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Abstract

Variations in writing styles are commonly

used to adapt the content to a specific con-

text, audience, or purpose. However, ap-

plying stylistic variations is still largely a

manual process, and there have been little

efforts towards automating it. In this paper

we explore automated methods to trans-

form text from modern English to Shake-

spearean English using an end to end train-

able neural model with pointers to enable

copy action. To tackle limited amount of

parallel data, we pre-train embeddings of

words by leveraging external dictionaries

mapping Shakespearean words to modern

English words as well as additional text.

Our methods are able to get a BLEU score

of 31+, an improvement of ≈ 6 points

over the strongest baseline. We publicly

release our code to foster further research

in this area. 1

1 Introduction

Text is often morphed using a variety of lexi-

cal and grammatical transformations, adjusting the

degree of formality, usage of catchy phrases, and

other such stylistic changes to make it more ap-

pealing. Moreover, different text styles appeal to

different user segments (Saha Roy et al., 2015)

(Kitis, 1997) (Schwartz et al., 2013). Thus there is

a need to effectively adapt text to different styles.

However, manually transforming text to a desired

style can be a tedious process.

There have been increased efforts towards ma-

chine assisted text content creation and editing

through automated methods for summarization

∗* denotes equal contribution
1https://github.com/harsh19/Shakespearizing-Modern-

English

No Type Text

1

MODERN Oh my, my bones ache so much

ORIGINAL Fie, how my bones ache !

COPY fie, how my bones ache !

SIMPLES2S you’ll be, sir, what the bones are tired .

STAT Oh my, my bones ache so much .

2

MODERN I am in a rush .

ORIGINAL I stand on sudden haste .

COPY i stand on sudden haste .

SIMPLES2S i’m stand right here .

STAT I am in a Fly

3

MODERN Give my compliments to your lady

ORIGINAL Commend me to thy lady

COPY commend me to your lady

SIMPLES2S give my regards to your lady

STAT give my praises to your lady

4

MODERN Showing mercy by pardoning killers only causes more murders .

ORIGINAL Mercy but murders, pardoning those that kill .

COPY mercy but murders, those those who kill us .

SIMPLES2S but except the murders to those murders to kill you .

STAT of mercy by pardoning killers causes more dire.

5

MODERN Holy Saint Francis, this is a drastic change !

ORIGINAL Holy Saint Francis, what a change is here !

COPY holy saint francis, what a change is here !

SIMPLES2S it’s the holy flute, what’s the changed !

STAT Holy Saint Francis, this is a drastic change !

6

MODERN was that my father who left here in such a hurry ?

ORIGINAL Was that my father that went hence so fast ?

COPY was that my father that went went so fast ?

SIMPLES2S was that my father was so that ?

STAT was that my father that left here in such a haste ?

7

MODERN Give me one kiss and I’ll go down .

ORIGINAL One kiss, and I’ll descend .

COPY one kiss me, and I’ll descend .

SIMPLES2S one kiss,and I come down .

STAT Give me a kiss, and I’ll go down .

8

MODERN then the window lets day in, and life goes out the window .

ORIGINAL Then, window, let day in and life out .

COPY then, window out, and day life .

SIMPLES2S then she is just a life of life, let me life out of life .

STAT then the window will let day in, and life out .

Table 1: Examples from dataset showing mod-

ern paraphrases (MODERN) of few sentences from

Shakespeare’s plays (ORIGINAL). We also show

transformation of modern text to Shakespearean

text from our models (COPY, SIMPLES2S and

STAT).
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(Rush et al., 2015) , brand naming (Hiranandani

et al., 2017), text expansion (Srinivasan et al.,

2017), etc. However, there is a dearth of auto-

mated solutions for adapting text quickly to differ-

ent styles. We consider the problem of transform-

ing text written in modern English text to Shake-

pearean style English. For the sake of brevity and

clarity of exposition, we henceforth refer to the

Shakespearean sentences/side as Original and the

modern English paraphrases as Modern.

Unlike traditional domain or style transfer, our

task is made more challenging by the fact that the

two styles employ diachronically disparate regis-

ters of English - one style uses the contemporary

language while the other uses Early Modern En-

glish 2 from the Elizabethan Era (1558-1603). Al-

though Early Modern English is not classified as a

different language (unlike Old English and Middle

English), it does have novel words (acknown and

belike), novel grammatical constructions (two sec-

ond person forms - thou (informal) and you (for-

mal) (Brown et al., 1960)), semantically drifted

senses (e.g fetches is a synonym of excuses) and

non-standard orthography (Rayson et al., 2007).

