ligament, because other stress com- 
ponents in this point are zero. 

It should be noted that result (6) is only applicable for 
special cases in which materials are linear kinematical 
hardening and the load domain has only one parameter. 
For more general cases, results can be found in reference 
(12). The problem now is that St52 steel is not a linear 
hardening material, as can be seen from Fig. 2. Conse- 
quently, the analytical result (6) cannot be simply applied 
to the CT specimen. Here a statement made in a previous 
paper must be recalled. It was stated that the kinematic 
hardening does not influence the shakedown limit load, 
that is 

(7) p s P  = p s n  = psl 

when the system would fail locally. It is obvious that a 
CT specimen is of local character. Therefore, result (6) 
can be use for this problem. Let oeff equal (T,; then 
equation (6) becomes 

(8) 

In the determination of PSI, the stress a(, is required. 
Usually, stresses at a point in a complicated system 
should be calculated by using a numerical method such 
as FEM or BEM (boundary element method). In this 
work, however, an analytical form suggested by Paris 
and Sih (17) has been employed: 

200 psl = p - 
OA 

(9) 

where K ,  is the stress intensity factor obtained from frac- 
ture mechanics as if the notch were a crack and r is the 
notch root radius. For a CT specimen the K ,  factor can 
be expressed as 

K ,  = B W {29.6($)'12 - 185.5($)"~ 

(10) 
where B stands for the thickness of the specimen and 
meanings for other symbols are given in Fig. I .  Substitut- 
ing all these quantities into equation (10) and then into 
equation (9) and letting P = 1.0 kN gives oA = 4.21 
kN/cm2. According to equation (8), the shakedown limit 
load of the CT specimen is PSI = 16.87 kN. Using equa- 
tions (9) and (lo), the elastic limit load of the CT speci- 
men is calculated; it has a value P' = 8.44 kN. The 
shakedown limit load PSI is just twice as large as its 
elastic limit load P'. 

The same problem has been calculated using a finite 
element method. On account of symmetry, half of the CT 
specimen is divided into 894 elements. Due to a strong 
stress concentration at the notch root, the FE mesh 
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Fig. 7. Adaptive FE mesh of half a CT specimen 

shown in Fig. 7 is generated adaptively. using asymptotic 
a posteriori indicators and quantitative errors (see refer- 
ence (1 8)). 

As mentioned above, the kinematic hardening has no 
influence on the shakedown limit load in this case. Thus 
the shakedown theorem 1 can be used. The optimization 
is then formulated as 

fi  + max 

@[fi{aE((a j )  + w))I < oi, 
(1 1 )  

where 52 is the body and j the set of all vertices in the 
load domain. For this problem Q is the CT specimen and 

Dividing the system into N ,  elements with N ,  Gauss- 
ian points in each element gives the following discretized 
optimization problem : 

x E Q, j E B 

# = 2. 

B .+ max (12) 

@@aE(j) + p,) < 0; v (i,j) E .f x # (14) 

where 9 = [ I ,  2, . . ., N ,  x NJ, C a system dependent 
matrix and oE(j) the elastic stress vector at the ith Gauss- 
ian point due to thejth load vertex. 

Depending on @, the problem (12)  to (14) may be 
linear or non-linear. In  this work, the von Mises yield 
function is used. Thus, a non-linear optimization 
problem must be solved. In general, the discretized 
problem (12) to (14) is a large-sized optimization 
problem. Let N ,  be the number of stress components in a 
Gaussian point, with unknowns for the problem (12) to 
(14) equal to N s  x N ,  x N ,  + 1. For our problem, N ,  = 
3, N ,  = 894 and N ,  = 4; the unknowns are then 10129. 
A direct application of standard optimization algo- 
rithms, such as the sequential quadratic programming 
(SQP) method (see reference (19)), is not effective. A SO- 
called reduced basis technique developed by Stein and 
co-workers has been used. This method has been proved 
to be very effective for sclving shakedown problems. 
Details of this method can be found in references (9) and 

The finite element computation gives the following 
(11). 

results: 

1. The elastic limit load P‘ = 8.4 kN. 
2. The shakedown limit load PSI = 16.8 kN. 

The difference between the numerical and analytical 
shakedown limit loads is less than 1 per cent. 

4 CONCLUDING REMARKS 
In this paper, the shakedown behaviour of CT specimens 
consisting of St52 steel subjected to cyclical loadings is 
investigated by using experimental, analytical and 
numerical methods. It is shown that loading levels exist 
between the elastic limit load and ultimate load of the 
system, for example P = 12.0 kN and P = 15.0 kN, 
under which the system shakes down. The maximum 
value of these loadings, called the shakedown limit load, 
is determined. Depending on the different methods, the 
shakedown limit load is found to be 15.0 kN 
(experimental), 16.88 kN (analytical) and 16.80 kN 
(numerical) respectively. The results of analytical and 
numerical approaches are in good agreement. The 
experimental result is about 10 per cent less than those 
from other methods. This disagreement is probably due 
to the fact that in the shakedown theorems, based on 
which analytical and numerical approaches are formu- 
lated, simple material modes are used, while factors such 
as creep, softening and damage, which can influence 
shakedown behaviour of a system, are not considered. 
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