Additionally, there is a domain difference since the

Shakespearean play sentences are from a dramatic

screenplay whereas the parallel modern English

sentences are meant to be simplified explanation

for high-school students.

Prior works in this field leverage a language

model for the target style, achieving transforma-

tion either using phrase tables (Xu et al., 2012),

or by inserting relevant adjectives and adverbs

(Saha Roy et al., 2015). Such works have lim-

ited scope in the type of transformations that can

be achieved. Moreover, statistical and rule MT

based systems do not provide a direct mecha-

nism to a) share word representation information

between source and target sides b) incorporating

constraints between words into word representa-

tions in end-to-end fashion. Neural sequence-to-

sequence models, on the other hand, provide such

flexibility.

Our main contributions are as follows:

• We use a sentence level sequence to sequence

neural model with a pointer network compo-

nent to enable direct copying of words from

input. We demonstrate that this method per-

forms much better than prior phrase transla-

2https://en.wikipedia.org/wiki/Early_

Modern_English

Original Modern

# Word Tokens 217K 200K

# Word Types 12.39K 10.05K

Average Sentence Length 11.81 10.91

Entropy (Type.Dist) 6.15 6.06

∩ Word Types 6.33K

Table 2: Dataset Statistics

tion based approaches for transforming Mod-

ern English text to Shakespearean English.

• We leverage a dictionary providing mapping

between Shakespearean words and modern

English words to retrofit pre-trained word

embeddings. Incorporating this extra infor-

mation enables our model to perform well in

spite of small size of parallel data.

Rest of the paper is organized as follows. We

first provide a brief analysis of our dataset in (§2).

We then elaborate on details of our methods in (§3,

§4, §5, §6). We then discuss experimental setup

and baselines in (§7). Thereafter, we discuss the

results and observations in (§8). We conclude with

discussions on related work (§9) and future direc-

tions (§10).

2 Dataset

Our dataset is a collection of line-by-line mod-

ern paraphrases for 16 of Shakespeare’s 36 plays

(Antony & Cleopatra, As You Like It, Comedy of

Errors, Hamlet, Henry V etc) from the educational

site Sparknotes3. This dataset was compiled by

Xu et al. (2014; 2012) and is freely available on

github.4 14 plays covering 18,395 sentences form

the training data split. We kept 1218 sentences

from the play Twelfth Night as validation data set.

The last play, Romeo and Juliet, comprising of

1462 sentences, forms the test set.

2.1 Examples

Table 1 shows some parallel pairs from the test

split of our data, along with the corresponding

target outputs from some of our models. Copy

and SimpleS2S refer to our best performing atten-

tional S2S models with and without a Copy com-

ponent respectively. Stat refers to the best sta-

tistical machine translation baseline using off-the-

shelf GIZA++ aligner and MOSES. We can see

through many of the examples how direct copy-

ing from the source side helps the Copy generates

3www.sparknotes.com
4 http://tinyurl.com/ycdd3v6h
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better outputs than the SimpleS2S. The approaches

are described in greater detail in (§3) and (§7).

2.2 Analysis

Table 2 shows some statistics from the training

split of the dataset. In general, the Original side

has longer sentences and a larger vocabulary. The

slightly higher entropy of the Original side’s fre-

quency distribution indicates that the frequencies

are more spread out over words. Intuitively, the

large number of shared word types indicates that

sharing the representation between Original and

Modern sides could provide some benefit.

3 Method Overview

Overall architecture of the system is shown in Fig-

ure 1. We use a bidirectional LSTM to encode

the input modern English sentence. Our decoder

side model is a mixture model of RNN module

amd pointer network module. The two individ-

ual modules share the attentions weights over en-

coder states, although it is not necessary to do so.

The decoder RNN predicts probability distribution

of next word over the vocabulary, while pointer

model predicts probability distribution over words

in input. The two probabilities undergo a weighted

addition, the weights themselves computed based

on previous decoder hidden state and the encoder

outputs.

Let x,y be the some input - output sentence pair

in the dataset. Both input x as well as output y

are sequence of tokens. x = x1x2...xTenc , where

Tenc represents the length of the input sequence x.

Similarly, y = y1y2...yTdec
. Each of xi, yj is a

token from the vocabulary.

4 Token embeddings

Each token in vocabulary is represented by a M
dimensional embedding vector. Let vocabulary V
be the union of modern English and Shakepearean

vocabularies i.e. V = Vshakespeare ∪ Vmodern.

Eenc and Edec represent the embedding matri-

ces used by encoder and decoder respectively (

Eenc, Edec ∈ R
|V |×M ). We consider union of

the vocabularies for both input and output em-

beddings because many of the tokens are com-

mon in two vocabularies, and in the best per-

forming setting we share embeddings between en-

coder and decoder models. Let Eenc(t), repre-

sent encoder side embeddings of some token t.

For some input sequence x, Eenc(x) is given as

(Eenc(x1), Eenc(x2), ...).

4.1 Pretraining of embeddings

Learning token embeddings from scratch in an

end-to-end fashion along with the model greatly

increases the number of parameters. To mitigate

this, we consider pretraining of the token embed-

dings. We pretrain our embeddings on all training

sentences. We also experiment with adding ad-

ditional data from PTB (Marcus et al., 1993) for

better learning of embeddings. Additionally we

leverage a dictionary mapping tokens from Shake-

spearean English to modern English.

We consider four distinct strategies to train the

embeddings. In the cases where we use exter-

nal text data, we first train the embeddings us-

ing both the external data and training data, and

then for the same number of iterations on train-

ing data alone, to ensure adaptation. Note that we

do not directly use off-the-shelf pretrained embed-

dings such as Glove (Pennington et al., 2014) and

Word2Vec (Mikolov et al., 2013) since we need to

learn embeddings for novel word forms (and also

different word senses for extant word forms) on

the Original side.

4.1.1 Plain

This method is the simplest pre-training method.

Here, we do not use any additional data, and train

word embeddings are trained on the union of Mod-

ern and Original sentences.

4.1.2 PlainExt

In this method, we add all the sentences from the

external text source (PTB) in addition to sentences

in training split of our data.

4.1.3 Retro

We leverage a dictionary L of approximate Orig-

inal → Modern word pairs (Xu et al., 2012; Xu,

2014), crawled from shakespeare-words.

com, a source distinct from Sparknotes. We ex-

plicitly add the two 2nd persons and their corre-

sponding forms (thy, thou, thyself etc) which are

very frequent but not present in L. The final dictio-

nary we use has 1524 pairs. Faruqui et al (2014)

proposed a retrofitting method to update a set of

word embeddings to incorporate pairwise similar-

ity constraints. Given a set of embeddings pi ∈ P ,

a vocabulary V , and a set C of pairwise constraints

(i, j) between words, retrofitting tries to learn a

12



Figure 1: Depiction of our overall architecture (showing decoder step 3). Attention weights are computed

using previous decoder hidden state h2, encoder representations, and sentinel vector. Attention weights

are shared by decoder RNN and pointer models. The final probability distribution over vocabulary comes

from both the decoder RNN and the pointer network. Similar formulation is used over all decoder steps

new set of embeddings qi ∈ Q to minimize the

following objective:

f(Q) = δ

i=|V |
∑

i=1

(pi − qi)
2 + ω

∑

(i,j)∈C

(qi − qj)
2

(1)

We use their off-the-shelf implementation 5 to en-

code the dictionary constraints into our pretrained

embeddings, setting C = L and using suggested

default hyperparameters for δ, ω and number of

iterations.

4.1.4 RetroExt

This method is similar to Retro, except that we use

sentences from the external data (PTB) in addition

to training sentences.

We use None to represent the settings where we

do not pretrain the embeddings.

4.2 Fixed embeddings

Fine-tuning pre-trained embeddings for a given

task may lead to overfitting, especially in scenarios

with small amount of supervised data for the task

(Madhyastha et al., 2015). This is because embed-

dings for only a fraction of vocabulary items get

updated, leaving the embeddings unchanged for

many vocabulary items. To avoid this, we con-

sider fixed embeddings pretrained as per proce-

dures described earlier. While reporting results in

Section (§8), we separately report results for fixed

5github.com/mfaruqui/retrofitting

(FIXED) and trainable (VAR) embeddings, and ob-

serve that keeping embeddings fixed leads to bet-

ter performance.

5 Method Description

In this section we give details of the various mod-

ules in the proposed neural model.

5.1 Encoder model

Let
−−−−−−→
LSTMenc and

←−−−−−−
LSTMenc represent the for-

ward and reverse encoder. h
−→enc
t represent hidden

state of encoder model at step t (h
−→enc
t ∈ R

H ). The

following equations describe the model:

h
−−→enc
0 =

−→
0 ,h

←−−enc
|x| =

−→
0 (2)

h
−−→enc
t =

−−−−−−→
LSTMenc(h

enc
t−1, Eenc(xt)) (3)

h
←−−enc
t =

←−−−−−−
LSTMenc(h

enc
t+1, Eenc(xt)) (4)

h
enc
t = h

−−→enc
t + h

←−−enc
t (5)

We use addition to combine the forward and back-

ward encoder states, rather than concatenation

which is standardly used, since it doesn’t add ex-

tra parameters, which is important in a low-data

scenario such as ours.

5.2 Attention

Let hdec
t represent the hidden state of the decoder

LSTM at step t. Let Edec(yt−1) represent the de-

coder side embeddings of previous step output.

We use special START symbol at t = 1.
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We first compute a query vector, which is a

linear transformation of hdec
t−1. A sentinel vector

s ∈ R
H is concatenated with the encoder states to

create Fatt ∈ R
(Tenc+1)×H , where Tenc represents

the number of tokens in encoder input sequence

x. A normalized attention weight vector α
norm is

computed. The value g, which corresponds to at-

tention weight over sentinel vector, represents the

weight given to the decoder RNN module while

computing output probabilties.

q = h
dec
t−1 Wq Wq ∈ R

H×H
(6)

Fatt = concat(henc
1..Tenc

, s) Fatt ∈ R
(Tenc+1)×H

(7)

αi =

H
∑

j=1

(tanh(F
(ij)
att qj)) + bi αi,bi ∈ R (8)

α
norm = softmax(α) α

norm
∈ R

Tenc+1

(9)

β = α
norm
1,2,...,Tenc

β ∈ R
Tenc (10)

g = α
norm
Tenc+1 g ∈ R (11)

5.3 Pointer model

As pointed out earlier, a pair of corresponding

Original and Modern sentences have significant

vocabulary overlap. Moreover, there are lot of

proper nouns and rare words which might not be

predicted by a sequence to sequence model. To

rectify this, pointer networks have been used to en-

able copying of tokens from input directly (Merity

et al., 2016). The pointer module provides location

based attention, and output probability distribution

due to pointer network module can be expressed as

follows:

P
PTR
t (w) =

∑

xj=w

(βj) (12)

5.4 Decoder RNN

Summation of encoder states weighed by corre-

sponding attention weights yields context vector.

Output probabilities over vocabulary as per the de-

coder LSTM module are computed as follows:

ct =

Tenc
∑

i=1

βi h
enc
i (13)

h
dec
t = LSTM(hdec

t−1, [concat(Edec(yt−1), ct)]) (14)

P
LSTM
t = softmax(Wout[concat(hdec

t , ct)] + b
out) (15)

During training, we feed the ground truth for yt−1,

whereas while making predictions on test data,

predicted output from previous step is used in-

stead.

5.5 Output prediction

Output probability of a token w at step t is

a weighted sum of probabilities from decoder

LSTM model and pointer model given as follows:

Pt(w) = g × P
LSTM
t (w) + (1− g)× P

PTR
t (w) (16)

PPTR
t (w) takes a non-zero value only if w oc-

curs in input sequence, otherwise it is 0. Forc-

ing g = 0 would correspond to not having a Copy

component, reducing the model to a plain atten-

tional S2S model, which we refer to as a Sim-

pleS2S model.

6 Loss functions

Cross entropy loss is used to train the model. For

a data point (x,y) ∈ D and predicted probability

distributions Pt (w) over the different words w ∈
V for each time step t ∈ {1, . . . , Tdec}, the loss is

given by

−

Tdec
∑

t=1

log p
(

Pt (yt)
)

(17)

Sentinel Loss (SL): Following from work by

(Merity et al., 2016), we consider additional sen-

tinel loss. This loss function can be considered

as a form of supervised attention. Sentinel loss is

given as follows:

−

Tdec
∑

t=1

log(g(t) +
∑

xj=yt

(β
(t)
j )) (18)

We report the results demonstrating the impact

of including the sentinel loss function (+SL).

7 Experiments

In this section we describe the experimental setup

and evaluation criteria used.

7.1 Preprocessing

We lowercase sentences and then use NLTK’s

PUNKT tokenizer to tokenize all sentences. The

Original side has certain characters like æwhich

are not extant in today’s language. We map these

characters to the closest equivalent character(s)

used today (e.g æ→ ae)

14



7.2 Baseline Methods

7.2.1 As-it-is

Since both source and target side are English, just

replicating the input on the target side is a valid

and competitive baseline, with a BLEU of 21+.

7.2.2 Dictionary

Xu et al. (2012) provide a dictionary mapping be-

tween large number of Shakespearean and modern

English words. We augment this dictionary with

pairs corresponding to the 2nd person thou (thou,

thy, thyself ) since these common tokens were not

present.

Directly using this dictionary to perform word-

by-word replacement is another admittable base-

line. As was noted by Xu et al. (2012), this base-

line actually performs worse than As-it-is. This

could be due to its performing aggressive replace-

ment without regard for word context. Moreover,

a dictionary cannot easily capture one-to-many

mappings as well as long-range dependencies 6.

7.2.3 Off-the-shelf SMT

To train statistical machine translation (SMT)

baselines, we use publicly available open-source

toolkit MOSES (Koehn et al., 2007), along with

the GIZA++ word aligner (Och, 2003), as was

done in (Xu et al., 2012). For training the target-

side LM component, we use the lmplz toolkit

within MOSES to train a 4-gram LM. We also use

MERT (Och, 2003), available as part of MOSES,

to tune on the validation set.

For fairness of comparison, it is necessary to use

the pairwise dictionary and PTB while training the

SMT models as well - the most obvious way for

this is to use the dictionary and PTB as additional

training data for the alignment component and the

target-side LM respectively. We experiment with

several SMT models, ablating for the use of both

PTB and dictionary. In 8, we only report the per-

formance of the best of these approaches.

7.3 Evaluation

Our primary evaluation metric is BLEU (Papineni

et al., 2002) . We compute BLEU using the freely

available and very widely used perl script7 from

the MOSES decoder.

We also report PINC (Chen and Dolan, 2011),

which originates from paraphrase evaluation liter-

6thou-thyself and you-yourself
7http://tinyurl.com/yben45gm

ature and evaluates how much the target side para-

phrases resemble the source side. Given a source

sentence s and a target side paraphrase c generated

by the system, PINC(s,c) is defined as

PINC(s, c) = 1 −
1

N

n=N∑

n=1

|Ngram(c, n) ∩ Ngram(s, n)|

|Ngram(c, n)|

where Ngram(x, n) denotes the set of n-grams

of length n in sentence x, and N is the maxi-

mum length of ngram considered. We set N =
4. Higher the PINC, greater the novelty of para-

phrases generated by the system. Note, however,

that PINC does not measure fluency of generated

paraphrases.

7.4 Training and Parameters

We use a minibatch-size of 32 and the ADAM op-

timizer (Kingma and Ba, 2014) with learning rate

0.001, momentum parameters 0.9 and 0.999, and

ǫ = 10−8. All our implementations are written in

Python using Tensorflow 1.1.0 framework.

For every model, we experimented with two

configurations of embedding and LSTM size -

S (128-128), ME (192-192) and L (256-256).

Across models, we find that the ME configura-

tion performs better in terms of highest valida-

tion BLEU. We also find that larger configurations

(384-384 & 512-512) fail to converge or perform

very poorly 8. Here, we report results only for the

ME configuration for all the models. For all our

models, we picked the best saved model over 15

epochs which has the highest validation BLEU.

7.5 Decoding

At test-time we use greedy decoding to find the

most likely target sentence9. We also experiment

with a post-processing strategy which replaces

UNKs in the target output with the highest aligned

(maximum attention) source word. We find that

this gives a small jump in BLEU of about 0.1-0.2

for all neural models 10. Our best model, for in-

stance, gets a jump of 0.14 to reach a BLEU of

31.26 from 31.12.

8 Results

The results in Table 3 confirm most of our hy-

potheses about the right architecture for this task.

8This is expected given the small parallel data
9Empirically, we observed that beam search does not give

improvements for our task
10Since effect is small and uniform, we report BLEU be-

fore post-processing in Table 3
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• Copy component: We can observe from

Table 3 that the various Copy models each

outperform their SimpleS2S counterparts by

atleast 7-8 BLEU points.

• Retrofitting dictionary constraints: The

Retro configurations generally outperform

their corresponding Plain configura-

tions. For instance, our best configuration

Copy.Yes.RetroExtFixed gets a better BLEU

than Copy.Yes.PlainExtFixed by a margin of

atleast 11.

• Sharing Embeddings: Sharing source and

target side embeddings benefits all the Retro

configurations, although it slightly deterio-

rates performance (about 1 BLEU point) for

some of the Plain configurations.

• Fixing Embeddings: Fixed configura-

tions always perform better than corre-

sponding Var ones (save some exceptions).

For instance, Copy.Yes.RetroExtFixed get a

BLEU of 31.12 compared to 20.95 for

Copy.Yes.RetroExtVar. Due to fixing embed-

dings, the former has just half as many pa-

rameters as the latter (5.25M vs 9.40M)

• Effect of External Data: Pretrain-

ing with external data Ext works well

along with retrofitting Retro. For in-

stance, Copy.Yes.RetroExtFixed gets a

BLEU improvement of 2+ points over

Copy.Yes.RetroFixed

• Effect of Pretraining: For the Sim-

pleS2S models, pre-training adversely af-

fects BLEU. However, for the Copy mod-

els, pre-training leads to improvement in

BLEU. The simplest pretrained Copy model,

Copy.No.PlainVar has a BLEU score 1.8

higher than Copy.No.NoneVar.

• PINC scores: All the neural models have

higher PINC scores than the statistical and

dictionary approaches, which indicate that

the target sentences produced differ more

from the source sentences than those pro-

duced by these approaches.

• Sentinel Loss: Adding the sentinel loss does

not have any significant effect, and ends up

reducing BLEU by a point or two, as seen

with the Copy+SL configurations.

8.1 Qualitative Analysis

Figure 2 shows the attention matrices from our

best Copy model (Copy.Yes.RetroExtFixed)

and our best SimpleS2S model (Sim-

pleS2S.Yes.Retrofixed) respectively for the

same input test sentence. Without an explicit

Copy component, the SimpleS2S model cannot

predict the words saint and francis, and drifts off

after predicting incorrect word flute.

Model Sh Init BLEU (PINC)

AS-IT-IS - - 21.13 (0.0)

DICTIONARY - - 17.00 (26.64)

STAT - - 24.39 (32.30)

SIMPLES2S

× NoneV ar 11.66 (85.61)

× PlainV ar 9.27 (86.52)

× PlainExtV ar 8.73 (87.17)

× RetroV ar 10.57 (85.06)

× RetroExtV ar 10.26 (83.83)

X NoneV ar 11.17 (84.91)

X PlainV ar 8.78 (85.57)

X PlainFixed 8.73 (89.19)

X PlainExtV ar 8.59 (86.04)

X PlainExtFixed 8.59 (89.16)

X RetroV ar 10.86 (85.58)

X RetroFixed 11.36 (85.07)

X RetroExtV ar 11.25 (83.56)

X RetroExtFixed 10.86 (88.80)

COPY

× NoneV ar 18.44 (83.68)

× PlainV ar 20.26 (81.54)

× PlainExtV ar 20.20 (83.38)

× RetroV ar 21.25 (81.18)

× RetroExtV ar 21.57 (82.89)

X NoneV ar 22.70 (81.51)

X PlainV ar 19.27 (83.87)

X PlainFixed 21.20 (81.61)

X PlainExtV ar 20.76 (83.17)

X PlainExtFixed 19.32 (82.38)

X RetroV ar 22.71 (81.12)

X RetroFixed 28.86 (80.53)

X RetroExtV ar 20.95 (81.94)

X RetroExtFixed 31.12 (79.63)

COPY+SL

× NoneV ar 17.88 (83.70)

× PlainV ar 20.22 (81.52)

× PlainExtV ar 20.14 (83.46)

× RetroV ar 21.30 (81.22)

× RetroExtV ar 21.52 (82.86)

X NoneV ar 22.72 (81.41)

X PlainV ar 21.46 (81.39)

X PlainFixed 23.76 (81.68)

X PlainExtV ar 20.68 (83.18)

X PlainExtFixed 22.23 (81.71)

X RetroV ar 22.62 (81.15)

X RetroFixed 27.66 (81.35)

X RetroExtV ar 24.11 (79.92)

X RetroExtFixed 27.81 (84.67)

Table 3: Test BLEU results. Sh denotes encoder-

decoder embedding sharing (No=×,Yes=X) . Init

denotes the manner of initializing embedding vec-

tors. The -Fixed or -Var suffix indicates whether

embeddings are fixed or trainable. COPY and

SIMPLES2S denote presence/absence of Copy

component. +SL denotes sentinel loss.

Table 1 presents model outputs11 for some test

examples. In general, the Copy model outputs re-

11All neural outputs are lowercase due to our preprocess-
ing. Although this slightly affects BLEU, it helps prevent
token occurrences getting split due to capitalization.
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Figure 2: Attention matrices from a Copy (top)

and a simple S2S (bottom) model respectively on

the input sentence “Holy Saint Francis, this is a

drastic change!” . < s > and < /s > are start and

stop characters. Darker cells are higher-valued.

semble the ground truth more closely compared to

SimpleS2S and Stat . In some cases, it faces is-

sues with repetition (Examples 5 and 7) and flu-

ency (Example 9).

9 Related Work

There have been some prior work on style adapta-

tion. Xu et al. (2012) use phrase table based statis-

tical machine translation to transform text to target

style. On the other hand our method is an end-

to-end trainable neural network. Saha Roy et al

(2015) leverage different language models based

on geolocation and occupation to align a text to

specific style. However, their work is limited to

addition of adjectives and adverbs. Our method

can handle more generic transformations includ-

ing addition and deletion of words.

Pointer networks (Vinyals et al., 2015) allow the

use of input-side words directly as output in a neu-

ral S2S model, and have been used for tasks like

extractive summarization (See et al., 2017) (Zeng

et al., 2016) and question answering (Wang and

Jiang, 2016). However, pointer networks cannot

generate words not present in the input. A mix-

ture model of recurrent neural network and pointer

network has been shown to achieve good perfor-

mance on language modeling task (Merity et al.,

2016).

S2S neural models, first proposed by Sutskever

et al. (2014), and enhanced with a attention mech-

anism by Bahdanau et al. (2014), have yielded

state-of-the-art results for machine translation

(MT), , summarization (Rush et al., 2015), etc. In

the context of MT, various settings such as multi-

source MT (Zoph and Knight, 2016) and MT with

external information (Sennrich et al., 2016) have

been explored. Distinct from all of these, our work

attempts to solve a Modern English → Shake-

spearean English style transformation task. Al-

though closely related to both paraphrasing and

MT, our task has some differentiating character-

istics such as considerable source-target overlap

in vocabulary and grammar (unlike MT), and dif-

ferent source and target language (unlike para-

phrasing). Gangal et al. (2017) have proposed a

neural sequence-to-sequence solution for generat-

ing a portmanteau given two English root-words.

Though their task also involves large overlap in

target and input, they do not employ any spe-

cial copying mechanism. Unlike text simplifica-

tion and summarization, our task does not involve

shortening content length.

10 Conclusion

In this paper we have proposed to use a mix-

ture model of pointer network and LSTM to

transform Modern English text to Shakespearean

style English. We demonstrate the effectiveness

of our proposed approaches over the baselines.

Our experiments reveal the utility of incorporat-

ing input-copying mechanism, and using dictio-

nary constraints for problems with shared (but

non-identical) source-target sides and sparse par-

allel data.

We have demonstrated the transformation to

Shakespearean style English only. Methods have

to be explored to achieve other stylistic variations

corresponding to formality and politeness of text,

usage of fancier words and expressions, etc. We

release our code publicly to foster further research

on stylistic transformations on text. 12.

12https://github.com/harsh19/Shakespearizing-Modern-
English
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